Plasticity from muscle to brain.

TitlePlasticity from muscle to brain.
Publication TypeJournal Article
Year of Publication2006
AuthorsWolpaw, J, Carp, JS
JournalProgress in neurobiology
Date Published02/2006
Keywordsactivity-dependent, John Eccles, Learning, Memory, motor unit, muscle, plasticity, Spinal Cord

Recognition that the entire central nervous system (CNS) is highly plastic, and that it changes continually throughout life, is a relatively new development. Until very recently, neuroscience has been dominated by the belief that the nervous system is hardwired and changes at only a few selected sites and by only a few mechanisms. Thus, it is particularly remarkable that Sir John Eccles, almost from the start of his long career nearly 80 years ago, focused repeatedly and productively on plasticity of many different kinds and in many different locations. He began with muscles, exploring their developmental plasticity and the functional effects of the level of motor unit activity and of cross-reinnervation. He moved into the spinal cord to study the effects of axotomy on motoneuron properties and the immediate and persistent functional effects of repetitive afferent stimulation. In work that combined these two areas, Eccles explored the influences of motoneurons and their muscle fibers on one another. He studied extensively simple spinal reflexes, especially stretch reflexes, exploring plasticity in these reflex pathways during development and in response to experimental manipulations of activity and innervation. In subsequent decades, Eccles focused on plasticity at central synapses in hippocampus, cerebellum, and neocortex. His endeavors extended from the plasticity associated with CNS lesions to the mechanisms responsible for the most complex and as yet mysterious products of neuronal plasticity, the substrates underlying learning and memory. At multiple levels, Eccles' work anticipated and helped shape present-day hypotheses and experiments. He provided novel observations that introduced new problems, and he produced insights that continue to be the foundation of ongoing basic and clinical research. This article reviews Eccles' experimental and theoretical contributions and their relationships to current endeavors and concepts. It emphasizes aspects of his contributions that are less well known at present and yet are directly relevant to contemporary issues.


You are here