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Abstract
We describe a study designed to assess properties of a P300 brain–computer interface (BCI). The BCI presents the user with a matrix containing

letters and numbers. The user attends to a character to be communicated and the rows and columns of the matrix briefly intensify. Each time the

attended character is intensified it serves as a rare event in an oddball sequence and it elicits a P300 response. The BCI works by detecting which

character elicited a P300 response. We manipulated the size of the character matrix (either 3 � 3 or 6 � 6) and the duration of the inter stimulus

interval (ISI) between intensifications (either 175 or 350 ms). Online accuracy was highest for the 3 � 3 matrix 175-ms ISI condition, while bit rate

was highest for the 6 � 6 matrix 175-ms ISI condition. Average accuracy in the best condition for each subject was 88%. P300 amplitude was

significantly greater for the attended stimulus and for the 6 � 6 matrix. This work demonstrates that matrix size and ISI are important variables to

consider when optimizing a BCI system for individual users and that a P300-BCI can be used for effective communication.
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1. Introduction

Several different features of scalp recorded EEG signals are

being used as control signals for brain–computer interface (BCI)

applications; most notably, event-related potentials (Donchin

et al., 2000; Farwell and Donchin, 1988; Serby et al., 2005),

spontaneous sensory motor rhythms (Wolpaw and McFarland,

2004; Pfurtscheller et al., 1996), and slow cortical potentials

(Birbaumer et al., 1999). A comprehensive review is provided by

Wolpaw et al. (2002). Many researchers have demonstrated BCI

accuracy high enough for online communication (Farwell and

Donchin, 1988; Kübler et al., 2005; Serby et al., 2005; Wolpaw

and McFarland, 2004). In addition, researchers have also

reported that patients with amyotrophic lateral sclerosis (ALS)

can use BCI systems with accuracy levels acceptable for

communication using slow cortical potentials, mu rhythms, or

P300 event-related potentials (Birbaumer et al., 1999, 2000;

Kübler et al., 2005; Sellers and Donchin, 2006). These findings

from ALS patients are important because people who suffer from
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ALS and other severe motor disabilities are the most likely

candidates for long-term use of BCI systems.

The current study focuses on a P300-BCI. The P300 Speller

described by Farwell and Donchin (1988) presents a 6 � 6 matrix

of characters to a user. The user’s task is to communicate a

specific character by attending to the cell of the matrix that

contains the desired character, and counting the number of times

it is intensified (or flashed). Each row and each column are

intensified and the intensifications are presented in a random

sequence. The sequence of 12 intensifications, each of the 6 rows

and 6 columns, constitutes an oddball paradigm (Fabiani et al.,

1987). The row and the column containing the character to be

communicated (the target) form the rare set, and the other 10

intensifications form the frequent set (the non-targets). The target

items (i.e., the target row and column) should elicit a P300

response if the observer is attending to the stimulus series,

because each target stimulus intensification constitutes a rare

event in the context of all other intensifications.

Classification rates using a 6 � 6 matrix of alphanumeric

characters have been improved beyond those reported by

Farwell and Donchin (1988) in online demonstrations using

stepwise discriminant analysis (SWDA; Donchin et al., 2000)
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and independent components analysis (Serby et al., 2005), and

in offline analyses using support vector machines (Kaper et al.,

2004; Meinicke et al., 2002). While the practical value of these

methods remains unclear, the initial results are impressive and

have provided the impetus to continue developing P300-BCI

systems that can perform faster and with higher classification

accuracy. The path to improved performance has focused

almost exclusively on improved signal processing techniques

that maximize the signal-to-noise ratio. The purpose of the

current study is to examine the impact of stimulus properties

and stimulus presentation rates on performance.

1.1. The current study

This study expands upon previous research by comparing

target selection rates using a 3 � 3 version and a 6 � 6 version of

the matrix speller. Allison and Pineda (2003) examined matrix

size manipulations and found that increasing the dimensions (i.e.,

the numbers of rows and columns) of the matrix, while holding

the size of the matrix elements constant, resulted in larger P300

amplitudes for the attended matrix element. They tested 3 matrix

sizes, 4 � 4, 8 � 8, and 12 � 12, and found that P300 amplitude

increased as the size of the matrix increased. This result is

expected since it has been shown that P300 amplitude increases

with smaller probability of the occurrence of a target item (e.g.,

Duncan-Johnson and Donchin, 1977). However, since the

Allison and Pineda (2003) study did not examine classification

rates, it is unclear how their results are related to target selection.

Only two studies have previously examined the effect of

varying the inter-stimulus interval (ISI) between matrix

intensifications; their results conflict. Farwell and Donchin

(1988) reported higher classification rates with a longer ISI,

whereas Meinicke et al. (2002) reported higher classification

accuracy with a shorter ISI.

BCIs that use event-related responses such as the P300 may

have a significant advantage over those that use spontaneous EEG

signals in that they do not require lengthy training periods to

achieve effective BCI use. However, it is not yet clear whether or

not long-term use of a P300-BCI will attenuate the P300 signal.

Several studieshaveexaminedP300 amplitudeandlatency across

time (e.g., Cohen and Polich, 1997; Kinoshita et al., 1996; Polich,

1989; Ravden and Polich, 1998), but not in the context of use in a

BCI. Sellers and Donchin (2006) evaluated the robustness of the

P300 signal accuracy in patients tested over 10 experimental BCI

sessions and reported minimal effects on performance.

The current study examines the effect of matrix size and ISI

on classification accuracy in the selection of target items. We

cross the ISI and matrix size manipulations to create four

experimental conditions. We also examine the consistency of a

user’s performance over time.
2. Methods

2.1. Subjects

Five people (four men age 25, 49, 21, 33, and a woman age 58) participated

in this study which consisted of five sessions spread out over 3 weeks. Two users
had had no prior BCI experience. Three users had had previous BCI experience

but no experience with the P300 Speller paradigm. One user participated in

three 15-min sessions of free spelling (i.e., in which the user freely chooses the

attended character) interspersed in the five sessions of the study period. The

study was approved by the New York State Department of Health Institutional

Review Board, and each user gave informed consent.

2.2. Data acquisition and processing

EEG was recorded using a cap (Electro-Cap International, Inc.) embedded

with 64 electrodes distributed over the entire scalp (Sharbrough et al., 1991). All

64 channels were referenced to the right earlobe, and grounded to the right

mastoid. The EEG was bandpass filtered 0.1–60 Hz, amplified with a SA

Electronics amplifier (20,000�), digitized at a rate of 240 Hz, and stored.

All aspects of data collection and experimental design were controlled by the

BCI2000 system (Schalk et al., 2004).

2.3. Task, procedure, and design

The user sat 1.4 m from a video screen and viewed the matrix display. He or

she was given the option to either recline or sit upright. The 6 � 6 matrix

subtended 8.308H � 10.908W (8.00 in. � 10.50 in.) of visual angle and the

3 � 3 matrix subtended 5.448H � 7.078W (5.25 in. � 6.75 in.). The distance

between each character was 1.548H and 2.668W (0.82 in. � 1.5 in), for the

6 � 6 and 3 � 3 matrices, respectively. The size of each character was

0.708H � 0.578W (0.63 in. � 0.50 in.) in both displays.

The user’s task was to focus attention to one letter of the matrix and note the

number of times the target character intensified. The first of the five sessions

served as a training session to gather data used to derive classification

coefficients for the subsequent experimental sessions. Thus, online feedback

of classification results was not presented to the user in the training session.

Such feedback was provided in the four final sessions (see below).

Each session was composed of eight runs and each run was composed of

‘‘copy-spelling’’ a four-letter word. (In copy spelling, the target letter is

specified so that data for offline analyses can be properly coded.) At the

beginning of each run, the first letter of the word was presented in parentheses

at the end of the word (see Fig. 1). The letter in parentheses was the target letter.

Immediately after the prescribed number of column and row intensifications

(e.g., 20 sequences of 12 flashes in the 6 � 6 matrix 175-ms ISI condition) the

classifier would make a decision. After a 2.5 s delay, the result of the classifier

would appear in the feedback line of the display window. Then, 2.5 s later, the

next character of the word was presented in parentheses at the end of the word

and the user switched attention to this new character. Hence, the total duration

between characters was 5.0 s. This process continued until all four characters of

the word had served as the target letter. All data were collected in this ‘copy-

speller’ mode, in which the user was not given the option to correct mistakes.

We used two different matrix sizes (3 � 3 and 6 � 6) and two different ISIs

(175 and 350-ms) so that there were a total of four experimental conditions. In

each of the five experimental sessions, the user experienced two consecutive

runs in each condition. The four conditions were presented in a counterbalanced

fashion. The variables of matrix size and ISI had independent effects on the time

needed to complete the presentation of a single character. Because we decided

to keep the time allotted to select a character constant for all conditions, each

condition contains different numbers of stimulus sequences per character. For

example, a 6 � 6 matrix requires twice as many flashes to complete one

sequence of intensifications (i.e., flashes of 6 rows and 6 columns) compared

to a 3 � 3 matrix (flashes of 3 rows and 3 columns). To keep the time allotted for

each character selection fixed, each stimulus (i.e., row or column) was presented

twice as many times in the 3 � 3 condition as in the 6 � 6 condition, and twice

as many times in the 175-ms ISI condition as in the 350-ms ISI condition.

Table 1 presents time per character selection and number of stimulus sequences

for each of the four experimental conditions.

2.4. Deriving classification coefficients using SWDA

Stepwise linear discriminant analysis (SWDA) was used to determine

coefficients for online classification (Draper and Smith, 1981). SWDA has
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Fig. 1. The 3 � 3 and 6 � 6 matrices used in this study. The rows and columns intensify for 100 ms every 175 or 350 ms. The word at the top is the word to be copy-

spelled. The letter in parentheses is the current target letter (i.e., ‘‘I’’). For the 3 � 3 matrix, a P300 should be elicited when the third column or second row intensifies;

similarly, for the 6 � 6 matrix, a P300 should be elicited when the third column or second row intensifies. Online feedback is provided directly below the word being

copied.
been previously shown to classify responses effectively and it compared well

with other methods (Donchin et al., 2000; Farwell and Donchin, 1988). It

provides a spatiotemporal vector of coefficients (channel by sample) that can be

easily implemented online, and it is well established as a successful classifica-

tion technique (Donchin, 1969; Donchin et al., 2000; Farwell and Donchin,

1988; Krusienski et al., 2005; Sellers and Donchin, 2006).

SWDA seeks the optimal discriminant function by adding features (in this

case, channels � time elements) to a linear equation in a stepwise fashion based

on which feature explains the largest amount of unique variance. SWDA

operates by performing a series of forward and backward regression procedures,

in discrete steps. Starting with no initial model terms, the single feature

accounting for the most variance is added to the model. For any feature to

be entered into the model, it was required to account for a significant amount of

variance at the level of P < 0.10. In other words, for a feature to be added to the

model, the model must improve by a P-value of 0.10, as compared to the model

without the feature being included. In each step the model evaluates every

feature to determine the single feature that produces the highest P-value and this

feature is then selected for inclusion.

After each entry, a backward stepwise regression is performed to remove

any features that no longer meet the predetermined criterion to remain in the

model, in this case a P-value of >0.15 was used. This procedure is conducted

because it is possible that a feature will no longer account for a significant

amount of unique variance after additional features have entered the model. The

forward and backward regression process is repeated until the model includes a

predetermined number of features (10 in the present study) or until no additional

features satisfy the entry/removal criteria. Pilot studies showed that the P to

enter (<0.10) and P to remove (>0.15) values were reasonable values to use for

entering and removing features. The SWDA analysis was implemented in

Matlab 7.0 using the Statistics Toolbox STEPWISEFIT function.
Table 1

Time (Sec) and stimulus sequences per character selection (Num) for each of

the matrix size � ISI conditions in the online experiment and in the offline

simulation

3 � 3 Matrix 6 � 6 Matrix

Sec Num Sec Num

Online

175 42.0 40 42.0 20

350 42.0 20 42.0 10

Offline

175 10.5 10 21.0 10

350 21.0 10 42.0 10
2.4.1. Optimizing SWDA coefficients

Offline, SWDA coefficients were derived for each of the 4 conditions (i.e.,

6 � 6 matrix 175-ms ISI, 6 � 6 matrix 350-ms ISI, 3 � 3 matrix 175-ms ISI,

and 3 � 3 matrix 350-ms ISI). Factors known to affect classification accuracy

were varied to determine the optimal set of coefficients (Krusienski et al.,

2005). These factors include moving average window (MA), decimation factor

(DF), reference method (REF), and number/location of channels (ChSet). The

moving average window length was either 4 or 16 samples. Similarly, the

decimation factor was either 4 or 16 samples (i.e., we downsampled the data by

a factor of either 4 or 16). The MA window was first applied to the data, and

then the DF was applied. For example, in the MA/DF 4 condition, the data were

collected at a sample rate of 240 Hz (240 samples/s), a MA window of 4

samples was applied to the data, then it was decimated by a factor of 4; thus, the

input to the SWDA analysis includes every fourth sample (or every 16th

sample in the MA/DF 16 condition). The data was referred to the monopolar

ear reference (MR) used during data collection or re-referenced offline with a

common average reference (CAR). Additionally, two different channel sets
Fig. 2. The electrode montage. As noted in the text, SWDA coefficients were

derived from the 7 electrodes of Set 1 (within the solid line) or from the 29

electrodes of Set 2 (within the dashed line).
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Table 2

Parameter combinations for each of the eight sets of coefficients

Set MA/DF REF ChSet

1 4 MR 1

2 4 MR 2

3 4 CAR 1

4 4 CAR 2

5 16 MR 1

6 16 MR 2

7 16 CAR 1

8 16 CAR 2

Coefficients were created by crossing the variables of moving average/decima-

tion (MA/DF), reference site (REF) (i.e., monopolar to right earlobe (MR) or

common average reference (CAR)), and the Channel set (Ch Set) (i.e., Fig. 2).

Fig. 3. Average (�S.E.) classification accuracies for all users for the four

experimental conditions. The solid and dotted lines indicate the data for the 175

and 350-ms ISI conditions, respectively. (A) Actual online performance. (B)

Offline performance using training sets of equal size to derive the classification

coefficients.
were used to derive classification coefficients. Channel Set 1 consisted of seven

midline electrodes (beginning at Fz and moving posterior through Oz).

Channel Set 2 consisted of the 29 most centrally located electrodes. See

Fig. 2 for an example of the electrode montage and the two electrode sets.

Crossing the variables of MA/DF, reference, and channel set results in eight

unique parameter sets used to derive coefficients. The eight combinations are

shown in Table 2.

For online classification of Session 2 only Channel set 1 data from the

first session (i.e., the training session) were used to derive the classification

coefficients. We adopted this conservative practice for data from the initial

session because classification coefficients derived from non-traditional P300

electrode locations have, in some cases, failed to generalize as well as

midline electrodes. After Session 2, the eight sets of coefficients from

Session 1 and eight sets of coefficients from Session 2 were cross validated,

i.e., Session 1 applied to Session 2 and Session 2 applied to Session 1. The set

of coefficients that classified most accurately was then used online for

Session 3. After each subsequent session, the data were aggregated and this

process was repeated to determine the optimal set of parameters for the

upcoming session.

3. Results

The above mentioned confounds between matrix size and

ISI necessitate several comparisons of classification accuracy.

The first analysis examines the online results holding the

amount of time allotted to each character constant. A

subsequent analysis holds time constant (as in the online

analysis), but examines classification accuracy based on

classification coefficients derived from equally sized sets of

training data. Recall that each condition has a different number

of stimulus sequences because of the matrix size and ISI

manipulations (see Table 1). This analysis examines whether or

not unequal training set sizes affect the efficacy of the

classification coefficients.

In the next analysis, the number of stimulus sequences is

held constant at 10, the lowest number of online sequences used

in the study (i.e., the number used in the 6 � 6 matrix 350-ms

ISI condition). This analysis controls for the possibility that

classification accuracy is higher in conditions that have more

stimulus presentations. We also conducted an analysis that

examines classification accuracy based on classification

coefficients derived from equally sized sets of training data,

while holding number of sequences constant. (This analysis

used the same classification coefficients as the previous

analysis that controlled for training set size.)
The final classification accuracy analysis compares general-

ized and user specific classification coefficients. In this

analysis, we compared the user specific coefficients (used

for online classification) with coefficients derived from equally

sized random samples of data aggregated across users. This

analysis examines the extent to which classification coefficients

will generalize across users, or whether it is necessary to have

user specific coefficients.

Following the classification analyses, bit rate and accuracy

are compared. These results are followed by examples of

classification coefficients and the waveform analysis.

3.1. Online classification

Three factors were included in the analysis of the online

classification data, matrix size (3 � 3 and 6 � 6), ISI (175 and

350-ms), and session (2–5). Session yielded no significant

effects; therefore, data were collapsed across all sessions.

Accuracy in the 3 � 3 matrix condition was significantly higher

than accuracy in the 6 � 6 condition (F(1,4) = 35.51,

P = 0.004). Accuracy in the 175-ms ISI condition was

significantly higher than accuracy in the 350-ms ISI condition

(F(1,4) = 8.12, P = 0.047). The matrix size � ISI interaction

was also significant (F(1,4) = 34.66, P = 0.004). As Fig. 3A

shows, matrix size has little effect on accuracy when the ISI is

175 ms. However, matrix size has a large effect when the ISI is

350 ms; accuracy is more than 30% higher in the 3 � 3

condition than in the 6 � 6 condition.
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Fig. 4. Average (�S.E.) classification accuracies for all users for the four

experimental conditions. The solid and dotted lines indicate the data for the 175

and 350-ms ISI conditions, respectively. (A) Offline performance after 10

sequences of intensifications. (B) Offline performance after 10 sequences of

flashes, and training sets of equal size to derive the classification coefficients.
3.1.1. Presentation time and training data constant

As stated above, the number of stimulus sequences in each

condition is not equal because we wanted to keep the time for

each character selection uniform throughout. Thus, one

possible explanation for higher accuracy in the 175-ms ISI

condition is that more data are available for the SWDA

analysis, and the resulting classification coefficients are less

variable. To examine this possibility, the analysis was

conducted using coefficients derived from equal amounts of

training data (i.e., 25% of the data in the 3 � 3 matrix 175-ms

ISI condition; 50% for the 3 � 3 matrix 350-ms ISI condition;

50% for the 6 � 6 matrix 175-ms ISS condition; and 100% for

the 6 � 6 matrix 350-ms ISI condition). Accuracy in the 3 � 3

matrix condition was significantly higher than accuracy in the

6 � 6 matrix condition (F(1,4) = 15.83, P = 0.016). More

importantly, the matrix size � ISI interaction was significant

(F(1,4) = 51.66, P = 0.002). Overall accuracy was reduced, but

the pattern of results remained the same (see Fig. 3B). Thus, the

amount of data used for training cannot account for the low

level of classification accuracy in the 6 � 6 matrix 350-ms ISI

condition.

3.2. Number of sequences constant

The confound between time per character presentation and

the number of sequences was examined in the following

analysis. The 6 � 6 matrix 350-ms ISI condition used only 10

sequences, the lowest number of any of the four conditions.

Therefore, the analysis on accuracy was conducted after 10

sequences of flashes, in all four conditions. (For this reason, the

on- and offline values for the 6 � 6 350 ms ISI conditions are

equal in Table 1.)

The factors of matrix size, ISI, and session, were entered into

the ANOVA. As with the online analysis, no effects including

session were significant, so we collapsed the data for all

sessions for each user. Accuracy in the 3 � 3 matrix condition

was higher than accuracy in the 6 � 6 matrix condition

(F(1,4) = 14.49, P = 0.019). In addition, the matrix size � ISI

interaction (see Fig. 4A) shows that accuracy in the 3 � 3

matrix 175-ms ISI condition, is approximately 5% higher than

the 6 � 6 matrix 175-ms ISI condition. In contrast, accuracy in

the 3 � 3 matrix 350-ms ISI condition is approximately 20%

higher than the 6 � 6 matrix 350-ms ISI condition

(F(1,4) = 11.00, P = 0.030). These results are similar to the

online accuracy results in that the 175 ms ISI is less affected by

the matrix size manipulation.

3.2.1. Number of sequences and training data constant

The following analysis held the number of sequences and the

training set sizes constant. This analysis was conducted with

coefficients derived from equally sized training sets, the same

coefficients used in the analysis reported in Section 3.1.1.

Classification accuracy was significantly higher in the 3 � 3

matrix condition than in the 6 � 6 matrix condition

(F(1,4) = 10.29, P = 0.033). In this analysis, the effect of

session was significant. Accuracy improves as more sessions

are conducted (F(1,4) = 5.31, P = 0.015). However, the matrix
size � ISI interaction was not significant. Fig. 4B shows that

classification accuracy for all conditions is reduced (except of

course for the 6 � 6 matrix 350-ms ISI condition, because the

size of the training set does not change). This result shows that

by controlling for the number of sequences presented and the

size of the training set, the matrix size � ISI interaction present

in the previous comparisons can no longer be detected.

3.3. General versus user specific coefficients

One way to examine the extent to which the ERP response is

different, or similar, across users is to examine the performance

of classification coefficients derived from a composite of all

user’s data. The current analysis compares such ‘general’

coefficients to the user specific coefficients used online. To

derive general coefficients, a random sample of data from all

users equal to the amount of data used to derive the user-specific

coefficients was aggregated, and coefficients were then created

using the method described in Section 2.4.1. In this approach, if

the general coefficients classify as well as the coefficients

specific to a given user, the user’s responses are considered to be

similar to one another. On the other hand, if user specific

coefficients classify more accurately, the user’s ERP response is

considered to be unique.

Classification results were entered into a 3-way repeated

measures ANOVA including the variables of coefficients



E.W. Sellers et al. / Biological Psychology 73 (2006) 242–252 247
(general and user specific), matrix (3 � 3 and 6 � 6), and ISI

(175 and 350-ms). Our analysis is limited to effects including

coefficients because the other effects have been examined in

Section 3.1. The only significant effect was the main effect of

coefficients. Mean classification rates for the general and user

specific coefficients were 44.84% and 72.97%, respectively

(F(1,4) = 273.42, P < 0.0001). This result indicates a sig-

nificant amount of user individuality in the ERP response.

3.4. Bit rate comparison

Measurement of bit rate is a method commonly used to

assess BCI performance (e.g. Serby et al., 2005; Wolpaw et al.,

2000, 2002). Table 3 shows bits/min and associated accuracy

for each subject and each experimental condition. The top half

of the table shows online values and the bottom half of the table

shows the values in the offline comparison that held number of

stimulus presentations constant. The following formula

described in Pierce (1980) was used to calculate the number

of bits transmitted per trial:

B ¼ log2 N þ P log2 Pþ ð1� PÞ log2

�
1� P

N � 1

�
(1)

where N is the number of possible targets, and P is the

probability that the target is accurately classified. Bit rate

(bits/min) can then be computed by dividing B by the trial

duration in minutes.

An ANOVA analogous to those performed on the accuracy

data was also performed on the bit rate data of the online results

and on the offline results holding the number of sequences per

character constant; the factors of matrix size, ISI, and session

were entered into both of the analyses. In the analysis of the

online data two effects reached statistical significance. Bits/min
Table 3

Accuracy and bits/min for each user for each of the four conditions

Subject 3 � 3

175 ISI 350 ISI

Accuracy Bits/min Accuracy Bits/m

Online

1 68.75 2.07 78.13 2.57

2 65.63 2.06 68.75 2.00

3 96.88 4.20 78.13 2.65

4 96.88 4.20 93.75 3.87

5 96.88 4.20 75.00 2.49

Mean 85.00 3.34 78.75 2.71

Offline

1 37.50 3.12 68.75 3.86

2 37.50 3.26 56.25 2.65

3 78.13 11.45 71.88 4.31

4 68.75 8.35 81.25 5.80

5 84.38 12.34 68.75 4.37

Mean 61.25 7.70 69.38 4.19

Top: Online data. Bottom: Offline simulation using only 10 stimulus sequences. The b

together.
in the 175-ms ISI condition were significantly higher than the

bits/min in the 350-ms ISI condition (F(1,1) = 8.92, P = 0.040).

In addition, the increase in bits/min from the 3 � 3 to the 6 � 6

matrix for the 175-ms ISI condition is greater than the increase

for the 350-ms ISI condition, as evidenced by the significant

matrix size � ISI interaction (F(1,4) = 18.96, P = 0.012). In

the offline analysis that constrained the number of sequences,

only one effect reached statistical significance. Bits/min were

higher for the 3 � 3 matrix than for the 6 � 6 matrix

(F(1,1) = 12.06, P = 0.026).

The condition yielding the highest bits/min does not yield

the highest level of accuracy, in neither the online nor the offline

analysis. For example, in the online comparison, 5.25 is the

highest mean bits/min, it results in 80.00% accuracy, and it is

achieved in the 6 � 6 175-ms ISI condition. In contrast, a bit

rate of 3.34 bits/min yields an accuracy of 85.00%, in the 3 � 3

175-ms ISI condition. However, this is not surprising: bit rate is

influenced by the number of alternative choices and the 6 � 6

and 3 � 3 matrix sizes have 36 and 9 choices, respectively. The

offline data in the bottom half of the table presents a different

pattern. The 3 � 3 matrix 175-ms ISI condition yielded

7.70 bits/min, even though accuracy was highest in the 3 � 3

350-ms ISI condition. This too is not surprising, because the

time required to make each selection influences bits/min and

the selections in the 3 � 3 matrix are made in half the time.

(Compared to the 6 � 6 matrix, only half as many stimuli are

needed to present all of the columns and rows in the 3 � 3;

therefore, for the 3 � 3 matrix, the desired number of 10

sequences is reached in half of the time.)

It is also informative to examine bits/min and accuracy for

each user and compare one user to another. In the online

conditions that held time per character constant at 42 s, bit rate

was highest for all users in the 6 � 6 matrix 175-ms ISI

condition, because of the above mentioned reasons. In contrast,
6 � 6

175 ISI 350 ISI

in Accuracy Bits/min Accuracy Bits/min

62.50 3.31 40.63 1.68

53.13 2.67 46.88 2.29

96.88 6.96 50.00 2.75

87.50 5.93 50.00 2.33

100.00 7.39 53.13 3.03

80.00 5.25 48.13 2.41

25.00 1.55 40.63 1.68

37.50 2.95 46.88 2.29

84.38 10.74 50.00 2.75

50.00 5.01 50.00 2.33

71.88 8.89 53.13 3.03

53.75 5.83 48.13 2.41

old values are the highest accuracies and bit rates for each user and for all users
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the condition that reached the highest level of accuracy varied

from subject to subject. No subject performed best in the 6 � 6

matrix 350-ms ISI condition. In the offline analysis, which held

number of stimuli constant, a different pattern emerged. Bit rate

was highest for all subjects in the 3 � 3 matrix 175-ms ISI

condition. The condition that resulted in highest accuracy

varied from user to user, but as in the online condition, no user

achieved highest accuracy in the 6 � 6 matrix 350-ms ISI

condition. These results show that, while bit rate follows a

similar pattern across users, accuracy shows a more idiosyn-

cratic pattern, and although bit rate is an objective measure of

information transfer it should be used with caution because

accuracy below 50% is not sufficient to operate a BCI.

3.5. Waveforms and classification coefficients

To illustrate the variability within subjects and across

conditions, Figs. 5 and 6 show waveforms and classification

coefficients for each of the four conditions for each of two

users. Figs. 5 and 6 show waveforms and classification

coefficients for the users with the ERP responses that varied
Fig. 5. (A) User 4’s average waveforms for target (solid lines) and non-target res

Classification coefficients corresponding to each of the four experimental conditions.

at which the coefficients are applied is noted above each topography, and the elec
most and least, respectively, across conditions. Note that, in

Fig. 5A, the largest positive deflection occurs at a different time

in each of the four conditions. In contrast, in Fig. 6A, the largest

positive deflection occurs at nearly the same time in each

condition. Figs. 5 and 6 also demonstrate the complex

relationship between the EEG response to the stimuli and

the classification coefficients produced by the SWDA algo-

rithm. While the waveform for only 1 channel (Pz) is presented,

the topography (column B in Figs. 5 and 6) shows that the

classification coefficients are distributed amongst many

channels. Red coefficient values indicate positive values and

blue indicate negative values; the actual coefficient values are

arbitrary because the coefficients are scaled to be within the

range of 10 to �10.

An ANOVA was performed on the waveform amplitude data

to ascertain whether any statistical differences exist between

amplitude values for the different experimental conditions at

discrete time points in the ERP. This particular waveform

analysis was adopted because it allows the data to be in a similar

format to when it was used to derive the SWDA coefficients,

albeit with only one channel. For each condition and target type
ponses (dashed lines) for each of the four conditions from electrode Pz. (B)

Positive values are shown in red and negative values are shown in blue. The time

trode location is noted in each topography.
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Fig. 6. (A) User 2’s average waveforms for target (solid lines) and non-target responses (dashed lines) for each of the four conditions from electrode Pz. (B)

Classification coefficients corresponding to each of the four experimental conditions. Positive values are shown in red and negative values are shown in blue. The time

at which the coefficients are applied is noted above each topography, and the electrode location is noted in each topography.

Fig. 7. Mean Pz amplitude in 16 50-ms steps, for all sessions of all users for the

3 � 3 (gray lines) and 6 � 6 (black lines) matrices for target (solid lines) and

non-target (dashed lines) stimuli.
(target or non-target), 16 time points beginning at time zero and

separated by 50 ms were used as input. The factors of time (1–

16), matrix (3 � 3 and 6 � 6), ISI (175 and 350-ms), and target

(target and non-target) were entered into the analysis. Only two

effects reached statistical significance. The time � target

interaction showed that, across the 16 time points tested, the

amplitude for the target items increases more than the

amplitude for the non-target items (F(15,60) = 2.39,

P = 0.009). The matrix � time � target interaction showed

that, in addition to the difference between targets and non-

targets across time, the 6 � 6-matrix target responses are

largest, 3 � 3-matrix target responses are intermediate in size,

and non-target responses for both matrices are smallest

(F(15,60) = 2.13, P = 0.020). Fig. 7 shows both of these

interactions. This result shows that there are significant

amplitude differences between target and non-target stimuli,

and the difference varies as a function of matrix size.

Waveforms from electrode Pz for all users and all

conditions are shown in Fig. 8. The waveforms are averaged

across all five sessions. In the 3 � 3 conditions, the solid

curves represent one-third of the stimuli (i.e., the row and
column containing the target) and in the 6 � 6 conditions the

solid curves represent one-sixth of the stimuli. The figure

illustrates the variability in the ERP response, across users

and conditions.
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Fig. 8. Average waveforms of responses to target stimuli (solid lines) and non-target stimuli (dashed lines) from electrode Pz for each user for all four conditions for

all five sessions.
4. Discussion

This study demonstrates several important points. First, a

previously untested matrix containing only nine items can yield

very high classification rates despite the increased probability

with which the attended item is presented. Second, classifica-

tion accuracy is stable over the course of five experimental

sessions. Third, matrix size and ISI affect classification; and

matrix size and stimulus class (i.e., target versus not-target)

affect waveform morphology. Fourth, a shorter ISI yields

higher classification rates. Fifth, individual differences in the

EEG response play a large role in classification performance, as

shown by significantly higher accuracy when user specific

coefficients were compared to general coefficients. Sixth, the

relationship between accuracy and bits/min must be considered

when a BCI system is being calibrated for a given user.

4.1. Effects of matrix size

Research on the P300 event-related potential has demon-

strated that the amplitude of the P300 response increases as the

probability of the presentation of a target item decreases

(Duncan-Johnson and Donchin, 1977). This result has been

replicated within the context of a matrix speller (Allison and

Pineda, 2003), and in the current study. The current study

expands this finding to demonstrate that the probability

manipulation does not compromise classification accuracy

(at least for the two matrix sizes that were tested).

This finding has important implications for future instantia-

tions of the P300-BCI that may offer different matrix sizes to

perform a variety of different tasks. In such cases, flexibility of

matrix size can be a major asset. For example, one might want

to change the matrix size if visual impairments or other deficits
prevent a potential user from using a BCI. In other cases, a

different matrix size might produce a substantial increase in

accuracy (see User 1, Table 3). Although use of a matrix smaller

than 6 � 6 would necessitate more than one choice to select one

character from the entire English alphabet, the increase in

accuracy might outweigh the additional time required for an

additional selection (see Section 4.3 below for further

discussion).

4.2. Effects of inter stimulus interval

The present study found that the shorter ISI yielded the

highest classification accuracy. This result is consistent with the

ISI effects reported by Meinicke et al. (2002). Farwell and

Donchin (1988) reported higher accuracy rates with a longer

ISI. The reason for the inconsistency is unclear. Nonetheless,

the current findings and the Meinicke et al. (2002) findings are

encouraging because they indicate that a faster display

produces higher classification accuracy and faster commu-

nication. For practical purposes, it appears to be worthwhile to

test multiple ISI values and thereby determine the optimal value

for each user.

4.3. Speed, accuracy, and bits/min

Although bit rate (bits/min) is an objective measure of

information transfer, the importance of accuracy for effective

BCI-based communication should not be overlooked (Wolpaw

et al., 2000, 2002). We performed a simulation to examine the

relationship between bits/character and the number of

selections required to produce an accurately selected series

of 10 characters using error correction, as a function of

accuracy (using a 6 � 6 matrix). The results of the simulation,
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Fig. 9. Results of a simulation examining bits/character selection (dashed line)

and selections needed to correctly complete a 10-character sequence with error

correction (solid line) vs. selection accuracy for the 6 � 6 matrix.
based on 10,000 trials, are presented in Fig. 9 (bits/selection

(left axis) and number of selections (right axis)).

Fig. 9 demonstrates some important points. First, while

accuracy levels less than 60% provide substantial bits/selection,

the time needed to produce useful communication might be

unacceptable. For example, with 53% accuracy using the 6 � 6

matrix 175-ms ISI condition, it would take approximately 190

selections, or 1.2 h to produce a 10 item series of characters,

with a corresponding bit rate of 1.7 bits/selection. Thus,

accuracy is of paramount importance for determining the

effectiveness of a practical BCI. As the figure clearly

demonstrates, bit rate increases in a relatively linear fashion

across the range of accuracy, but the number of trials to

completion is very sensitive to accuracy. For example, with an

accuracy of 95%, approximately 10.5 selections are required to

complete a 10-item sequence, with a corresponding bit rate of

4.7 bits/selection. In contrast, with an accuracy of 80%,

approximately 17 selections are required to complete a 10-item

sequence, with a corresponding bit rate of 3.4 bits/selection.

Thus, with a 15% decrease in accuracy (from 95% to 80%), the

bit rate decreases by 29% (from 4.7 to 3.4) and the time to

complete the 10-item sequence increases by 70%.

4.4. The ERP response and classification coefficients

The relationship between the ERP waveform from any given

channel and the classification coefficients is complex. This is

because as many as 1392 spatiotemporal features, distributed

among up to 29 channels, are provided as input to the SWDA

analysis. Thus, the relationship between a set of coefficients

and the ERP responses cannot be captured by examination of

any single channel, or even a subset of a few channel locations.

Moreover, even if only a few channel locations were used to

derive the classification coefficients, the relationship between

the selected time � channel locations and a waveform at a

given location would not be easily ascertained due to factors

such as response variability, component overlap, and suppressor

variables (e.g., Krus and Wilkinson, 1986; MacKinnon et al.,

2000). For example, Fig. 6A shows that the Pz waveforms are
very similar in each of the four conditions. However,

information that discriminates between target and non-target

responses (i.e., the selected classification coefficients) is

distributed among many channels, and at many time points

located outside of the P300 window (see Fig. 6B). This

additional information may benefit the SWDA analysis by

providing baseline correction and/or suppressor variables.

4.5. Waveform differences

The results suggest that P300 responses elicited within the

current paradigm differ across conditions in several respects.

Many factors affect the amplitude, latency, and scalp

distribution of P300 responses (see Fabiani et al., 1987, for a

review). Importantly for current purposes, both matrix size and

stimulus class affect waveform morphology (as measured at

electrode Pz). The larger matrix size produces larger P300

amplitudes for the target stimuli because of the reduced

probability of occurrence (Duncan-Johnson and Donchin,

1977; Allison and Pineda, 2003). Similarly, target stimuli

produce P300 responses and non-target items do not, as is the

case in typical oddball paradigm experiments (Fabiani et al.,

1987; Pritchard, 1981). The results of the waveform analysis

suggest that the P300 Speller paradigm does in fact operate as a

true oddball paradigm because the waveform results are

consistent with predictions based on previous studies that

manipulate target probability using a typical oddball paradigm.

4.6. Classification across multiple sessions

Only one previous study has examined how classification

changes across multiple sessions in a P300-BCI (Sellers and

Donchin, 2006). Using a four-choice sequential oddball task

that included auditory and visual stimuli, the study found that

the main effect of sessions was not significant, over the course

of 10 sessions. The current study, using a matrix style visual

display, also shows no significant change in user performance

over five sessions in the online analysis. Moreover, we have

recently shown (Krusienski et al., 2005) that classification

coefficients derived from data collected up to one year prior to a

subsequent session can classify with near perfect accuracy.

Thus, a user’s performance appears to be quite consistent over

time.

4.7. Conclusions

All five users in this study were able to use a P300-BCI.

Averaging each user’s most accurate condition resulted in mean

accuracy of 88%. Overall, accuracy was higher in the 175-ms

ISI condition than in the 350-ms ISI condition and accuracy

was higher in the 3 � 3 matrix condition than in the 6 � 6

matrix condition. However, both matrix sizes produced

acceptable levels of accuracy. This result has important

implications for the development of future applications that

will employ a menu-driven matrix system. It shows that it is

feasible to present a user with matrices of sizes that vary

according to different functions (e.g., word processing,
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answering direct questions, environmental controls, sending e-

mail, etc.). Moreover, the consistency of a user’s performance

over time indicates that, although it is necessary to optimize

BCI system parameters to achieve the best performance for

each individual user, it may not be necessary to continually

optimize these parameters over the ensuing time of use.

Furthermore, P300-BCI communication appears to remain

effective over sessions. This has important implications for the

feasibility of eventually providing severely disabled users with

BCIs that they can use in their homes.
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