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Abstract

Brain-computer interface (BCI) technology can restore communication and control to people who 

are severely paralyzed. There has been speculation that this technology might also be useful for a 

variety of diverse therapeutic applications. This survey considers possible ways that BCI 

technology can be applied to motor rehabilitation following stroke, Parkinson’s disease, and 

psychiatric disorders. We consider potential neural signals as well as the design and goals of BCI-

based therapeutic applications. These diverse applications all share a reliance on neuroimaging and 

signal processing technologies. At the same time, each of these potential applications presents a 

series of unique challenges.

Introduction

Brain-computer interfaces (BCIs) translate specific features of signals recorded from the 

brain into outputs that allow the user to act on the world without the participation of 

peripheral nerves and muscles [1]. BCI research has used a variety of brain signals to 

provide communication and control options [2]. BCI technology might also be used to 

improve rehabilitation of sensorimotor function after stroke and provide therapeutic 

paradigms for other disorders of the nervous system [3-6]. Potential applications might 

involve pathology due to stroke, degenerative diseases, developmental disorders, and other 

acquired disorders. Targeted functions could include motor, cognitive, emotional, and 

perceptual disorders. The purpose of the present survey is to consider issues relevant to the 

development of such technologies. These issues include a consideration of the therapeutic 

paradigms that have been proposed, the types of brain signals that might be employed, the 

goals of therapy, and some of the disorders of the nervous system that might be targeted.

To date much of the interest in BCI technologies has involved possible uses in the 

rehabilitation of motor function following stroke [6]. This may be due in part to prior 

research in the BCI literature that was concerned with development of methods to restore 
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motor function for communication and environmental control [1]. However many other 

possibilities exist [5], some of which will be considered in what follows such as Parkinson’s 

disease and psychiatric disorders.

BCI Paradigms for Therapy and Rehabilitation

Application of BCI technologies to neurorehabilitation requires the design of BCI user tasks 

that provide a means for neuroplasticity to promote improved function. Design 

considerations include the targeted goal, whether real-time feedback is provided, whether 

the user is engaged in a sensory, cognitive, emotional, or motor task, and how brain activity 

is conceptualized (i.e., whether it is viewed as a static or dynamic process). A number of 

distinct paradigms have been proposed to date. These include neurofeedback, EEG-based 

imagery enhancement, closing the sensorimotor loop, training motor preparation, and state-

dependent training.

Neurofeedback protocols have been used for many years to treat a variety of disorders. 

Perhaps the most common application of neurofeedback is for the treatment of attention-

deficit hyperactivity disorder (ADHD) [7]. Neurofeedback involves recording EEG activity 

and providing feedback in the form of some visual or auditory stimulus based on the 

presence of a predetermined EEG feature [8]. No additional task is required of the user. 

Huster et al. [9] have described neurofeedback as most likely representing the earliest 

application of BCIs. They suggest that the primary difference with more recent BCIs 

designed for communication and control applications is in terms of the extent of EEG data 

processing. Neurofeedback protocols implicitly assume that the effects of training persist as 

a permanent trait-like condition. However whether or not users actually gain control of the 

target EEG feature is not typically demonstrated in most neurofeedback studies [10]. This is 

understandable given the potential difficulty of doing controlled comparisons when training 

is in one direction only (i.e., to only increase or decrease the EEG feature in question). In 

contrast, the use of multiple states with most BCI communication applications provides a 

controlled within-subject comparison [11].

BCI methods have also been used to enhance motor imagery. The rationale for this approach 

is that motor imagery may provide an effective means of therapy for stroke-related 

dysfunction [12]. However brain lesions may impair imagery [13] so that methods to 

facilitate imagery might enhance recovery. BCI facilitated motor imagery involves providing 

various forms of feedback based on sensorimotor rhythms (SMRs) while users are given the 

task of imagining movement of affected limbs [14-15]. Enhanced motor imagery training 

assumes that motor imagery involves some of the same neural systems as are involved in 

actual movement.

A related BCI-based method proposed for rehabilitation of motor deficits following stroke 

involves closing the sensorimotor loop [16-17]. Here SMR desynchronization is rewarded by 

the operation of an orthosis that produces actual movement of the affected limb. The 

rationale for this approach is that activation of motor areas will be associated with the 

proprioceptive feedback produced by limb movement. This will then lead to sensory cortex 

excitation which is also interconnected with the motor cortices. Several explanations have 
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been provided for the effects of closing the sensorimotor loop including Hebbian learning 

[18] and priming of subsequent physiotherapy [17].

BCI technology can also be used to train users to produce task-appropriate states prior to 

movement [19-20]. With this paradigm users learn to modulate SMRs in advance of the 

target motor task. This approach assumes that advanced preparation facilitates subsequent 

motor performance. Therapeutic benefit can then result from the performance of the 

facilitated motor behavior and also from the user potentially learning task-appropriate 

preparatory responses.

Task-appropriate brain states can also be produced without training by making trial-initiation 

contingent on the desired brain state [21-23]. In contrast to the methods previously 

discussed, this approach does not provide feedback for the BCI user to learn control of the 

targeted brain-state. It only assumes that the task-appropriate brain state facilitates 

performance which in turn leads to persistent change due to enhanced neural plasticity.

Table 1 shows a summary of the main features of the methods discussed. As can be seen in 

the table, the paradigms differ with respect to the goal of training, whether feedback is 

presented, the nature of associated behavioral tasks if any, and the manner in which brain 

states are conceptualized. For example, a common goal of the neurofeedback approach is to 

normalize brain features through the use of feedback [24]. The neurofeedback approach does 

not include a behavioral task in addition to brain state dependent feedback control and 

assumes that the effects of training a brain state persist for a relatively long time following 

training. In contrast, the goal of state-dependent training is to activate task-related brain 

areas based on pre-trial activity. No feedback-based learning is requires but the BCI user 

does engage in the targeted behavioral task. State-dependent training assumes that brain 

states are dynamic since this procedure depends on moment-to-moment fluctuations in state.

Which of these paradigms will work best for rehabilitation of brain disorders is currently an 

empirical question. No doubt it depends on characteristics of brain activity, such as whether 

or not these represent static traits or transient configurations of labile networks. As noted by 

Vernon [25], an implicit assumption underlying neurofeedback is that the training procedure 

will lead to long-term changes in the EEG outside of the training context, which will be 

associated with changes in behavior. Vernon [25] concludes that evidence for these 

assumptions is generally lacking. Some methods may be broadly applicable beyond motor 

deficits. For example, state-dependent training should be applicable to a wide range of 

functions while closing the sensorimotor loop may be more restricted. In addition, these 

methods may vary in ease of implementation. For example, state-dependent training does 

not require extensive training of the BCI user in brain state feature control. However this 

method may be problematic for those who are impaired to the extent that they cannot 

produce the target behavior.

Selection of an appropriate brain signal is an issue facing all of the methods discussed so far, 

and possibly other paradigms not considered here. These paradigms also differ in how signal 

selection has been done to date. The neurofeedback approach assumes an elaborate system 

of associating specific EEG features to specific functions and provides feedback accordingly 
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[24]. Empirical support for these systems is minimal. Selection of features for motor 

recovery by the other methods is generally based on the well-established association of 

SMRs with motor function [26] but is much more limited in scope.

Even for the well-characterized motor system, much remains to be learned about the role of 

its various parts in terms of the signals generated and their potential relevance for 

rehabilitation. This becomes an even greater issue when considering other domains of neural 

control, such as emotion regulation. For example, most prior investigations of neural signals 

associated with emotion have involved averaging results across trials and subjects. 

Prediction of emotional responses on individual trials, a prerequisite for BCI-based 

feedback, is more challenging [27]. At the same time, there is great potential for modifying 

the activity of brain regions that could result in therapeutic benefit, provided that we acquire 

the necessary knowledge. However attaining the therapeutic goal also requires knowledge of 

the principles of motor learning.

Elements of training that are important for motor learning and recovery

There are common principles of motor learning that should be considered regardless of 

whether the technologies applied are BCI systems or other technologies such as robotics or 

functional electrical stimulation. These include intention, attention, productive practice, 

progression of practice, repetition, functional relevance of task practice and training 

specificity [28], generalization, and dose [28-29].

Intention refers to possessing the motivation to perform the motor task and conceptualizing 

the execution of the task. Since conceptualizing the task is critical, BCI re-training of motor 

coordination can helpfully provide a visual representation of the task to assist the user in 

generating a cognitive representation of the desired movement. BCI can assist in more 

normally shaping a correct cognitive representation of the intended task by providing 

feedback regarding the desired goal versus the performance. Feedback can operate to refine 

the detail of the cognitive representation of the intention. Additionally, BCI can provide a 

creative and interesting BCI graphic user interface which may serve to motivate practice.

Attention refers to how closely and/or how long one focuses on the therapeutic task. For 

motor skill acquisition (i.e., brain plasticity) to occur, attending to the task is critical, which 

has been demonstrated by positive evidence [30]. These studies were unable to report a 

clinically significant improvement in motor control or function. In fact, some have shown 

that focusing attention, itself, can change neural activity [31]. The use of brain signals in a 

neural feedback paradigm could capture the imagination and focus attention of the user like 

no other type of feedback; that is, with BCI, the user understands that they are ‘seeing’ that 

they have produced some aspect of their own brain signal on the feedback screen. Even 

though they may not be able to move their fingers volitionally, they can see the production of 

a brain signal that is correlated with their intention to move; they can understand from this 

phenomenon that they have produced a brain neural signal operating from the desired 

intention, regardless of whether the brain signal is yet driving finger movement. This new 

information could be highly motivating for a patient to continue to practice the intention to 

move, which is required for control of volitional movement. An extreme example of 
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attention impairment is the neglect syndrome after stroke. We are not aware of any 

information in the literature regarding the use of BCI’s for retraining motor function for 

those with neglect, rendering it a topic to consider.

Training specificity can refer to training the desired coordinated movement, and is required 

to induce brain plasticity [32]. Productive practice of the desired movement refers to motor 

practice that is as close to the normal movement as possible, which is required for brain 

plasticity [33-34]. Productive practice is assigned at exactly the most efficacious challenge 

point [29]. That is, if one repeats a very easy movement, nothing new is learned; if one 

repeats a movement that is so difficult that performance is degraded substantially, then poor 

coordination will be learned, rather than the desired performance. The process of selecting a 

productive practice paradigm for a given session is a process of testing a hierarchy of 

difficulty until the most productive challenge point is identified for practicing that 

movement. For those with neural injury or disease, progression of practice is conducted in 

much the same manner, using finely incremented progression of difficulty beginning from 

ability to activate the desired muscle(s) and progressing through mass limb movements to 

isolated joint movement control [29]. Criteria for progression of practice to an incrementally 

more difficult movement can include the following: number of repetitions performed 

perfectly at the less difficulty level; amount of coordination degradation at a given level of 

difficulty in terms of kinematics, kinetics, abnormal co-contractions; and type and degree of 

compensatory movements employed.

Repetition of practice refers to practicing the desired movement, which is critical to the 

brain plasticity that drives motor skill acquisition [35-38]. Recently, many have documented 

the lack of necessary repetition in standard clinical practice for stroke survivors and others. 

Notably, the nature of the repetition is critical, with practice of progressively more and more 

approximation to the desired coordination [28,39]. Repetition is necessary in order to 

progress to the next highest level of difficulty in the learning of motor control. In recent 

work [40-41], the number of repetitions was reported, respectively, for 13.6 hrs, 20.0hrs, and 

26.3hrs of therapy for mildly/moderately impaired chronic stroke survivors, along with the 

findings that no increased use of the impaired limb was recorded at home and there was no 

significant difference in this across the three groups of different dosage (hours of treatment). 

In contrast, and though no ‘home use measure’ was used, other work [29,42] has shown that 

even more impaired (moderately/severely) chronic stroke survivors could exhibit recovery of 

coordinated limb movements and activities of daily living (e.g., pick up the knife and fork 

and cut the meet). A notable difference between the two Lang papers versus this last-

mentioned work is that the number of treatment hours for the McCabe/Daly reports [29,42] 

was 300 hours of motor training for isolated joint movements, task component practice, and 

task practice. Notably then, duration of treatment is critical, as is the content of treatment.

In the absence of these principles, recovery of normal coordinated motor skill is not 

attainable: “If an intervention includes practice of abnormal movements, unfocused 

attention, or too few repetitions, motor skill acquisition is unlikely to occur. In fact, one of 

the greatest difficulties for stroke survivors is the inability to produce volitional movements 

that are close to normal and that can be practiced repeatedly. Therefore, one of the critical 

hallmarks of an efficacious intervention is a method to practice close-to-normal movements 
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repetitively, fulfilling the motor learning principles required to induce the brain plasticity 

needed to drive more normal movement.” [32, page 2034]. We can differentiate between 

coordinated joint movements versus complex function tasks (i.e., activities of daily living) 

which are composed of multiple coordinated joint movements. Because recovery of 

coordinated joint movements may not mean recovery of full complex functional task 

performance, it is important in research studies to include homogenous measures of 

activities of daily living, including complex functional tasks, such as feeding oneself with 

utensils or dressing oneself. In current clinical practice, compensatory strategies are taught, 

when it is thought that the limits of therapeutic response have been reached within the 

limited availability of therapy in the current healthcare milieu. Obviously, if current clinical 

practice is unable to restore normal coordination, compensatory strategies are preferable to 

nothing. However, this unfortunate state of current clinical practice is evidence for the need 

to develop more efficacious interventions, such as BCI applications.

BCI technology can be applied using the necessary motor learning principles for inducing 

brain plasticity for motor recovery. In order for BCI technology to prove feasible for motor 

learning, it must first be easily used, with high accuracy of user control of the brain signal 

gained within the first few training sessions. Somewhat discouraging, a number of studies 

early-on, showed that many sessions could be required in order for some users to gain 

control of EEG-based BCI brain signal [43]. A second feasibility requirement is that BCI 

technology must support and facilitate practice of progressively more normal movement. On 

a positive note, some have shown that these two requirements can be met, especially if EEG-

based BCI is paired with a practice-assist device that facilitates active repetitive practice of 

progressively more normal joint movements. Figure 1 shows that an EEG-based BCI, paired 

with surface functional electrical stimulation (FES), can be controlled within the first several 

sessions and at a high accuracy by chronic stroke survivors [5]. The FES system can be 

titrated in difficulty, as can the motor task assigned, together satisfying the principle of 

productive practice. A combined BCI/FES system may be more engaging than FES by itself, 

which satisfies the attention principle of motor learning. We can note that FES does not 

produce a physiologically normal muscle contraction in several regards; therefore, for best 

results, as soon as volitional muscle activation emerges, FES should be titrated to the lowest 

level needed for practice and then eliminated altogether, as volitional muscle contraction 

improves. BCI has been also paired with other technologies, such as robotics and 

transcranial direct current stimulation (tDCS; e.g., [44]).

Potential neural features to train for motor learning and recovery

There are a number of brain signal features that are candidates for use in BCI’s for motor re-

learning. The motor related cortical potential (MRCP), the EEG slow wave associated with 

motor tasks, has signal characteristics that may lend it to useful application in BCI’s, 

including latencies (timing features) and signal amplitude (Figure 2). This feature has been 

successfully employed to induce plasticity in stroke patients by Mrachacz-Kersting et al. 

[45]. Known differences for stroke survivors and healthy adults include abnormally 

prolonged latency and elevated amplitude (Figure 3; [46]). Given the correlation between 

motor coordination and either MRCP signal amplitude or latencies (Figure 4), there is the 

potential that feedback along those lines could be beneficial. Feedback for the user could 
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include information to the user regarding EEG signal timing, signal amplitude. Signal timing 

may be the best choice if temporal aspects of coordination are trained. However, spectral 

power is the most frequently selected BCI feedback signal and is derived from the power of 

specified bands of EEG signal frequencies that are activated during event-related 

desynchronization (ERD); spectral power may be the feedback signal of choice in the case 

of initial inability to produce the movement or the entire joint movement. Figure 5 shows a 

brain map generated from spectral power at 21-24 Hz at the CP3 and CP6 electrode 

locations, during the motor event of attempted index finger extension.

There are unanswered questions regarding whether a single location of feedback from EEG 

signal is best versus multiple channels of feedback and whether the feedback should be 

different for different motor tasks. Figure 6 shows a brain map of multiple channels of 

information, as well as the difference between eccentric versus concentric muscle 

contractions. Signal amplitude was higher and earlier for eccentric versus concentric muscle 

contractions [47]. These refinements in brain signal feedback have the potential to improve 

the application of BCI’s.

Another potential BCI variable is EEG signal brain connectivity between brain regions or 

connectivity between EEG signal and electromyographic signal (EMG). Figure 7 provides 

information regarding the difference between healthy adult EEG/EMG connectivity and that 

of stroke survivors. Therein may lie an additional potential signal for use in BCI.

Recent attention has been paid to the MRI brain measure of functional connectivity during a 

functional task (fcMRI). To date, connectivity parameters have demonstrated varying results 

with regard to correlation with recovery of hand-motor outcome [48]. However, others have 

presented evidence that fcMRI for the inter-hemispheric connectivity in the somatomotor 

network and the dorsal attention network may hold important information regarding 

behavioral impairment versus intra-hemispheric connectivity within either the lesioned or 

unaffected hemisphere [49]. A connectivity-based approach may emerge in coming years as 

a viable BCI signal.

Even given the well-established association of SMRs with movement, there are still 

additional issues in selecting features for BCI systems. For example, within the context of 

use of transcranial magnetic stimulation, Plow et al [50] discuss the issue of whether 

ipsilesional or contralesional areas should be targeted. They suggest that this might depend 

on the extent of a patient’s lesions. A similar issue is present in spinal cord injury where 

crossed and uncrossed pathways can be affected to varying extent. BCI-based methods could 

also be used to enhance the activity of specific brain sites that might best participate in 

recovery. That the CNS does not always produce an optimal solution to damage is well 

illustrated by the success of constraint therapy [51].

Also within the context of TMS applications to rehabilitation, Chouinard & Paus [52] note 

that there are multiple components of the motor system that could serve as targets for 

activation, in addition to Brodmann’s area 4. Indeed, Dum and Strick [53] have described 

contributions to the pyramidal track from premotor and cingulate motor areas. While axons 

from these sites are generally smaller, they none-the-less contribute a substantial portion of 
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the pyramidal track. In addition, Dum & Strick [54] have noted that the distinction between 

premotor and primary motor areas is not as clear as often supposed. Such considerations are 

of importance in light of the fact that the exact neural circuitry generating the SMRs are not 

precisely known. As the hand area of the primary motor cortex lies mainly on the anterior 

bank of the central fissure [55], it would not be expected to provide a clear projection to 

central areas of the scalp.

The advantage of EEG signal is that it possesses high resolution in terms of time. The 

disadvantage is that it possesses very low resolution in terms of location of the signal. 

Therefore, some have begun theorizing whether other brain signals may be useful in motor 

learning. The disadvantages of Functional Magnetic Brain Imaging (fMRI) are as follows: 

very low resolution of time, extremely high noise sensed auditorily; non-functional position 

is required (supine); and the required bore is physically confining which reduces the options 

of functional task performance and can produce claustrophobic sensation in some 

individuals. The advantage of fMRI is that it possesses more precision in localization of 

inferred brain activity versus EEG signal. There are a number of signal features that could be 

considered in attempting to construct an fMRI-based BCI. Two conventional variables are 

volume of activation within specified brain regions and intensity of activation (Figure 8). 

Given the correlation between motor dysfunction and either volume of brain activation or 

intensity of brain activation (Figure 8), those fMRI signal features may be candidates for 

BCI use. A third variable is the centroid which is a weighted variable accounting for both 

location and intensity of signal. Figure 9 provides an example of the difference between 

healthy adults and some stroke survivors whose centroid lies beyond the range of normal 

individuals. The question arises as to whether recovery is driven by the movement of the 

centroid to within the range shown by healthy adults. Otherwise, of course, this signal 

feature would not be helpful in motor re-training. Some have attempted to answer the 

question regarding the nature of brain signal features and their changes that drive recovery of 

motor function. There has been some controversy in the literature regarding whether 

recovery is driven by enhancement or a reduction of volume of brain activation [56] driving 

recovery of upper limb function. Table 2 shows that the change in brain activation patterns 

for a sample of 23 stroke survivors, during recovery in response to chronic phase treatment. 

Results showed that recovery is partially predicted by level of baseline dysfunction, but 

across individuals there is a unique patterns of change in brain patterns in response to 

treatment, and the type of change (increase or decrease in volume of activation) can differ 

within a given individual, across his/her brain regions. For example, in Table 2, for the M1 

row, there were 14 individuals who showed an increase in volume of activation in response 

to treatment and during recovery (Strategy 2, columns); in contrast and in the same M1 row, 

there were 9 individuals who showed a decrease in volume of activation in response to 

treatment and during recovery (Strategy 1 columns). Strategy 2 individuals began with 

greater dysfunction, according to the longer AMAT mean time shown in the M1 row for the 

Strategy 2 individuals versus the AMAT mean time shown in the M1 row for the Strategy 1 

individuals, who required a shorter amount of time for the functional tasks of the AMAT. In 

other words, those with greater baseline impairment used Strategy 2, enlarging volume of 

brain activation with motor recovery; and those with less baseline impairment reduced or 

focused their brain activation patterns [57] in response to treatment and as they recovered. 
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And it gets even more complicated, with each individual likely possessing a unique pattern 

of increase or decrease in volume of activation across 12 regions of interest studied (Table 2; 

we can note the different numbers of individuals, shown down the column of ROI’s for 

Strategy 2; that is, one given individual did not adhere to either Strategy 1 or 2 across their 

own ROI’s, as they recovered motor function). Thus, the selection of a useful fMRI signal 

feature is quite difficult at this point.

Voluntary control of basal ganglia activity in Parkinson’s disease

A BCI may be used to condition specific brain signal features. Volitional modulation of 

brain signal features, or the plasticity induced by control acquisition itself, modifies the state 

of the central nervous system. If the features are chosen such that the BCI-induced CNS 

state change includes changes to neural circuits that also participate in dysfunctional 

behaviors then it is expected that BCI training will modify behavior. Thus, for BCIs with 

therapeutic applications, it is important to select brain signal features that are related to the 

dysfunction.

In Parkinson’s disease (PD), good candidate brain signal features are apparent. PD presents 

with pathological oscillations in the beta frequency band (14-30 Hz) in recordings from 

several nodes in the basal ganglia thalamo-cortical network [58-60]. Beta power is correlated 

with parkinsonian symptom severity and the beta power reduction during levodopa or deep 

brain stimulation therapy is correlated with symptom improvement [61-62]. Additionally, 

the degree to which spiking or high-frequency power is phase-locked to the beta oscillation 

(i.e., phase amplitude coupling, or PAC) is even more highly correlated with disease state 

and is more responsive to levodopa and DBS therapies than beta power [63-64].

At the Ottawa Hospital, PD patients scheduled for DBS surgery are given the opportunity to 

participate in a research program to investigate if volitional modulation of beta power or 

PAC magnitude is possible and if acquired control affects motor performance. During the 

standard of care DBS electrode implantation procedure, neuronal spiking activity and LFPs 

are monitored from multiple microelectrodes as they are driven along a linear trajectory to 

the stimulation target. We pause the microelectrodes descent in the putative subthalamic 

nucleus (STN) to perform the BCI experiment.

Participants use tracked motion controllers and a commercial virtual reality head-mounted 

display to perform three tasks. First, each participant performs many trials of a three 

dimensional center-out task in which they must use overt reaching to move the cursor to one 

of several targets. Preliminary analysis of our data from a few participants reveals 

correlations between spontaneously varying STN beta power and motor performance, 

confirming previous studies [65]. Second, each participant must control the color of a virtual 

sphere to match the cued color by modulating STN beta power or PAC. The participant is 

instructed to imagine stiff parkinsonian movements to turn the sphere orange and ease of 

movement to turn the sphere blue, but also that they are free to use any mental strategy that 

they feel is effective. To date, 6 participants have performed at least 20 trials each using STN 

beta power as the color-control feature. Preliminary analyses of these BCI control data 

suggest that participants are able to generate appropriate brain signals after approximately 
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12 trials (Figure 10). Third, in ongoing studies, we combine the attempted color control and 

center-out task to test the hypothesis that motor performance correlates with volitionally 

controlled brain signal features just as it does with spontaneously varying brain signal 

features.

If the data support this hypothesis then this will motivate the development of enhanced 

therapeutic strategies for PD patients. Researchers in the Starr lab at UCSF have promising 

preliminary results demonstrating acquired volitional control of beta power from the DBS 

electrode in the STN in a few participants with DBS stimulators that allow for chronic signal 

acquisition and feedback (Activa PC+S, Medtronic, USA). It might also be possible to use 

PD-related brain signal features recorded non-invasively from the scalp [66].

However, it should not be taken for granted that the best signals to use in a therapeutic BCI 

are those with the strongest correlation with disease state. Similarly, we should be careful 

not to choose signals simply because they enable accurate volitional control. It is possible 

that the best signals to use in a therapeutic BCI (i.e. those that best induce disease-relevant 

adaptive plasticity) have unobvious relationships to the disease state and no intuitive mental 

task to modulate them. More research is needed to build frameworks to help understand the 

relationships between brain signals, their underlying neurophysiology, and the plasticity 

concomitant with their use as a control signal in a BCI. Computational models and animal 

models may provide great insight in this regard.

Application of BCIs as an intervention in psychiatric disorders

Psychiatric disorders are a major cause of disability in the United States, as well as in the 

rest of the world [67-68]. Treatments, although available for many psychiatric conditions, 

remain limited in their effectiveness and efficacy and a significant number of patients remain 

treatment resistant [69-70], or suffer from serious side effects [71-72]. Mainstream 

treatments include pharmacological interventions (e.g., selective serotonin reuptake 

inhibitors [SSRIs] for mood and anxiety disorders) or behavior modification strategies (e.g., 

cognitive behavioral therapy [CBT] for psychosis and mood disorders). Nevertheless, there 

is a critical need for further development of novel treatments with increased disease-specific 

effectiveness and efficacy.

Recent advancements in brain function monitoring and functional neuroimaging have 

provided researchers and clinicians with an opportunity to specifically sense brain activity 

associated with aberrant function or behavior, identify impairments in underlying neural 

substrates and modulate their activity to improve brain function. For example, the EEG 

technique provides a temporally-sensitive and clinically-translatable mode of inspecting 

psychopathological aberrations in brain activity. Using real-time EEG neurofeedback, the 

EEG activity may be modified [73], based on specific principles of operant conditioning 

[74], whereby users are able to up-regulate a preferred state or behavior and down-regulate 

undesired ones to produce cognitive remediation [75]. Indeed, the EEG neurofeedback 

technique is now increasingly employed for therapeutic purposes across a range of 

neurological, psychiatric and psychological conditions [76].
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Technical advancements in EEG signal processing have led to the development of the brain-

computer interface (BCI), which offers original rehabilitation and therapeutic solutions 

[1,4]. By providing feedback of the user’s own brain activity in real-time that are associated 

with specific neural states, BCIs reinforce the targeted brain states or dynamic modulations 

for achieving behavioral gains [75,77-78]. Despite the recent surge in BCI research for 

neurobehavioral modulation and previous reports of reduced disease symptoms, EEG 

neurofeedback has not been widely adopted as a therapeutic modality. The scientific 

community appears to be divided about the efficacy of neurofeedback, especially in 

psychiatric disorders, perhaps because of methodological limitations of studies reporting its 

efficacy. Here, we briefly discuss the current landscape of EEG neurofeedback studies in 

attention-deficit/hyperactivity (ADHD), mood and anxiety, and substance use disorders.

Attentional-deficit/hyperactivity disorder

EEG neurofeedback training for ADHD is recognized as a Level 1 (“best support”) 

intervention by the American Academy of Pediatrics. Neurofeedback training for ADHD 

typically involves enhancing beta (12 – 20 Hz) while inhibiting theta (4 – 7 Hz) activity 

[79]. Some studies have also shown comparable effects of modulating slow cortical 

potentials in improving ADHD symptoms [80, 81]. Meta-analyses on the usefulness of EEG 

neurofeedback in ADHD have reported increased effect sizes in youth with ADHD [82-84], 

especially for the inattention dimension [82-83], compared to controls in open [84] as well 

as blinded [83] randomized trials. Importantly, neurofeedback efficacy for the inattention 

dimension was correlated with the number of training sessions [82] and seemed to be 

maintained over time [85]. Comparison between the neurofeedback training and 

pharmacological treatment effects showed that medication was more effective in improving 

clinical symptoms [86-87] or cognitive function [88], and neurofeedback was more effective 

for improving academic performance [89].

Mood disorders

The evidence of neurofeedback training efficacy for mood disorders, especially the major 

depressive disorder (MDD), is still emerging. In MDD, EEG data show relatively higher left 

than right alpha (8 – 13 Hz) activity on frontal recording sites, also known as frontal alpha 

asymmetry [90-93]. Reducing the alpha asymmetry by increasing alpha in the right 

hemisphere has been reported to alleviate depressive symptoms in recently conducted pilot 

studies [94-97]. However, more rigorous studies with higher sample sizes and appropriate 

controls are required to validate the effectiveness of neurofeedback in mood disorders.

Anxiety disorders

EEG neurofeedback training in generalized anxiety disorder (GAD) [98-99], and obsessive-

compulsive disorder (OCD) [100] has shown increased effectiveness compared to relaxation 

biofeedback and “placebo” neurofeedback, respectively. However, it is unclear whether 

neurofeedback has any therapeutic effect in alleviating disease-specific symptoms in anxiety 

disorders. Thus, future studies, especially those that compare the neurofeedback results with 

those from mainstream techniques such as cognitive behavioral therapy, are required to 

further ascertain the specificity and efficacy of neurofeedback training in anxiety disorders.
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Substance use disorders

EEG neurofeedback has been used in substance use disorders for decades with the first study 

conducted in 1977 by Passini et al. [101] who used alpha conditioning to show reduced 

anxiety and improvement in personality measuring scales in alcoholics. The neurofeedback 

training protocol for substance use disorders has since evolved and now uses a combination 

of beta augmentation with theta suppression along with alpha/theta training [102]. This 

neurofeedback regimen has shown to reduce drug-seeking symptoms, improved 

neurophysiological indices, and longer abstinence [103-107].

Despite the therapeutic promise shown by aforementioned studies, neurofeedback is yet to 

be adopted as a dependable intervention for psychiatric disorders, primarily due to its non-

specific effects and outcomes. For example, some of the effects seen in patients with 

substance use disorders may well be due to the high comorbidity with ADHD [105]. 

However, this presents a unique window of opportunity where BCIs can play a significant 

role. BCI-inspired machine learning techniques and co-adaptive algorithms can be 

developed [108-109] to specifically classify disease-specific brain activity which can then be 

modulated and monitored with real-time neurofeedback. Moreover, the classifier set can be 

constrained further to drive specificity. For example, to train drug-addicted individuals to 

cognitively control the feeling of drug-craving, the feature space might be restricted to 

event-related potentials (for example the late positive potentials that have shown to be 

sensitive to motivated attention to drug cues [110]) or stimulus-induced spectral 

perturbations in the theta-range, which has been implicated in emotion appraisal [111]. 

However, constraining the feature set might also hamper performance accuracy in these 

BCIs. User-specific optimization of these BCI-based neurofeedback algorithms is also 

critical to adapt feedback to the user’s workload and effort [112, 113] and minimize user 

frustration.

Interim Conclusion

In sum, BCI-based EEG neurofeedback presents an exciting new direction for personalized 

intervention in individuals with psychiatric disorders. Although the EEG neurofeedback 

training is beginning to show therapeutic promise, more placebo-controlled, randomized and 

blinded studies are required to evaluate alternative methodologies and determine efficacy in 

different psychiatric conditions. BCI-based machine learning techniques can guide the 

specificity and sensitivity of this technique for more targeted interventional approach. Lastly, 

there is a critical need to compare the outcomes of this intervention with those from 

mainstream pharmacological and cognitive-behavioral interventions to provide comparative 

metrics that will further guide evidence-based clinical decision making.

Conclusions

There are many possible neural pathologies that might be treated with BCI-related 

technologies. However it is not known at present how best to use these and what specific 

neural signals might be employed. This area is only just beginning to be explored and at this 

point it may be best for researchers to consider many different possibilities. The present 

discussion has introduced some issues, but these are by no means exhaustive.
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Figure 1. 
Accuracy of sensorimotor rhythm (SMR) control across 9 training sessions for 3 subjects 

performing the imagined wrist/hand task (A), the attempted wrist/hand task (B), or the 

relaxation task (C). In A and B, accuracy is high throughout, almost always falling in the 

range 80-100%. In C, accuracy is slightly lower but remains in the range 70-100% except for 

2 of the 27 sessions. (Modified from [4]).
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Figure 2. 
Schematic Example of Motor-Related Cortical Potential (MRCP), Electromyographical 

Signal (EMG), and Event Identification. Onset MRCP is identified as signal deviation at 

least 1 std from the resting state mean for at least 100ms. Onset of motor activity is 

identified from EMG signal deviation at least 1 std from the resting state mean for at least 

100ms. Planning time is calculated as the difference in the two latencies’ onset. MRCP 

amplitude is the value of the MRCP peak minus the mean resting value.
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Figure 3. 
For both A and B, horizontal axis is cortical electrode location: C3 for sensorimotor area or 

Fz for frontal area. (A) Vertical axis is planning time in milliseconds, during a shoulder/

elbow reach task. In both sensorimotor and frontal regions, cognitive planning time was 

abnormally prolonged for stroke (shaded bars) versus healthy controls (white bars). (B) 

Vertical axis is amplitude of cortical signal. In both sensorimotor and frontal regions, 

amplitude was abnormally elevated for stroke (shaded bars) versus healthy controls (white 

bars). Reprinted from [45].
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Figure 4. 
a. Use of EEG-based MRCP Latency Measures To Show Difference In Pre- Versus Post-

treatment Planning Time (due to the small case series, caution should be used in interpreting 

results; this is an example, only (b) Use of EEG-based MRCP signal amplitude to show 

difference in Pre- versus post-treatment signal amplitude. (due to the small case series, 

caution should be used in interpreting results; this is an example, only). Signal was measured 

at the C3 electrode, during shoulder/elbow reach. Reprinted from [45].
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Figure 5. 
Example of EEG-derived spectral power and signal feature selection for BCI system. (a) 

Brain signal at CP3 and CP6 electrodes at 21 to 24 HZ produced a usable signal for motor 

training. This level of brain activity is illustrated according to R2, which is a measure 

without units, and the vertical bar shows the range of R2. The brain map shows signed R2 = 

−0.10 (at 21 – 24 Hz) for the CP3 electrode region during attempted right finger extension 

(shown by the more dense color region in the left, lesioned hemisphere). In the right 

hemisphere, the signed R2 value was −0.12 (at 21 to 24 Hz) for the CP6 electrode (right, 

non-lesioned hemisphere. (b) Relationship of the CP3 electrode to the left hemisphere lesion 

(red outlined region). In this case, the lesion from stroke was in the left hemisphere, 

resulting in right arm coordination impairment. Therefore, brain training was needed for the 

left hemisphere, targeted to enhance function in the paretic right arm. For the BCI system, 

we selected the CP3 electrode in the left hemisphere and at the frequency band of 21 to 24 

Hz, because of its proximity to the normal region of control for the right arm and the fairly 

robust signal in that power spectrum (with permission from [113], figure 2).
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Figure 6. 
MRCP signal amplitude is higher and earlier for eccentric vs concentric muscle contractions. 

F, frontal; C, central; P, parietal; T, temporal; O, occipital; Z, middle; Reprinted from [46].
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Figure 7. 
EEG-EMG Connectivity. Group-averaged corticomuscular coherence between brain regions 

(columns) and muscles (rows) of the blue graphs. EEG signal was from parietal, central, 

frontal, left whole brain (non-lesioned side for stroke) and right whole brain (lesioned side 

for stroke). EMGs were from anterior deltoid, triceps brachii, and biceps brachii muscles. 

Rows of blue plots: For each of the three muscles, the upper row shows coherence with the 

scalp areas for the controls and the lower row for stroke. For each plot in each row or 

column, the y-axis is signal frequency, the x-axis is time, and the color bar indicates the level 

of coherence (red, higher level; blue, lower level). The figure shows that stroke patients had 

no significant corticomuscular coherence at the higher-frequency band (30–50 Hz). (For 

more detailed interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this paper.) (with permission from [46]).
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Figure 8. 
For 23 stroke survivors and five regions of interest (ROI’s), correlations are shown between 

upper limb motor function task performance (Arm Motor Abilities Test (AMAT) and each of 

two different brain measures during a shoulder/elbow reach task. Brain measures are shown 

as either brain volume of activation (from fMRI BOLD signal, voxel count, shown as the 

symbol ‘o’) or intensity of brain activation (from fMRI BOLD signal, amplitude, shown as 

the symbol ‘x’,). Correlations ranged from .43 to .75. The AMAT is composed of 13 

complex upper limb functional tasks such as pick up the knife and fork and cut the meat, 

button your sweater, and comb your hair) (With permission from [114]).

Key:

M1 – Primary motor

SS – Somatosensory

LPM – Lateral premotor

SMA – Supplementary motor area

PP – Posterior parietal area
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AMAT – Arm Motor Abilities Test (timed and summed for 13 complex functional tasks 

requiring shoulder/elbow movements, converted to z-score)

O – voxel count score derived from fMRI during shoulder/elbow functional reach task, for 

each of the relevant ROI’s shown, converted to z-score

X - signal intensity derived from fMRI during shoulder/elbow functional reach task,for each 

of the relevant ROI’s shown, z-score
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Figure 9. 
The left hemisphere M1 Centroids (Ipsilesional Hemisphere) for all study subjects (healthy 

control (green cubes) and stroke (red cubes) subjects) in relationship to the average control 

group centroid (black sphere), during a functional reach task and fMRI data acquisition. The 

actual location within M1 for the sphere (average control centroid) in MNI coordinates is as 

follows: med/lat, × = −31; ant/post y = −26; caudal/rostral z = 61; the relative Euclidean 

distances between the individual squares and the sphere are within relative scale to each 

other. The ‘walls’ of the figure are provided to give visual assistance to the 3-D effect, and 

are not intended to be in a particular scale. Reprinted from [114].

McFarland et al. Page 28

Brain Comput Interfaces (Abingdon). Author manuscript; available in PMC 2018 April 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. 
Six participants attempted volitional modulation of subthalamic beta-band oscillatory power; 

they were instructed to increase power to turn a sphere orange and to decrease power to turn 

a sphere blue. Top: Difference of spectrograms (last 5 orange trials - last 5 blue trials) 

averaged across the six participants. The colored bar is in dB. Bottom: Average power from 

the time-frequency window indicated in the top panel for each trial. The solid line is the 

mean across participants and the dashed line is the mean +/− the standard error. Beta power 

appeared to diverge between “Orange” and “Blue” cued trials after 6 trials of each class.
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Table 1

Characterization of several rehabilitation paradigms using BCI technology

Paradigm Goal Feedback Behavioral Task Concept of 
Brain State

Neurofeedback Normalize Brain State Yes none static

EEG-based Imagery Enhancement Enhance Imagery Yes Imagery

Close Sensorimotor Loop Pair intention with sensory feedback Yes BCI control of orthosis or 
FES

Train Motor Preparation Activate task-appropriate brain areas Yes Criterion task reactive

State-Dependent Training Activate task-appropriate brain areas No Criterion task reactive
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