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Brain–computer interface (BCI) research at the Wadsworth Center focuses on

noninvasive, electroencephalography (EEG)-based BCI methods for helping

severely disabled individuals communicate and interact with their environment.

We have demonstrated that these individuals, as well as able-bodied individuals,

can learn to use sensorimotor rhythms (SMRs) to move a cursor rapidly and

accurately in one and two dimensions. We have also developed a practical P300-

based BCI that enables users to access and control the full functionality of their

personal computer. We are currently translating this laboratory-proved BCI

technology into a system that can be used by severely disabled individuals in

their homes with minimal ongoing technical oversight. Our comprehensive

approach to BCI design has led to several innovations that are applicable in

other BCI contexts, such as space missions.
I. Introduction
The potential utility of BCI for space applications will be to provide alterna-

tive and supplemental control to astronauts for purposes of multitasking during

critical mission tasks or when normal physical movement is not possible or

restricted, such as during shuttle ascent. Additionally, it would be possible to

monitor indicators of alertness and fatigue via brain waves during these critical

activities and incorporate these indicators into BCI control. In the foreseeable
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future, any application of BCI technology in space will be noninvasive in nature

due to the relative infancy of and obvious risks associated with invasive technology.

Currently, noninvasive BCI has evolved to the point where it is accurate and

reliable enough to be evaluated for suitable space mission tasks.

Since 1986, much of the foundational noninvasive BCI research has been

conducted at the Wadsworth Center in Albany, New York. This research con-

tinues to focus on the development of practical BCI-based communication and

control devices for severely disabled individuals. Nevertheless, many of the find-

ings and developments of this research are directly applicable in other contexts

where alternative communication channels are desired, including space missions.

All relevant aspects of BCIs are systematically investigated at the Wadsworth

Center including signal acquisition and characterization; development and eval-

uation of hardware, software, algorithms, and applications; user training; system

dissemination; and evaluation of eYcacy. We have developed the BCI2000

software platform, a general purpose system that supports and facilitates all

reasonable combinations of brain signals, recording methods, processing meth-

ods, and output devices (Schalk et al., 2004). To date, BCI2000 has been adopted

by more than 350 laboratories worldwide and applied to BCI investigations using

sensorimotor rhythms (SMRs) (Krusienski et al., 2007; Wolpaw and McFarland,

2004), slow cortical potentials, P300-evoked potentials (Krusienski et al., 2008;

Sellers et al., 2006), steady-state visual-evoked potentials (Allison et al., 2008), and

signals recorded from the surface of the cortex (electrocorticographic activity,

ECoG) (Leuthardt et al., 2004) in conjunction with a variety of user applications

(Moore, 2003). Although we have investigated all of the aforementioned BCI

paradigms to various extents, our research continues to focus on the development

of select noninvasive paradigms that rely on two of the most promising brain

signals for practical BCI control: SMRs and P300-evoked potentials.

A personal computer can be considered the ultimate communication device,

in the sense that they are ubiquitous, the vast majority are connected to the

Internet and/or a local communication network, and they are driven by

operating systems that are designed to interact with limitless software applications

and external devices. In addition, personal computing devices continue to become

more portable and functional. Nearly all computing or electronic devices rely on

two basic user interface modalities: continuous or actuated inputs such as a mouse

or stylus pad, and discrete selections such as a keyboard or keypad. By developing

reliable BCI control schemes that emulate the action of these standard user

interface modalities, a BCI user would be able to access the full functionality of

a personal computer, including unlimited communication and device control

possibilities.

To achieve this objective, we are continuing to develop SMR-based para-

digms for continuous control (e.g., mouse) and P300-evoked potential-based

paradigms for discrete control (e.g., keyboard). Recent progress in these two
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paradigms has led to the current development of a BCI home system for disabled

users. The evolution and future direction of these two paradigms at Wadsworth,

as well as relevant aspects of the BCI home system, are described herein.
II. Sensorimotor Rhythm-Based BCI Control
We have shown that people can learn to use motor imagery (McFarland et al.,

2000) to actively modulate scalp-recorded EEG signals to move a cursor on a

video screen in a continuous fashion in one (McFarland and Wolpaw, 2003;

McFarland et al., 2004) or two dimensions (Wolpaw and McFarland, 1994,

2004). Specifically, the users are trained to modulate SMR amplitudes in the

mu (8–12 Hz) and/or beta (18–26 Hz) frequency bands over left and/or right

sensorimotor cortex. This is not a normal function of this brain signal, but rather

the result of training (McFarland et al., 2004). In our early reports of SMR-BCI

control, a single mu- or beta-band spectral feature from a single electrode over the

sensorimotor cortex was used to control cursor movement in one dimension to hit

a target randomly positioned along the edge of a video monitor (McFarland et al.,

1993, 2003; Wolpaw et al., 1991). We have progressed to using two hemispherical

channels to control cursor movement independently in two dimensions to hit

targets along the periphery of the monitor (Wolpaw and McFarland, 1994, 2004).

Examples of the 2D SMR control task, along with representative control signal

topographies, are illustrated and described in Fig. 1.

We have found that Laplacian spatial filters are well suited for localizing SMR

signals and reduce the impact of non-EEG artifacts such as the electromyographic

(EMG) and electrooculographic (EOG) activity (McFarland et al., 1997;

Goncharova et al., 2003). Our current SMR control protocol employs a regression

model to produce the control signals. In contrast to our early studies, this model

incorporates a linear combination of spectral features (i.e., amplitudes from 3 Hz

autoregressive frequency bins) frommultiple Laplacian-filtered channels. We found

that this regression approach is well suited for SMR cursor control since, in contrast

to a discriminant function, it provides continuous output and generalizes well to

novel target configurations (McFarland and Wolpaw, 2005; Wolpaw and

McFarland, 2004). The basic linear equation used for control is provided in

Equation (1), where A are the EEG features (amplitudes) over the left (L) and

right (R) hemispheres at frequencies f, w are the associated feature weights, b is

the intercept, and K is the gain.
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FIG. 1. The 2D sensorimotor rhythm (SMR) paradigm. Top: The screen at left shows the eight possible target locations. The other screens show the sequence of

events in one trial. 1, a target appears; 2, 1 s later the cursor appears and moves in two dimensions controlled by the user’s EEG activity; 3, the cursor reaches the

target; 4, the target flashes for 1 s; 5, the screen is blank for 1 s and then the next trial begins. Bottom: Representative topographical and spectral properties of 2D

EEG control. The four topographies indicate the average amplitudes of the 12-Hz mu-rhythm for the labeled control directions. The correlation of these

amplitudes with target direction is highest at locations C3 and C4 over sensorimotor cortex, which are associated with right and left hand imagery. The amplitude

spectrum and associated r2 correlation plot for the horizontal dimension are shown to the right. The highest correlations with target direction are observed in

the mu- and beta-frequency bands, which can be combined for control. The spectra and correlations for the vertical dimension exhibit similar characteristics.
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For our online protocol, this equation translates the EEG features into cursor

movement 20 times/s. Recent changes in automatic online adaptations of the

gain (K ), intercept (b), and feature weights (w) have resulted in a significant

improvement in user performance (McFarland and Wolpaw, 2003, 2005).

To attain 2D control, users initially learn cursor control in one dimension

(i.e., horizontal) based on a regression function. After achieving reliable 1D

control, they are trained on a second dimension (i.e., vertical) using an indepen-

dent regression function. The two functions are then used simultaneously to

produce full 2D control. We have demonstrated that this approach results in

simultaneous independent control of horizontal and vertical movement, which is

comparable in accuracy and speed to that reported in studies using implanted

intracortical electrodes in monkeys (Wolpaw et al., 2002).

We perform comprehensive spectral and topographical analyses of

64-channel EEG during BCI operation to guide improvements in online opera-

tion. In Fabiani et al. (2004), we determined that 2D linear and nonlinear Bayesian

classifiers oVer improved performance over 1D linear classifiers. In Schalk et al.

(2000), we showed that time-domain features could be combined with SMR

amplitudes to increase accuracy of the cursor control task by detecting errors.

In another recent study, we developed an empirically derived matched filter for

improved tracking of the mu rhythm based on its amplitude- and phase-coupled

harmonic components (Krusienski et al., 2007).

To further develop SMR control to emulate the function of a computer

mouse, we have recently added an additional transient EEG feature that allows

users to select an individual icon if desired after intercepting it with the cursor

(McFarland et al., 2008). In this scheme, the user first moves the cursor to hit one

of multiple possible targets by controlling two independent EEG features

(as described previously) and then selects or rejects the target by performing or

withholding hand-grasp imagery. This imagery evokes a transient response that

can be detected and used to improve the overall accuracy by reducing unintended

target selections.

Most recently, because autoregressive (AR) spectrum estimation has gained

such wide acceptance in BCI, we have investigated the impact of AR model order

on performance (Krusienski et al., 2006b; McFarland and Wolpaw, 2008). These

studies show that a properly selected model order can produce superior perfor-

mance, including reducing the correlation between signals for 2D control.

Additionally, these studies demonstrate that a performance-based model order

selection criterion should be applied rather than traditional criteria that rely on

residual error and do not adequately account for the signal dynamics for BCI

purposes.

We have also conducted preliminary studies that suggest users are also able to

accurately control a robotic arm in two dimensions by applying the same techni-

ques used for cursor control. This demonstrates the potential of the SMR protocol
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to be extended to a variety of applications, with the level of control obtained for

one task directly transferring to another task.

Our current research eVorts toward improving the SMR paradigm are

refining control procedures with the intention of improving accuracy and pro-

gressing to higher dimensional control. This includes the identification and

transformation of EEG features so that the resulting control signals are as

independent, trainable, stable, and predictable as possible.
III. P300-Based BCI Control
We are also continuing to develop the potential of the P300 matrix class of BCI

systems originally introduced by Farwell and Donchin (1988). In the original

paradigm, the user views a monitor displaying a 6 � 6 matrix of 36 symbols

(refer to Fig. 2). The user focuses attention on a desired symbol in the matrix

while the rows and columns of the matrix are highlighted in a random sequence of

flashes. Because flashes of the attended symbol are random and rare in the context

of the other flash stimuli, a P300 response occurs when the desired symbol is

highlighted. By training a classifier using specific spatiotemporal features of the

time-locked EEG responses to the stimuli, the classifier can be used to identify the

row and column that contain the desired symbol in an online scenario. By assigning

a particular command or function to each symbol in the matrix, a user is able to

discreetly select from a variety of commands, similar to using a computer keyboard.

Our recent studies have aimed to examine and refine the P300 matrix

presentation and classification techniques to improve the speed, accuracy, reli-

ability, and generalizability of the paradigm. We examined the eVects of matrix

size and interstimulus interval on classification accuracy (Sellers et al., 2006). The

results suggest that these matrix presentation parameters can have a considerable

impact on performance and should therefore be carefully designed.

We also investigated the impact of various combinations of channel selection,

channel referencing, data decimation, and the number of regression model

features on classification accuracy using stepwise linear discriminant analysis

(SWLDA) (Krusienski et al., 2008). We found that, by adding three occipital

electrodes (PO7, PO8, and Oz) to the traditional electrodes used for capturing

the P300 (Fz, Cz, and Pz), the classification accuracy increased substantially.

Furthermore, these six electrodes provided equivalent classification accuracy to

an expanded set of 19 electrodes, indicating that the signals from these six electro-

des comprise the majority of unique information for classification purposes. We

also found that, in general, the parameters evaluated for channel referencing, data

decimation, and number of model features did not have a significant eVect on
accuracy. Nevertheless, in addition to the six electrode montage (P3 and P4 were
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FIG. 2. The P300 matrix speller paradigm. Left side: The standard 6 � 6 matrix. The letter in

parentheses at the top of the window is the current target letter ‘‘D’’. A P300 should be elicited when

the fourth column or first row is intensified. After the intensification sequence for a character epoch,

the result is classified and online feedback is provided. Right side: (Top) A representative topography

indicating a strong correlation over the central electrodes between the target letter intensifications and

the EEG amplitude at 300 ms after the intensifications. (Bottom) The associated averaged P300

temporal response for the targets (red) and the non-targets (green) at electrode Cz.
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also added after the study, resulting in a more universal eight electrode montage),

we established the following preprocessing and model parameters that produce

very consistent and eVective results across users: ear referencing, low-pass filtering
followed by data decimation at 20 Hz, and a maximum of 60 features in the

regression model. These parameters, in addition to the long-term stability of the

P300 response, were validated using online experiments in this and subsequent

studies. Due to the data smoothing and statistically derived SWLDA classifier, this

methodology is generally resilient to modest artifacts and response latency issues.

This protocol forms the processing basis for our current P300 system.

To evaluate whether the performance of the channel selection and data

preprocessing method established in the aforementioned study could be further

improved by using an alternative classifier, we compared SWLDA to a linear

support vector machine, a nonlinear support vector machine with a Gaussian

kernel, Pearson’s correlation method, and Fisher’s linear discriminant in an off line

analysis (Krusienski et al., 2006a). The results revealed marginal diVerences
between the classification algorithms, with the exception of the overly simplistic

Pearson’s correlation method, which was clearly inferior to all other methods
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tested. Interestingly, the comparatively simple Fisher’s discriminant and SWLDA

linear methods provided superior performance to the support vector machines.

We are currently investigating the impact of alternate matrix presentations

including various matrix sizes, configurations, flashing schemes, and flash inten-

sities. We are also developing new methods of evaluating the relationship between

the number of flashes and classification accuracy to further improve the informa-

tion transfer rate of the system in practical settings.
IV. Current and Future Directions
Based on our recent progress with the SMR and P300 paradigms, extensive

tests in the laboratory and the homes of disabled individuals (Kübler et al., 2005;

Nijboer et al., 2008; Sellers and Donchin, 2006), and ultimate goal of developing a

practical system for disabled individuals to use in their daily lives, we are currently

designing and testing a clinical or ‘‘home’’ BCI system based on these paradigms

(Vaughan et al., 2006). The current home system includes a laptop computer, a flat

panel display, a custom designed eight-channel electrode cap, and a custom

designed digital biosignal amplifier. The amplifier has been reduced to 15 � 4 �
9 cm, and we anticipate a smaller amplifier with wireless capabilities in the future.

While the current electrode cap with gel application is suYcient for the key goals of

this project, we are seeking improved sensor and cap solutions that provide reliable,

long-term recordings, even in electrically noisy environments, in addition to max-

imizing comfort and cosmesis. This includes exploring the possibilities of active and

dry electrodes.

We have also modified the BCI2000 software to include a configurable, menu-

driven item selection structure that allows the user to navigate various hierarchical

menus to perform specific tasks (e.g., basic communication, environmental

controls, etc.). Furthermore, we have configured the P300 matrix to emulate a

standard computer keyboard such that users can access the full functionality

of a personal computer and associated applications. To further enhance the

flexibility and communication rate, we have incorporated a predictive speller,

a speech synthesis output option, a function that allows the user to suspend and

recommence operation using EEG signals for prolonged or continuous operation,

and an auditory mode for users who lack suYcient vision. Our preliminary studies

have shown that an auditory mode provides stimuli adequate for eliciting a P300

response that is eVective for BCI operation (Sellers et al., 2006).

We are currently testing and evaluating the BCI home system in the homes of

several disabled individuals, including a 50-year-old man with amyotrophic lateral

sclerosis (ALS) who is totally paralyzed except for limited eye movement. He has

successfully used the system for daily work and communication tasks over the
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past 3 years at least five times per week for up to 8 h per day (Vaughan et al., 2006).

He is currently using the P300 matrix paradigm with a 9 � 8 matrix representing

a computer keyboard with arrows for scrolling and additional customized function

calls. This configuration, in addition to the predictive speller, allows him to access

and eVectively utilize all of his familiar Microsoft Windows-based applications

(e.g., Eudora, Word, Excel, PowerPoint, Acrobat) completely via EEG control.
V. Conclusion
The primary objective of BCI research at the Wadsworth Center is to produce

a practical and eVective BCI for disabled individuals who are unable to use

existing technology to communicate or perform everyday tasks. By focusing on

emulating standard computer interfaces such as the keyboard and mouse, the

knowledge gained from our studies and endeavors can be directly transferred to

other BCI contexts where continuous and discrete control/communication are

desired, such as space missions. In addition to the enhanced accuracy and

reliability, recent work on the BCI home system has resulted in several other

practical improvements well suited for any BCI application. These improvements

include the system’s minimized sensors and hardware; portability; improved

comfort; extensive external device interface capabilities; and generalized, config-

urable software and applications. We will continue to reduce the complexity of

our BCI systems and increase their flexibility, capacity, and convenience through

systematic testing and evaluation on representative user groups.
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