
  

  

Abstract—Seizure onset prediction in epilepsy is a challenge 
which is under investigation using many and varied signal 
processing techniques. Here we present a multi-stage phase 
synchrony based system that brings to bear the advantages of 
many techniques in each substage. The 1st stage of the system 
unmixes continuous long-term (2-4 days) multichannel scalp 
EEG using spatially constrained Independent Component 
Analysis and estimates the long term significant phase 
synchrony dynamics of narrowband (2-8 Hz and 8-14 Hz) 
seizure components. It then projects multidimensional features 
onto a 2-D map using Neuroscale and evaluates the probability 
of predictive events using Gaussian Mixture Models.  We show 
the possibility of seizure onset prediction within a prediction 
window of 35-65 minutes with a sensitivity of 65-100% and 
specificity of 65-80% across epileptic patients.  

I. INTRODUCTION 
HE unpredictable nature of epileptic seizures have for 

long made epilepsy a debilitating and challenging brain 
disorder for patients across the world. The efforts of 
suppressing the seizures with anti-epileptic medications and 
surgery usually prove useful in about 75% of the patients. 
Ongoing research on seizure prediction is also advancing 
with state-of-the-art signal processing approaches, motivated 
by the need to establish a warning or therapeutic 
intervention system to suppress seizures. Of the many 
approaches in the literature, we present here an analysis of 
the synchronization dynamics of the Electroencephalogram 
(EEG) which has recently attracted much attention [1],[2]. 
Previous research in this field has posed the hypothesis that 
during a seizure the seizure focus entrains neighbouring (not 
necessarily spatial) areas of the brain, leading to a hyper-
synchronous state. This is preceded by the neighbouring 
areas losing their synchronization with the other cortical 
areas around them. This detachment causes the seizure focus 
to become isolated from the involvement of the rest of the 
brain dynamics as well as making available an idle 
population of neurons [3],[1]. Phase synchronization has 
been shown to be a sensitive indicator of nonlinear 
interactions between neurophysiological signals [1] which 
can be useful for seizure prediction as signals appear to lack 
morphological or topographical cues about an oncoming 
seizure. However, most of this literature has focused on 
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phase synchronization analysis with ‘raw’ EEG and on short 
data sets. Here we show an advanced multi-stage phase 
synchronization based system for seizure prediction with 
long-term EEG. The system involves prior unmixing of 
scalp EEG through the blind source separation (BSS) 
technique of Independent Component Analysis (ICA). This 
allows an objective and fairly automatic processing of long-
term continuous multichannel EEG. We have previously 
shown in [5] how we can use ICA with phase 
synchronization analysis for seizure prediction on long term 
EEG. Interesting cyclical patterns in the synchrony 
dynamics were observed and analysed subjectively. 
However, there was a need for an objective measure – a 
feature extraction system to determine the features that 
discriminate between the naturally occurring interictal and 
pre-ictal groups and to statistically analyze the possibility of 
seizure prediction. We show such a system here, based on a 
feature extraction and dimensional reduction method, 
followed by probabilistic density modelling. The system 
aims to elicit features from the synchrony dynamics that are 
indicative of an impending seizure and then track the 
probability of occurrence of a predictive event. The multi-
dimensional feature space is reduced to a 2-dimensional 
visualisation space with a semi-supervised Radial Basis 
Network based technique called Neuroscale [6]-[11]. This 
low dimensional data is then used for probabilistic 
modelling with a Gaussian Mixture Model (GMM) [12]. A 
multitude of features are extracted from the complex phase 
synchrony values, themselves extracted from the de-noised 
(and umixed) EEG signals. 

A. Synchrony dynamics of unmixed long-term EEG 
Unmixing EEG with ICA: The unmixing of multichannel 
scalp EEG is performed with the help of ICA. ICA is a 
technique that performs BSS on linearly, instantaneously, 
squarely mixed, stationary and statistically independent 
sources. ICA essentially helps in unmixing the measured 
signals (scalp EEG in this case) into fairly independent or 
least dependent components (LDCs) as well as obtains the 
mixing information of each, as described in further detail in 
[13],[14]. However, EEG being a non-stationary signal; 
requires ICA to be performed on relatively short moving 
windows (generally about two minutes long), which makes 
tracking a physiologically relevant source across time quite 
challenging. To overcome this problem, spatially 
constrained ICA (ScICA) [15] has been used in this work, 
seeking relevant LDCs with a relatively known spatial 
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distribution (in this case we use the location most active/ 
relevant to the seizure focus of the patient under test). Phase 
synchrony with PLV-d: The next step is extracting and 
tracking the synchronization dynamics from the unmixed 
spatially constrained seizure sources, in two relevant 
frequency bands (in this case, 2 Hz–8 Hz and 8 Hz–14 Hz). 
Phase synchrony measures the coupling between signals 
(irrespective of their amplitudes). It is useful in measuring 
non-linear relationships, even in chaotic, non-periodic 
signals [16]. It is based on the estimation of prolonged 
instants (non-overlapping windows of 5 seconds) of constant 
phase differences. The instantaneous phases are found with 
the Hilbert Transform (HT), which necessitates the use of 
the narrowband signals we describe, as shown in [17]. The 
index used to assess the strength of synchronization is called 
the Phase Locking Value (PLV) [1]. The significance of the 
PLV is tested with the Phase Locking Statistic (PLS), 
calculated using 100 surrogate series (phase randomized) 
and a bootstrap distribution. Additional processing is then 
performed to observe concurrent variations in phase 
synchrony in the two frequency bands, by calculating the 
difference between the PLS curves of the two bands, 
referred to as the PLV-d curves. A moving average filter of 
the order 300 PLV-d samples was then applied (equivalent 
to 1500 seconds), smoothing the curves over longer time 
spans (which are relevant to the dynamics we are testing 
for). 

B.  Feature extraction with Neuroscale 
Multidimensional feature maps: A set of thirteen features 
were formulated, extracted from one hour moving windows 
with a 75% overlap of the PLV-d curves. The features used 
were: standard deviation, mean, ratio of peak to the 
preceding window mean, ratio of minimum amplitude to 
preceding window mean, gradient, gradient of previous 
window, mean of previous window, absolute maxima, 
absolute minima, energy, fluctuations of curves about the 
mean, dominant frequency trend and the number of zero 
level crossings of the PLV-d curve.  
Neuroscale: A novel topographic feature extraction and 
dimensional reduction technique, Neuroscale, was used for 
visualising the high-dimensional datasets. Topographic 
extraction refers to a transformation of the data such that the 
geometric structure of the data is optimally preserved in the 
transformed space. This implies that the inter point distance 
in the feature space closely match the distances in the data 
space. The algorithm is based on a Radial Basis Function 
(RBF) Neural Network which is trained by adjusting the 
network parameters in order to minimize a topographic error 
measure known as the Sammon Stress metric: 
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Euclidian distances in the data space. In a supervised 
training ‘mode’, the Neuroscale algorithm is provided with 
additional data class information. These have been provided 
here in the form of a binary distance metric, where the 

distance between points within the same class is zero while 
between two different classes is one. The extent of 
supervision with this additional information is controlled by 
a parameterα , as the inter-point distance in the input space 

qpd ∗  is replaced by (1 ). .qp qp qpd sδ α α∗= − + . 

C. Probabilistic modelling of seizure prediction 
The Neuroscale feature mapping is then followed by the 

semi-parametric probability density estimation technique 
using GMMs [12]. In a mixture model, a probability density 
function is defined as a linear combination of basis 
functions. Mixture models like the GMM output a weighted 
sum of their parametric mixture components, estimating the 
mixture coefficients and the parameters of the individual 
components. A Gaussian basis for a set of data points is 
parameterized by the mean, a covariance matrix and the 
weights of all component densities; represented as: 

{ }, ,j jj
Pθ µ= ∑ , where j =1, 2,…, M.  

The GMM has previously been used in unsupervised, 
semi-supervised or supervised manner for modeling various 
statistical distributions, including nonlinear distributions 
[16[1],[18]. Here it is being used in the supervised and the 
semi-supervised form. In a supervised form the GMM trains 
separately on the pre-ictal and interictal data sets while in a 
semi-supervised form, it trains on the labelled training data 
and additionally uses the structure learned from the 
unlabelled test data to enhance the classifier learning. This 
helps to incorporate information about the data/class 
distribution that a sparse training (labelled) data may not 
provide. 

Formulation of the model: The two dimensional 
Neuroscale feature map is divided into a training set 
(labelled as pre-ictal or interictal) including at least 2-3 
seizures, and a test (unlabelled) set. In the supervised mode 
(shown in Figure 1), the multimodal GMMs are first trained 
on each of the pre-ictal and interictal training sets. The 
probability density contours are then obtained from these 
trained GMMs. The learned set of parameters is then used to 
project the test data on to the GMM density maps obtained. 
In the case of semi-supervised GMM, initial training 
remains the same as in supervised GMM, additionally the 
GMM is trained on the unlabeled data and finally on the 
unlabeled data while using the information from the trained 
GMM of the labelled data. A few labeled data points 
included in the training can be helpful in obtaining a good 
generalization performance, which may achieve a low 
classification error [19]. The GMM training involves the 
expectation maximization algorithm [12] solving for the 
GMM parameters and alternating between providing soft 
labels to the unlabeled data. The classification accuracy is 
measured using the known label information of the test data 
in both cases. 
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II. RESULTS  
Data: The data used is long term continuous scalp EEG 

from nine epileptic patients undergoing pre-surgical 
evaluation for possible epileptic surgery. The data is 
recorded continuously for 2-4 days using the 10-20 
international electrode placement system. It is sampled at 
200 Hz. Five datasets are used in feature extraction and four 
datasets are used to evaluate the algorithm on unseen 
patients. The results of only two patients are shown here 
(see Figure 1: Patient 1 and Patient 2) as examples. General 
observations from PLV-d curves: There were some general 
patterns observed from the PLV-d curves across patients, 
irrespective of the type of epilepsies. These are: (1) In 
general all PLV-d curves show a low frequency oscillatory 
pattern. This pattern fluctuates across the zero level. The 
zero level implies that the difference in the PLV’s of the two 
frequency bands is zero which means that either the PLV’s 
of the two frequency bands are equally strong and cancel 
each other out or are simultaneously zero. (2) The 
fluctuating rhythm appears to have a pattern that follows the 
day and night timings. (3) The cyclical pattern of the PLV-d 
curve is also seen to show a ‘set-reset’ pattern [2] before a 
seizure onset, which may be useful in indicating an 
oncoming seizure. The set-reset pattern appears to be 
indicative of the long term dynamics of synchrony. General 
observations from feature extraction: A clear distinction of 
pre-ictal and interictal feature points was not obtained and 
was not expected either. This was because the pre-ictal data 
windows had been defined as the windows that were about 
one hour prior to the seizure onset. It was quite possible that 
the data reflected interictal features when further away from 
the seizure. However, the GMM was able to model the 
training sets of interictal and pre-ictal feature points quite 
effectively, such that the test feature points were found to be 
near their respective centers.  This gave a probability map of 
pre-ictal events. The probability was then scanned with 
various prediction windows (0 to 4 hours in steps of 5 
minutes) and with varying threshold levels (0 to 1 in steps of 
0.01) to find the prediction window that shows maximal 
predictions (high sensitivity of prediction) and minimal false 
alarms (high specificity of prediction). The ROC curves 
were obtained to find the prediction window that shows high 
sensitivity and high specificity. On average in the five 
patients, a prediction window of 35 minutes shows a 
prediction sensitivity of 86% and a specificity of 80% on 
average. In the four unseen datasets, a sensitivity of 65-
100% and specificity of 65-80% is found with a 35-65 
minute prediction window. The classification was also tested 
against a random predictor for various prediction windows. 
The ICA-PLVd-Neuroscale-GMM predictor demonstrated 
an ability to predict that was better than a random predictor. 

III. CONCLUSIONS 
We show here that a phase synchrony based system 

applied to unmixed epileptic EEG can show the underlying 
long term synchrony dynamics for seizure onset prediction. 
The overall performance of the algorithm cICA-PLV-d-

supervised Neuroscale-GMM has been very encouraging. It 
has successfully demonstrated the existence of a predictive 
space based on synchrony dynamics, more suitably acquired 
through unmixed multichannel EEG signals. A prediction 
performance with the test data was found to show a 
specificity of 65%-100% and 65%-80% sensitivity with a 
prediction window of 35-65 minutes in general. It was also 
found to perform much better than a random predictor. 
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Figure 1: (a) The PLV-d curve of both patients show a cyclical pattern of long term synchrony (20 hours each). The vertical 
lines mark the seizure onset times, and the sleep and wake times are marked from the data annotations. Prominent peaks can 
be seen before seizure onsets indicating a set-reset cycle [2]. Contralateral spatial constraints used for spatially constrained 
ICA are shown in (b). 2-D maps obtained by Neuroscale from the multi-dimensional feature data are shown in (c). (d) Shows 
the GMM probability contours for training pre-ictal and interictal feature data sets along with the projected test feature data. 
Resulting probability vs. time curve for the pre-ictal events is shown in (e) (training-test boundary marked). Sensitivity of the 
occurrence of a predictive event is shown in (f) for various threshold levels and prediction windows (0-4 hours in steps of 5 
minutes) imposed on 2-D probability maps. ROC curves (g) show a predictive sensitivity of 100% and specificity of 80% for 
predictive window of 35 minutes (patient 1) and 80% sensitivity and 80% specificity for a prediction window of 65 minutes 
(patient 2). 
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