
 
 

 

  

Abstract—In this proof-of-principle study we analyzed 
intracranial electroencephalogram recordings in patients with 
intractable focal epilepsy. We contrast two implementations of 
Independent Component Analysis (ICA) – Ensemble (or spatial) 
ICA (E-ICA) and Space-Time ICA (ST-ICA) in separating out 
the ictal components underlying the measurements. In each case 
we assess the outputs of the ICA algorithms by means of a 
non-linear method known as the Lempel-Ziv (LZ) complexity. 
LZ complexity quantifies the complexity of a time series and is 
well suited to the analysis of non-stationarity biomedical signals 
of short length. Our results show that for small numbers of 
intracranial recordings, standard E-ICA results in marginal 
improvements in the separation as measured by the LZ 
complexity changes. ST-ICA using just 2 recording channels 
both near and far from the epileptic focus result in more distinct 
ictal components – although at this stage there is a subjective 
element to the separation process for ST-ICA. Our results are 
promising showing that it is possible to extract meaningful 
information from just 2 recording electrodes through ST-ICA, 
even if they are not directly over the seizure focus. This work is 
being further expanded for seizure onset analysis. 

I. INTRODUCTION 
HE electroencephalogram (EEG) is particularly useful in 
the diagnosis of epilepsy, which is a potentially 

debilitating disorder characterized by sudden and recurrent 
brain dysfunction called epileptic seizures. Whilst most 
seizures can be controlled with antiepileptic drugs, for most 
intractable cases surgery is possibly the only option. 
Synchronized ictal EEG activity is generally observed during 
epileptic seizures. This activity may be focal, multi-focal or 
generalized and may change in focus as the seizure 
progresses. Seizure onset is of particular interest as it holds 
clues to the epileptogenesis and so studies of seizure onset are 
of immense value in understanding what is happening and 
where; early on in the occurrence of a seizure. Any spread of 
activity to other brain areas is of clinical relevance [1]. Due to 
the large amount of multi-channel recordings generated in 
dedicated Epilepsy Monitoring Units, automated methods of 
detecting seizures and seizure onset within digitally recorded 
multi-channel EEG is of immense value to clinicians. Many 
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different criteria have been evaluated in the past and recent 
progress in the theory of non-linear dynamics has provided 
new methods for the study of the EEG in this manner. 
Non-linear dynamical analysis techniques may be a better 
approach than traditional linear methods to obtain a better 
understanding of EEG dynamics, especially for ictal EEG. 

In previous work we have decomposed ictal EEG 
recordings using the Blind Source Separation (BSS) 
technique of Independent Component Analysis (ICA) [2]. 
This method decomposes a set of measurements into a 
corresponding set of underlying sources or components using 
the assumption of statistical independence between the 
underlying sources. Ensemble ICA (E-ICA) derives a series 
of spatial filters from multi-channel recordings. Where single 
channel recordings only are available or desirable we 
introduced a Single-Channel ICA (SC-ICA) algorithm that 
could extract multiple underlying sources [3]. Here we 
introduce the use of Space-Time ICA (ST-ICA) were the 
SC-ICA process is applied to a small number of 
simultaneously recorded channels. 

The present proof-of-principle study examines intracranial 
EEG recordings of epilepsy patients with intractable focal 
seizures. We introduce the ST-ICA algorithm applied to two 
recording electrodes both within and without the seizure 
focus, and compare performance between the raw recordings, 
E-ICA and ST-ICA. We assess the performance by 
computing a particular non-linear method suitable for 
biomedical signal processing called the Lempel-Ziv (LZ) 
complexity. The LZ complexity is a non-parametric measure 
of complexity for one-dimensional signals [4], [5]. 

II. MATERIAL AND METHODS 

A. Ictal EEG 
The data were recorded during pre-surgical evaluation at 

the Epilepsy Center of the University Hospital of Freiburg, 
Germany. Intracranial grid-, strip-, and depth-electrodes were 
used. The EEG data were acquired using a Neurofile NT 
digital video EEG system with 128 channels, 256 Hz 
sampling rate, and a 16 bit analogue-to-digital converter. 23 
EEG recordings with simple partial, complex partial and 
generalized tonic-clonic seizures from patients with focal 
epilepsy originated in the temporal region were recorded. For 
this study we depict the results on two of these patients. The 
subjective nature of the feature selection – as described in the 
next section – makes automated analysis of many patients 
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impractical at this stage. 

B. Ensemble (Spatial) ICA 
In the standard, noise free, formulation of the ICA problem, 

the observed signals x(t) are assumed to be a linear mixture of 
an equal number of unknown but statistically independent 
source signals s(t), i.e. x(t)=As(t), where A is the square 
mixing matrix which is unknown but invertible. The problem 
is solvable up to a permutation, and sign and power 
indeterminacy of the sources, by finding an appropriate 
de-mixing matrix W=A-1 which allows estimation of the 
source waveforms by s(t) = Wx(t). In this way the E-ICA 
algorithm derives a series of spatial filters in the form of the 
columns of the mixing matrix A through the multi-channel 
observations. 

Different ICA algorithms can be derived based on different 
theoretic techniques. Infomax ICA and Fast ICA are two of 
the more popular and referenced ICA techniques in the 
literature, more information about these algorithms can be 
found in [2]. Here we apply the Fast ICA algorithm.  

C. Single Channel (Temporal) ICA 
For the SC-ICA formulation a ‘multi-channel’ data 

representation of the single data channel is required. This is 
obtained by generating a series of delay vectors to form a 
matrix of delays [3]. Assuming a single data channel with N 
elements: Nttx ,,1}{ K= , then delayed vectors in the 

constructed matrix are obtained. The delay matrix υ  is 
formed by obtaining tυ  for successive values of t, and 
combining these to form 

[ ]T
mtttt xxx 11, −++= Kυ , 

[ ]111 ,,, ++= τυυυυ mm K ,       (1) 
where τ is the lag term, and m is the number of lags (or the 
embedding dimension). We set the lag τ  to 1 and m=95 
based on previous research on this subject [3]. After Fast ICA 
is applied to the delay matrix the significance of each IC in 
turn can be assessed by projecting each back to the 
measurement space in isolation such that Yi=aiui

T, where ui is 
the ith IC (i = 1, 2, …, p), p is the number of ICs, ai the 
corresponding column of the mixing matrix A and Yi the 
resulting ‘matrix of delay vectors’. From Yi it now becomes 
possible to extract the projected time series, yi(t), by 
performing an average of the rows of the matrix Yi, in order 
to recover the time series (see [3] for more details on this 
technique). In SC-ICA the columns of the mixing matrix are 
interpreted as shifted versions of the mixing filters. 

D. Space-Time ICA 
In ST-ICA the method of delays as for SC-ICA is used and 

is repeated for each channel of interest. In this way a series of 
delay matrices are “stacked” to form a complete data matrix 
such that 

( ) ( )
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⎡= υυυ L1          (2) 

for an n channel system of N samples, such that Totυ  is an 
Nnm× matrix. Fast ICA is then applied to this matrix and a 

number of ICs are derived. For each IC, each column of the 
mixing matrix A is composed of n mixing filters – i.e. a 
mixing filter per measurement channel. 

E. Component Selection 
Like most ICA algorithms the current bottle-neck in their 

application is the selection of relevant components, as for the 
most part this is a subjective process. In SC-ICA and ST-ICA 
the mixing filters generated usually represent shifted copies 
of the same filters and so some clustering must take place to 
group similar filters together [3]. This is still ongoing work 
but for this study we manually group mixing filters into 3 or 4 
clusters based on the similarity between magnitude responses 
of each filter. Once the filters have been grouped the 
separated brain activity is obtained by summing the grouped 
ICs projected back to the measurement space as described in 
C above. 

F. Lempel-Ziv complexity 
LZ complexity analysis is based on a coarse-graining of the 

measurements. Before calculating the LZ complexity measure 
c(n), the signal must be transformed into a finite symbol 
sequence. In the context of biomedical signal analysis, 
typically the discrete–time biomedical signal {x(n)} is 
converted into a binary sequence. By comparison with a 
threshold Td, the original signal samples are converted into a 
0−1 sequence P = s(1), s(2),…, s(n), with s(i) defined by, 
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We used the median as the threshold Td because of its 
robustness to outliers. Previous studies [6] have shown that 
0−1 conversion is adequate to estimate the LZ complexity in 
biomedical signals. This complexity measure can be 
estimated using a suitable algorithm as seen in [6], [7]. Larger 
values correspond to more complexity. 

Here the LZ complexity is used to quantify changes in 
complexity of both the raw recordings as well as the 
transformed signals following E-ICA and ST-ICA. 

III. RESULTS 
Here we apply both E-ICA on all 6 measurement channels, 

as well as ST-ICA on two groups of two channels. The data 
consists of 3 channels over the focus (1, 2 and 3) and 3 
extra-focal (4, 5 and 6). Figs. 1 and 2 depict two recordings, 
one for each patient with focal temporal lobe epilepsy; the 
vertical lines in each figure represent the start and stop of the 
seizure as indicated by an epileptologist. After ICA the 
evolution over time using LZ complexity before, during and 
after the seizure is analysed using a sliding window of 10s, 
with a 1s shift for each window. Fig. 1a shows the LZ 
complexity values for each recording and changes in 
complexity can be observed over the 3 focal channels during 
the seizure (greatest over 2 & 3), there is no visible change in 
the 3 non-focal channels, other than a slight deviation on 
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channel 6. In Fig. 2a a similar picture emerges, changes in LZ 
complexity values over the focal channels (mainly 1 & 2) 
with very little evident changes in the non-focal channels. 
Figs. 1b and 2b depict the outputs of E-ICA and their 
corresponding LZ complexity values. It can be seen that the 
ICA process has succeeded in slightly unmixing seizure from 
background EEG with slightly elevated LZ complexity values 
over seizure onset. However, the unmixing process has not 
completely isolated seizure activity, most probably because 
the recordings are already fairly independent of each – this is 
apparent in the mixing matrices for each seizure shown in Fig. 
3 where the seizure components map almost 1:1 onto their 
responding recording channels. Next, the two pairs of 
electrodes A:3&6 and B:4&6 (Fig.1a) for patient 21 and 
A:3&4 and B:4&6 (Fig. 2a) for patient 12 are analysed with 

ST-ICA. Figs. 4 and 5, a and c, depict the mixing filters 
learned by the ST-ICA process. These can be clustered into 
similar groups of shifted filters. Figs. 4 and 5, b and d, depict 
the extracted components after the mixing filters were 
manually clustered into 4 and 3 groups respectively. For 
patient 21, the LZ complexity values for the focal/non-focal 
pair reflect 2 distinct seizure related components with 
particular complexity profiles around the seizure. For the 
non-focal pair, 3 components emerge, one of which shows 
larger LZ complexity values during the seizure. For patient 12 
the focal/non-focal pair yields 3 clusters with a less distinct 
increase in LZ complexity value over seizure for one cluster. 
The non-focal pair yields 4 clusters with non-distinct LZ 
complexity values. Of interest is that the LZ complexity value 
level of some extracted components is high throughout (pre- 
and post-ictally). 

IV. DISCUSSION AND CONCLUSION 
In this proof-of-principle study, we analyzed intracranial 

EEG recordings from 2 patients with focal epilepsy, 
contrasting E-ICA and ST-ICA. We used LZ complexity 
values to quantify the complexity in each IC for each case. 
Our results, although preliminary, show that; (i) although  

 

 
 
Fig. 1.  (a) 6 channels (around 7 mins) of intracranial EEG for patient 21, 
channels 1-3 are focal and 4-6 are extra-focal. The LZ complexity value for 
each channel is depicted. Channels 3 & 6 and channels 4 & 6 are used for 
ST-ICA analysis. (b) 6 ICs extracted following E-ICA and their 
corresponding LZ complexity values. 
 

   
 

(a)           (b) 
Fig. 3.  Mixing matrix A following E-ICA for (a) patient 21 and (b) patient 
12. The raw data and ICs are depicted in Figs. 1 & 2. 

 
 
Fig. 2.  (a) 6 channels (around 7 mins) of intracranial EEG for patient 12, 
channels 1-3 are focal and 4-6 are extra-focal. The LZ complexity value for 
each channel is depicted. Channels 3 & 4 and channels 4 & 6 are used for 
ST-ICA analysis. (b) 6 ICs extracted following E-ICA and their 
corresponding LZ complexity values. 
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E-ICA performs a slight demixing of the measured cortical 
activity, the separation is only slightly improved – this is 
backed up by the changes observed in LZ complexity over the 
seizure period; (ii) ST-ICA can extract and de-mix 
meaningful information from as little as 2 recording channels 
even from channels not located over the focus – the current 
limitation is the requirement to manually cluster mixing 
filters, which is highly subjective (automating this process is 
the current focus of continued research); (iii) LZ complexity 
has already been shown as a useful measure of complexity for 
biomedical signals and in this context provides a useful 
indicator of extracted ictal activity. This technique shows 
promise as a method for extracting multiple sources 
underlying single or few channel recordings, as is generally 
the case with intracranial recordings for epilepsy analysis. 
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Fig. 4. (a) & (c) mixing filters following ST-ICA on data of patient 21 for   Fig. 5. (a) & (c) mixing filters following ST-ICA on data of patient 21 for  
focal/ non-focal (a) and non-focal (c) pairs. (b) & (d) the clustered and re-   focal/ non-focal (a) and non-focal (c) pairs. (b) & (d) the clustered and  
re-covered components and the LZ complexity values for each.        covered components and the LZ complexity values for each. 
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