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Abstrarf. Cryo-electron microscopy (Cryo-EM) of single 
particles has developed into a widely used technique for 
determining the 3-dimensional structure of large molecules 
and molecular assemblies. The low signal-to-noise ratio of 
cryo-EM requires thousands of images of single molecules to 
he averaged together. The field has matured to the point 
where realization of high-resolution strnctures is limited 
primarily by computational Constraints. These constraints are 
at the algorithmic level, as well as the control level, where 
dozens of complex procedures and thousands of mathematical 
operations are applied to the raw data. SPIDER is a highly 
modular and flexible software package for single particle 
reconstruction. A typical reconstruction project involves 
dozens of procedure files, which in turu draw on hundreds of 
available low-level operations. In the present system, it is 
virtually impossible to rerun the system from selected 
branching points in the process flow to determine the effects of 
various parameters values. A Reconstruction Engine (RE) is 
being developed as a high-level "shell" for controlling 
processes in the SPIDER software system. The RE allows 
backtracking, optimization of parameters, and automation of 
processing flow. The RE is implemented in a scripting 
language, Python, which provides an overall management 
capability at the global level of the project. 

INTRODUCTlON 

Over the past two decades, cryo-electron microscopy 
(cryo-EM ) of single particles has developed into a tool for 
determining the 3-dimensional structure of macromolecules 
(above several hundred kDa) [1,2]. In single particle 
reconstruction, images represent 2-dimensional projections 
of the 3-dimensional molecule seen in different views. The 
structure can be recovered from projections by 
mathematical reconstruction techniques. Thus very large 
molecular assemblies not amenable to other approaches 
such as X-ray crystallography or M can be visualized. 
Since it is not limited by the packing constraints of 
crystallography, dynamic functional behavior can he 
studied with single-particle reconstmction, for example, the 
conformational changes induced by ligand binding. Rapid 
fieezing (vitrification) allows molecules to be visualized in 
their native hydrated state. Typical doses (10-15 
electrons/A2) are low enough to minimize the effects of 
radiation damage, when aiming at -lOA resolution. 
However, the resulting micrographs have low signal-to- 

noise ratio, requiring tens of thousands of images to be 
included in the reconstruction. 

Micrograph images are electron scattering density maps. 
Structural information comes from elastically scattered 
electrons, while inelastic scattering results in radiation 
damage and does not conbihute to the image in a 
constructive way. Samples must be thin for the weak phase 
approximation to be applicable, the theory used to describe 
image formation in the electron microscope [I]. The 
resulting images have virtually no contrast at focus, so the 
microscope is defocused to provide phase contrast. Imaging 
characteristics are determined by the CTF (contrast transfer 
function), which is analogous to the transfer function in 
optical systems, and consists of altemating bands of 
positive and negative contrast whose zero crossings vary 
with defocus. In the vicinity of these zeroes, no contrast 
information is conveyed, so a range of differently 
defocused images are acquired to cover all tkquencies. 
Micrographs contain many copies of randomly oriented 2D 
projections of the 3D molecule. These different views are 
combined using Computational techniques of reconstruction 
from projections, originally devised for electron 
microscopy [3], and later extended to diverse fields such as 
medical tomography. 

PROCESSING STEPS FOR ELECTRON MICROGRAPHS 

After the specimen images are taken by the electron 
microscope, a wide variety of computational processes are 
applied to the images [4,5]. The CTF characteristics (in 
terms of parameters such as defocus, astigmatism, etc.) are 
determined for each micrograph. Individual particles from 
the micrograph images must he identified and selected, 
usually by a combination of automated and interactive 
techniques, This results in 20,000-80,000 small particle 
images forming the raw input to the reconstruction process. 
Particles are classified into orientation groups, a process 
referred to as 3D projection alignment [6] ,  by correlating 
the particle images with projections 6om an existing 3D 
reference map. Once the viewing angles have been thus 
estimated, various reconstruction algorithm (hack- 
projection, ART, SIRT) may be used to generate an initial 
reconstruction fiom the particle images. CTF correction is 
applied in this step. Lastly, in the process of orientation 
refinement, the view angles of every single particle are 
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iteratively adjusted until a 3D structure is found that 
minimizes a least squares regularizing cost criterion [4]. 

Using these techniques, 10-17 A resolution can be 
obtained in the final reconstruction, but the cryo-EM 
community is aiming to improve that resolution to 6-7 A, 
and if possible, to the atomic range in selected applications. 
Some improvement in resolution will come from better data 
collection in the electron microscope and the development 
of better algorithms, but a major improvement will come 
kom increasing the number of particles participating in the 
reconstruction by a factor of IO to 50. This increase will 
require a much expanded use of computational resources, 
such as exploiting parallelism, optimizing parameters, and 
automating as far as possible the application of the 
mathematical procedures which currently involves a large 
amount of user interaction. 

SOFTWARE FOR CRYO-EM 

Numerous software packages have been developed for 
cryo-EM [7-IO]. SPIDER, written in Albany, NY by 
Joachim Frank and his colleagues, is the most widely used 
system for single-particle reconstruction of cryo-EM 
images. SPIDER is powerful but complex, with over 400 
image and volume processing operations. While operations 
may be executed in an interactive SPIDER session, more 
kequently multiple operations are collected into batch files, 
and run as a single unit. In addition to providing a fully 
programmable environment with loops, conditionals, 
subroutines, and symbolic variables, batch files also 
represent a compendium of howledge and expertise. They 
embody elaborate algorithms for various reconstruction 
procedures, such as particle selection and alignment. The 
outputs of one batch file are usually used as inputs for other 
hatch files. A single reconstruction project may use over 40 
batch files. Although batch files are optimized individually, 
globally the system lacks an overall intelligence in the 
execution of a series of algorithms. This makes it extremely 
difficult to go back to a branching point and redo the 
processing with modifications. 

To remedy this problem, a software layer termed the 
Reconstruction Engine is being developed, which will 
provide a high-level organizational bmework for image 
processing and reconsbuction to facilitate backtracking 
based on complete records of the data. Among the 
specifications: ( I )  the result should require minimal 
changes to the -120,000 lines of Fortran code that comprise 
SPIDER (2) the batch files represent a more flexible level, 
but any changes must preserve the image processing 
algorithms; (3) the Reconstruction Engine, acting as a 
“wapper” around SPIDER processing, will be written in a 
scripting language that controls the various modules of 
SPIDER processing, managing the inputs and outputs of 
each batch file. Further, beginning users should be able to 
easily use SPIDER batch files, while experienced users 
should still have the capability to write their own batch files 

and add them to the system. Python was selected to provide 
a high level, rapid development environment. The 
components consist of individual SPIDER procedures, as 
well as a project-wide database system. 

THE SCRIPTING LANGUAGE APPROACH 

The objectives of the software control system were to 
include (1) bookkeeping of the many parameters and data 
objects in the history of a project, (2) providing ease of user 
interaction, while (3) maintaining overall processing 
efficiency. In order to automate a processing project 
centered on SPIDER batch files, a typical reconstruction 
project was analyzed to assess how SPIDER batch files are 
utilized. In particular, potential obstacles to bookkeeping 
and backtracking were noted, as well as places of heavy 
user interaction and common sources of user errors. Next, 
the system was decomposed into its functional objects, 
consisting of processes (batch files) and the data objects 
(text and binary files), as well as the information flow 
among objects. Finally, a list of functional requirements 
from the user’s point of view was created. 

Analysis 

A project consists primarily of running a series of batch 
files (batches are NO in serial, although actual process flow 
is not strictly sequential). The set ofbatch files is not fmed - 
users may add new ones. Batch files may call procedures, 
which are simply other batch files used as subroutines. At 
various points, outputs are examined to see if they meet 
certain criteria. Nearly all algorithms used in reconstruction 
projects have been collected into batch files. Currently, the 
user selects, edits, and runs batch files one at a time. Batch 
files read and write files to the bard drive. File names that 
are input to multiple SPIDER operations must be typed into 
the text at each point where they are used. Given a set of 
input micrographs, batch files parameters are adjusted until 
they produce desired outputs. 

Each batch file is ~n within its own SPIDER session. 
There is no direct communication from one batch file to the 
next, Therefore, the user must keep track of parameters and 
file names across batch files. Procedure calls solve this 
problem, because the calling module and subroutine 
directly share all variables passed. However, when many 
procedures are collected under a single top-level batch file, 
the multiple nesting of procedures makes it difficult to 
understand and debug the code, or to adjust parameters. 
Thus the current reconstruction process has been broken 
down into many top-level batch files, with limited nesting 
of procedures. 

The major difficulties identified in a SPIDER 
reconstruction project were: 
(1) Within batch files, file names (both input and output) 
can occur at numerous locations. If a different filename is 
d e s i r 4  that change must be made at all locations. 
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Figure I ,  Example of processing flow during a single particle reconstruction project 

(2) Similarly, renamed batch files cause difficulties when 
they are output from one batch file to be used as input for 
the next. All name changes in both files must be checked. 
(3) Certain numerical parameters, such as pixel size, are 
used by several algorithms throughout the reconstruction 
process. These also are set explicitly within the text of the 
batch files. If a parameter’s value is altered, then care must 
be taken to change this number in every affected batch file. 

The above observations accounted for the great majority 
of user errors during a reconstruction project. They all 
suggested the need for a global repository of information. 
The next step was system decomposition, to determine the 
functional units of the system. 

Defrilion of Objects 

The system was decomposed into processes and data 
objects. 
(1) Processes consist of batch files, procedure files, and 
non-SPIDER operations (programs extemal to SPIDER). 
Because all of these can r e a d h t e  SPIDER files, they may 
be considered functionally as batch files. 
(2) Datu objects may be textual (document files), binary 
(which are further subdivided into 2D images, 3D volumes, 
2D Fourier Transforms, etc.), or numerical arguments. 

Information Flow 

Data objects act as inputs and outputs of processes. Data 
objects have one source (the batch file that generated them) 
and potentially many targets (batch files downstream that 
will use them as inputs). Numerical parameters do not have 
a source batch file. However, they all may be collected into 
a global parameter document file. 

--+ 

Batch files can have any number of inputs and outputs. 
Inputs may be data objects or numerical arguments. Outputs 
are more data objects. Figure I shows a set of batch files 
and their respective inputs and outputs. Data objects of all 
types are indicated as circles, although they are associated 
with a type. Batch file input and output “ports” also have 
associated types. File names and parameters are explicitly 
witten in the text of batch files. Because file names and 
numerical parameters usually change across projects, 
starting a new project oflen requires considerable editing of 
the batch files. Also, the same file or numerical argument 
may be input to several batch files. If this input is changed 
in one batch file, there is no mechanism to ensure that other 
batches will refer to the same updated value. 

Functional Requirements 

The requirements list below describes how a user will 
interact with the new system. It was produced without any 
regard to the underlying implementation. The user should 
be able to: ( I )  Select, specify inputs, and run SPIDER batch 
files as above, but within a graphical user interface (CUI), 
(2) add the results to a “project database” when they are 
deemed correct, (3) later recall that project, change the 
inputs, then run the batch files again, (4) save the new 
results. A further requirement is an iterating mechanism 
whereby the outputs of a chain of processing may be used 
to generate a new set of input parameters. This provides the 
Reconstruction Engine with the capability to search for 
optimal parameter solutions for the given processing 
sequence. 

Implemen ration 

The implementation of the above requirements was 
carried out at two levels: ( I )  some rewriting of the common 
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SPIDER batch files and (2) writing the Python-based 
controller which reads the batch files and keeps track of 
their inputs and outputs. These required no changes to be 
made to SPIDERS underlying Fortran code. The batch 
files, contributed over the years by a number of users, were 
altered slightly to conform to a new system-wide standard 
of “well-formed batch files” amenable to automated 
management. This new standard was designed primarily to 
incorporate good programming practices, such as use of 
variables rather than explicit values, and collection of 
variables into central locations for efficient management. 
These simple changes circumvented most of the 
weaknesses noted in the above analysis. In addition, a 
consistency-checking function checks file names and 
numerical arguments both within and across batch files. 

The Reconstruction Engine obtains information about 
batch file input and outputs in a form-based interface. The 
Python scripting language was utilized for text processing 
and interfacing with the project database (in this case, 
MySQL). The GUI was written using the Python interface 
to the Tk/Tcl toolkit. A file selection utility, with browsing 
capability, enables users to graphically select batch files. A 
batch file parser reads text batch files and presents a form to 
the user; the entered information is then written out to a 
standardized batch file, which is then run in SPIDER. As 
each batch file, or module, is run, is outputs are monitored 
for consistency and entered into the project database. The 
Reconstruction Engine shows promise as a fairly simple 
approach to modemizing scientific software, relieving users 
of much of the burden of interaction, and providing much 
needed tools for management. 
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