
A SCRIPTING LANGUAGE APPROACH TO CONTROL
SOFTWARE FOR CRYO-ELECTRON MICROSCOPY

William T. Baxte?, ArDean Leith', Joachim Frank'
'Howard Hughes Medical Institute, *Health Research, Inc., Wadsworth Center, Albany NY

Abstrarf. Cryo-electron microscopy (Cryo-EM) of single
particles has developed into a widely used technique for
determining the 3-dimensional structure of large molecules
and molecular assemblies. The low signal-to-noise ratio of
cryo-EM requires thousands of images of single molecules to
he averaged together. The field has matured to the point
where realization of high-resolution strnctures is limited
primarily by computational Constraints. These constraints are
at the algorithmic level, as well as the control level, where
dozens of complex procedures and thousands of mathematical
operations are applied to the raw data. SPIDER is a highly
modular and flexible software package for single particle
reconstruction. A typical reconstruction project involves
dozens of procedure files, which in turu draw on hundreds of
available low-level operations. In the present system, it is
virtually impossible to rerun the system from selected
branching points in the process flow to determine the effects of
various parameters values. A Reconstruction Engine (RE) is
being developed as a high-level "shell" for controlling
processes in the SPIDER software system. The RE allows
backtracking, optimization of parameters, and automation of
processing flow. The RE is implemented in a scripting
language, Python, which provides an overall management
capability at the global level of the project.

INTRODUCTlON

Over the past two decades, cryo-electron microscopy
(cryo-EM) of single particles has developed into a tool for
determining the 3-dimensional structure of macromolecules
(above several hundred kDa) [1,2]. In single particle
reconstruction, images represent 2-dimensional projections
of the 3-dimensional molecule seen in different views. The
structure can be recovered from projections by
mathematical reconstruction techniques. Thus very large
molecular assemblies not amenable to other approaches
such as X-ray crystallography or M can be visualized.
Since it is not limited by the packing constraints of
crystallography, dynamic functional behavior can he
studied with single-particle reconstmction, for example, the
conformational changes induced by ligand binding. Rapid
fieezing (vitrification) allows molecules to be visualized in
their native hydrated state. Typical doses (10-15
electrons/A2) are low enough to minimize the effects of
radiation damage, when aiming at -lOA resolution.
However, the resulting micrographs have low signal-to-

noise ratio, requiring tens of thousands of images to be
included in the reconstruction.

Micrograph images are electron scattering density maps.
Structural information comes from elastically scattered
electrons, while inelastic scattering results in radiation
damage and does not conbihute to the image in a
constructive way. Samples must be thin for the weak phase
approximation to be applicable, the theory used to describe
image formation in the electron microscope [I]. The
resulting images have virtually no contrast at focus, so the
microscope is defocused to provide phase contrast. Imaging
characteristics are determined by the CTF (contrast transfer
function), which is analogous to the transfer function in
optical systems, and consists of altemating bands of
positive and negative contrast whose zero crossings vary
with defocus. In the vicinity of these zeroes, no contrast
information is conveyed, so a range of differently
defocused images are acquired to cover all tkquencies.
Micrographs contain many copies of randomly oriented 2D
projections of the 3D molecule. These different views are
combined using Computational techniques of reconstruction
from projections, originally devised for electron
microscopy [3], and later extended to diverse fields such as
medical tomography.

PROCESSING STEPS FOR ELECTRON MICROGRAPHS

After the specimen images are taken by the electron
microscope, a wide variety of computational processes are
applied to the images [4,5]. The CTF characteristics (in
terms of parameters such as defocus, astigmatism, etc.) are
determined for each micrograph. Individual particles from
the micrograph images must he identified and selected,
usually by a combination of automated and interactive
techniques, This results in 20,000-80,000 small particle
images forming the raw input to the reconstruction process.
Particles are classified into orientation groups, a process
referred to as 3D projection alignment [6] , by correlating
the particle images with projections 6om an existing 3D
reference map. Once the viewing angles have been thus
estimated, various reconstruction algorithm (hack-
projection, ART, SIRT) may be used to generate an initial
reconstruction fiom the particle images. CTF correction is
applied in this step. Lastly, in the process of orientation
refinement, the view angles of every single particle are

0-7803-7584-X/02/$17.00 02002 IEEE

,.4
301

iteratively adjusted until a 3D structure is found that
minimizes a least squares regularizing cost criterion [4].

Using these techniques, 10-17 A resolution can be
obtained in the final reconstruction, but the cryo-EM
community is aiming to improve that resolution to 6-7 A,
and if possible, to the atomic range in selected applications.
Some improvement in resolution will come from better data
collection in the electron microscope and the development
of better algorithms, but a major improvement will come
kom increasing the number of particles participating in the
reconstruction by a factor of IO to 50. This increase will
require a much expanded use of computational resources,
such as exploiting parallelism, optimizing parameters, and
automating as far as possible the application of the
mathematical procedures which currently involves a large
amount of user interaction.

SOFTWARE FOR CRYO-EM

Numerous software packages have been developed for
cryo-EM [7-IO]. SPIDER, written in Albany, NY by
Joachim Frank and his colleagues, is the most widely used
system for single-particle reconstruction of cryo-EM
images. SPIDER is powerful but complex, with over 400
image and volume processing operations. While operations
may be executed in an interactive SPIDER session, more
kequently multiple operations are collected into batch files,
and run as a single unit. In addition to providing a fully
programmable environment with loops, conditionals,
subroutines, and symbolic variables, batch files also
represent a compendium of howledge and expertise. They
embody elaborate algorithms for various reconstruction
procedures, such as particle selection and alignment. The
outputs of one batch file are usually used as inputs for other
hatch files. A single reconstruction project may use over 40
batch files. Although batch files are optimized individually,
globally the system lacks an overall intelligence in the
execution of a series of algorithms. This makes it extremely
difficult to go back to a branching point and redo the
processing with modifications.

To remedy this problem, a software layer termed the
Reconstruction Engine is being developed, which will
provide a high-level organizational bmework for image
processing and reconsbuction to facilitate backtracking
based on complete records of the data. Among the
specifications: (I) the result should require minimal
changes to the -120,000 lines of Fortran code that comprise
SPIDER (2) the batch files represent a more flexible level,
but any changes must preserve the image processing
algorithms; (3) the Reconstruction Engine, acting as a
“wapper” around SPIDER processing, will be written in a
scripting language that controls the various modules of
SPIDER processing, managing the inputs and outputs of
each batch file. Further, beginning users should be able to
easily use SPIDER batch files, while experienced users
should still have the capability to write their own batch files

and add them to the system. Python was selected to provide
a high level, rapid development environment. The
components consist of individual SPIDER procedures, as
well as a project-wide database system.

THE SCRIPTING LANGUAGE APPROACH

The objectives of the software control system were to
include (1) bookkeeping of the many parameters and data
objects in the history of a project, (2) providing ease of user
interaction, while (3) maintaining overall processing
efficiency. In order to automate a processing project
centered on SPIDER batch files, a typical reconstruction
project was analyzed to assess how SPIDER batch files are
utilized. In particular, potential obstacles to bookkeeping
and backtracking were noted, as well as places of heavy
user interaction and common sources of user errors. Next,
the system was decomposed into its functional objects,
consisting of processes (batch files) and the data objects
(text and binary files), as well as the information flow
among objects. Finally, a list of functional requirements
from the user’s point of view was created.

Analysis

A project consists primarily of running a series of batch
files (batches are NO in serial, although actual process flow
is not strictly sequential). The set ofbatch files is not fmed -
users may add new ones. Batch files may call procedures,
which are simply other batch files used as subroutines. At
various points, outputs are examined to see if they meet
certain criteria. Nearly all algorithms used in reconstruction
projects have been collected into batch files. Currently, the
user selects, edits, and runs batch files one at a time. Batch
files read and write files to the bard drive. File names that
are input to multiple SPIDER operations must be typed into
the text at each point where they are used. Given a set of
input micrographs, batch files parameters are adjusted until
they produce desired outputs.

Each batch file is ~n within its own SPIDER session.
There is no direct communication from one batch file to the
next, Therefore, the user must keep track of parameters and
file names across batch files. Procedure calls solve this
problem, because the calling module and subroutine
directly share all variables passed. However, when many
procedures are collected under a single top-level batch file,
the multiple nesting of procedures makes it difficult to
understand and debug the code, or to adjust parameters.
Thus the current reconstruction process has been broken
down into many top-level batch files, with limited nesting
of procedures.

The major difficulties identified in a SPIDER
reconstruction project were:
(1) Within batch files, file names (both input and output)
can occur at numerous locations. If a different filename is
d e s i r 4 that change must be made at all locations.

302

N

Figure I , Example of processing flow during a single particle reconstruction project

(2) Similarly, renamed batch files cause difficulties when
they are output from one batch file to be used as input for
the next. All name changes in both files must be checked.
(3) Certain numerical parameters, such as pixel size, are
used by several algorithms throughout the reconstruction
process. These also are set explicitly within the text of the
batch files. If a parameter’s value is altered, then care must
be taken to change this number in every affected batch file.

The above observations accounted for the great majority
of user errors during a reconstruction project. They all
suggested the need for a global repository of information.
The next step was system decomposition, to determine the
functional units of the system.

Defrilion of Objects

The system was decomposed into processes and data
objects.
(1) Processes consist of batch files, procedure files, and
non-SPIDER operations (programs extemal to SPIDER).
Because all of these can r e a d h t e SPIDER files, they may
be considered functionally as batch files.
(2) Datu objects may be textual (document files), binary
(which are further subdivided into 2D images, 3D volumes,
2D Fourier Transforms, etc.), or numerical arguments.

Information Flow

Data objects act as inputs and outputs of processes. Data
objects have one source (the batch file that generated them)
and potentially many targets (batch files downstream that
will use them as inputs). Numerical parameters do not have
a source batch file. However, they all may be collected into
a global parameter document file.

--+

Batch files can have any number of inputs and outputs.
Inputs may be data objects or numerical arguments. Outputs
are more data objects. Figure I shows a set of batch files
and their respective inputs and outputs. Data objects of all
types are indicated as circles, although they are associated
with a type. Batch file input and output “ports” also have
associated types. File names and parameters are explicitly
witten in the text of batch files. Because file names and
numerical parameters usually change across projects,
starting a new project oflen requires considerable editing of
the batch files. Also, the same file or numerical argument
may be input to several batch files. If this input is changed
in one batch file, there is no mechanism to ensure that other
batches will refer to the same updated value.

Functional Requirements

The requirements list below describes how a user will
interact with the new system. It was produced without any
regard to the underlying implementation. The user should
be able to: (I) Select, specify inputs, and run SPIDER batch
files as above, but within a graphical user interface (CUI),
(2) add the results to a “project database” when they are
deemed correct, (3) later recall that project, change the
inputs, then run the batch files again, (4) save the new
results. A further requirement is an iterating mechanism
whereby the outputs of a chain of processing may be used
to generate a new set of input parameters. This provides the
Reconstruction Engine with the capability to search for
optimal parameter solutions for the given processing
sequence.

Implemen ration

The implementation of the above requirements was
carried out at two levels: (I) some rewriting of the common

303

SPIDER batch files and (2) writing the Python-based
controller which reads the batch files and keeps track of
their inputs and outputs. These required no changes to be
made to SPIDERS underlying Fortran code. The batch
files, contributed over the years by a number of users, were
altered slightly to conform to a new system-wide standard
of “well-formed batch files” amenable to automated
management. This new standard was designed primarily to
incorporate good programming practices, such as use of
variables rather than explicit values, and collection of
variables into central locations for efficient management.
These simple changes circumvented most of the
weaknesses noted in the above analysis. In addition, a
consistency-checking function checks file names and
numerical arguments both within and across batch files.

The Reconstruction Engine obtains information about
batch file input and outputs in a form-based interface. The
Python scripting language was utilized for text processing
and interfacing with the project database (in this case,
MySQL). The GUI was written using the Python interface
to the Tk/Tcl toolkit. A file selection utility, with browsing
capability, enables users to graphically select batch files. A
batch file parser reads text batch files and presents a form to
the user; the entered information is then written out to a
standardized batch file, which is then run in SPIDER. As
each batch file, or module, is run, is outputs are monitored
for consistency and entered into the project database. The
Reconstruction Engine shows promise as a fairly simple
approach to modemizing scientific software, relieving users
of much of the burden of interaction, and providing much
needed tools for management.

REFERENCES

[I] J. Frank, Three-Dimensional Electron Microscopy of
Macromolecular Assemblies. San Diego: Academic Press,
1996.

[2] H.R. Saibil, “Macromolecular structure determination
by cryo-electron microscopy,” Acta Gystollographica, vol.
D56, pp. 1215-1222,2000.

[3] D. DeRosier and A. Klug, “Reconstruction of 3-
dimensional structures fiom electron micrographs,” Nature
(London), vol. 217, pp. 130-134, 1968.

[4] P. Penczek, M. Rademacher, and I. Frank, “Three-
dimensional reconstruction of single particles embedded in
ice,” Ultramicroscopy, vol. 40, pp. 33-53, 1992.

[5] J. Frank, P. Penczek, R.K. Agrawal, R.A. Grassucci,
and A.B. Heagle, “Three-dimensional cryoelectron
microscopy of ribosomes,” Methods in Enzymology, vol.
317, pp. 276-291,2000.

[6] P. Penczek, R.A. Grassucci, and J. Frank, “The
ribosome at improved resolution: New techniques for
merging and orientation refinement in 3D cryoelectron
microscopy of biological particles,” Ultramicroscopy, vol.
5 3 , pp. 251-270, 1994.

[7] J. Frank et al. ‘SPIDER and WEB: Processing and
visualization of images in 3D electron microscopy and
related fields,” J. Struct !io/, vol. 116, pp. 190-199, 1996.

[8] M. van Heel, G. Harauz, E.V. Orlova, R. Schmidt, and
M. Schatz, “A new generation of the IMAGIC processing
system,” J. Struct B i d , vol. 116, pp. 17-24, 1996.

[9] S.J. Ludtke, P.R. Baldwin, and W. Chiu, “EMAN
semiautomated software for high-resolution single-particle
reconstruction,” J. Struct Biol, vol. 128, pp. 82-97, 1999.

[lo] R.A. CrowTher, R. Henderson, and J.M. Smith, “MRC
image processing programs,” J. Sfruct Biol, vol. 116, pp. 9-
16, 1996.

304

