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Brain–computer interface (BCI) systems support communication through direct measures 
of neural activity without muscle activity. BCIs may provide the best and sometimes the 
only communication option for users disabled by the most severe neuromuscular disorders 
and may eventually become useful to less severely disabled and/or healthy individuals 
across a wide range of applications. This review discusses the structure and functions of 
BCI systems, clarifies terminology and addresses practical applications. Progress and 
opportunities in the field are also identified and explicated.
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Millions of people suffer from severe neuro-
muscular disorders, such as amyotrophic lat-
eral sclerosis (ALS), brainstem stroke, cerebral
palsy, muscular dystrophy, multiple sclerosis
and Guillain–Barre syndrome [1,2]. Many of
these people cannot communicate through the
usual neuromuscular pathways and must rely
instead on alternative means of communi-
cation that use remaining muscle function,
such as eye-gaze shifting, electromyographic
(EMG) activity or respiration [3–5]. Typically,
these people use alternative systems because
they cannot use more conventional interfaces,
such as a keyboard, mouse or other interfaces
that require greater muscular control.

A brain–computer interface (BCI) is a com-
munication system by which a person can send
messages or commands without any use of
peripheral nerves and muscles [6–14]. BCIs
record signals from the brain and translate
them into useful communication. Thus, they
are usable even by people who have no effec-
tive muscle control. This review describes the
basic components of a BCI and the major cate-
gories of current BCIs, defines terms used in
the BCI literature and considers advances that
might be expected in the next few years. 

Overview
Signals that might be used for BCIs can be
recorded from four locations as shown schemat-
ically in FIGURE 1: from sensors that are not in

contact with the body, such as in functional
MRI (fMRI) or magnetoencephalography
(MEG) [15,16]; from the surface of the scalp via
standard electroencephalographic (EEG) elec-
trodes [17,18] or functional near-infrared (fNIR)
spectroscopy [19,20]; from the surface of the dura
or the surface of the brain using electro-
corticographic (ECoG) electrodes [21,22]; or
from within the brain using microelectrodes
implanted in the cortex [23,24] or elsewhere in
the brain. In both healthy and severely disabled
people, signals from these areas can be extracted
and translated for communication and control.

FIGURE 1 illustrates the basic structure of any
BCI. A BCI has four essential components: the
signal acquisition component, which records
brain signals at one of the sites described above;
the signal processing component, which
includes the software that extracts the features
of the brain signals that are used for the BCI
and the translation algorithm that translates
the extracted features into device commands;
the output device component that implements
the commands; and the operating protocol
that governs how these components interact [7]. 

BCI signal acquisition
Most BCIs do not require surgery to implant
electrodes [25] and are therefore termed non-
invasive BCIs. At present, almost all non-
invasive BCIs measure brain activity with EEG
sensors placed on the surface of the scalp; this
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review focuses mainly on such BCIs. BCIs that acquire signals
from electrodes surgically implanted in or on the cortex or other
brain areas are considered to be invasive. ECoG-based BCIs are
invasive because they require surgery but are less invasive than
intracortical BCIs since ECoG electrodes do not penetrate into
the brain but, rather, lie on the brain’s surface.

Invasive electrodes may give a more detailed view of brain
activity than noninvasive systems. Since the scalp smears,
dampens and filters the brain’s electrical activity, invasive elec-
trodes may allow better spatial resolution, stronger signals and a
wider range of frequencies than electrodes placed on the scalp.
For example, ECoG BCIs can detect movement-related activity
in the 100–200-Hz range, well beyond the range of scalp elec-
trodes [22]. Invasive BCIs can be available for use 24 h per day,
require less preparation and clean-up time and are less suscepti-
ble to noise from muscle artifact and external noise [13,26–28].
However, invasive BCIs currently offer approximately the same
performance as noninvasive systems [29]. Furthermore, they
entail expensive surgery, scarring, risk of infection and regular
medical check-ups, and their long-term stability remains
unclear [8,9,30,31]. Hence, while invasive BCIs merit further
study, most patients and researchers may, understandably,
choose noninvasive approaches [29].

EEG-based BCIs
The µ (8–12 Hz) and β (12–30 Hz) EEG rhythms recorded
over sensorimotor cortex attenuate during performed or imag-
ined movement [32–34]. The decrease in this synchronized

activity preceding movement is called event-related desynchro-
nization (ERD) [35]. BCI systems based on imagined movement
were introduced by Wolpaw and colleagues, who demonstrated
that disabled and able-bodied people could learn to use the
amplitudes of µ or β rhythms to control a computer cursor in
1D [36]. Soon afterwards, Wolpaw and McFarland demon-
strated that µ and β rhythms could be used for 2D control
[29,37]. Five to ten 24-min training sessions are required for most
users to master the skill of using µ and/or β rhythm amplitude
to control 1D of movement and for the system to be optimally
adapted to the rhythms of that user. Typically, users first learn
to control the vertical movement of the cursor as it moves from
left to right at a constant rate [38–40]. With additional training,
users can learn to use µ or β rhythms over both hemispheres or
at different frequencies to achieve two independent control
channels and thereby obtain accurate 2D movement control
[29,37,41]. A third channel might be used to make a selection in
the manner of clicking on a mouse button [201]. Early in train-
ing, users typically use imagery to modulate µ and β rhythms
but as they become more skilled, the task becomes more auto-
matic and imagery is often no longer needed. In these studies,
able-bodied users and users with severe disabilities learned to
control the µ and β rhythms to move a computer cursor in 1D
or 2D, to perform simple word-processing and to select items
on a computer screen. Some subjects have achieved simple
control with minimal training using µ and β rhythms associated
with imagery of specific movements [42,43]. µ BCI systems have
also been used to control devices, such as an orthosis or

neuroprosthesis [44–47].
Birbaumer and colleagues developed a

BCI system based on slow cortical poten-
tials (SCPs) [12,48–52]. SCPs are relatively
slow EEG voltage changes that can be
induced by emotional or mental imagery
[53]. A typical SCP BCI measures EEG
activity during a 2-s resting phase and
then during a 2-s active phase in which
the user produces a positive or negative
SCP. The SCP method requires
1–5 months of training. Able-bodied and
disabled people, including people with
advanced ALS, can use SCPs to perform
word-processing and other tasks
[48,49,52,54,55,202]. However, SCP-based
communication is necessarily slow
because detectable changes in SCPs take
several seconds to develop [53]. 

Although SCP and sensorimotor (µ/β)
BCIs normally require some user training,
other BCIs do not rely on operant condi-
tioning and can be used with minimal
training. For example, the P300 compo-
nent of the event-related potential (ERP),
which is typically elicited when stimuli are
perceived and discriminated [56], can be

Figure 1. The basic design of any brain–computer interface (BCI) system. Signals reflecting brain 
activity are acquired from sensors above the scalp, on the scalp, on the cortical surface or within the brain, 
and are analyzed to measure signal features (such as amplitudes of evoked potentials or 
electroencephalogram rhythms or firing rates of single neurons) that reflect the user's intent. These 
features are translated into messages or commands that operate a device, such as a word-processing 
program, a wheelchair or a neuroprosthesis. 
Modified from [7]. 
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used for a BCI. Farwell and Donchin developed a P300-based
BCI, which presents the user with a matrix of letters or other
elements on a computer screen [57]. The individual rows and
columns of the matrix flash rapidly in a random sequence and
the user is instructed to silently count flashes that include the
letter or symbol that he/she wants to select, while ignoring
other flashes. The row or column containing the desired target
elicits a P300 response that in most people is adequate for BCI
use [56,57]. Despite initial concerns that the P300 may be weaker
in ALS patients [58,59] or after sustained use [6], initial data sug-
gest that P300 BCIs are effective for ALS patients for hours of
daily use over many months [SELLERS EW ET AL., UNPUBLISHED

DATA]. P300 BCIs have also been developed with auditory stim-
uli for users with visual impairments [60,62]. Very recent work
suggests that P300 BCIs may yield better performance than
SCP or sensorimotor BCIs in many subjects [12,202]. Additional
research comparing different BCI approaches across various
subjects is needed. 

Steady-state visual evoked potentials (SSVEPs) reflect atten-
tion to a rapidly oscillating stimulus [63,64]. If users direct atten-
tion to one such stimulus, activity over occipital areas at corre-
sponding frequencies can be used to infer user intent [65–70].
BCIs might conceivably use other steady-state phenomena, such
as steady-state somatosensory evoked potentials induced by vari-
able frequency vibrators [71] or steady-state auditory evoked
potentials [62,72]. Simultaneous attention to two or more target
stimuli, such as two visual stimuli or stimuli in two different
modalities, might improve information throughput [64,73].

EEG spectra may change as users perform common mental
tasks, such as composing a statement, mental rotation or arith-
metic [74]. Some BCIs allow communication by determining
which mental tasks a user is performing [15,29,75–77]. This approach
offers low information throughput relative to most other BCIs,
primarily because the process of identifying mental tasks via EEG
activity and of switching between tasks are both slow. 

ECoG-based BCIs
In humans, ECoG BCI studies have been limited to epilepsy
patients who have ECoG electrode grids temporarily
implanted (for up to several weeks) in preparation for epilepsy
surgery [9,22,78,79]. ECoG grids are often placed over cortical
areas involved in motor activity, and the BCI studies often
involve imagined movements. A recent study suggests that
people can learn to use the ECoG activity associated with
imagery of specific movements to control cursor movement
more quickly than they can learn to use EEG activity using
similar movement imagery [22]. ECoG-based BCIs use meth-
ods comparable to those of EEG-based BCIs. At the same
time, ECoG is substantially superior to EEG in signal
strength, frequency range and topographic resolution, and is
far less subject to artifacts, such as EMG activity. Furthermore,
ECoG recording is less invasive and may exhibit better long-
term stability than intracortical BCI recording methods. Thus,
although not yet well developed, ECoG has great promise for
the development of future BCI technology. 

Intracortical BCIs
The possibility that signals recorded within the cortex or in
other brain areas might be used for BCIs has received substantial
attention over the past decade [9,23,24,79–81]. A number of differ-
ent multielectrode implants have been developed for recording
action potentials (spikes) of multiple single neurons or local field
potentials (LFPs), which are essentially micro-EEG activity.
Since cortical implants require surgery, these BCI systems have
been investigated mainly in rats and monkeys [80–84]. A few
human studies have been conducted [13,23,24]. Similar to ECoG
BCI studies, intracortical BCI studies have focused on trans-
lating imagined movements into movement commands, usually
for cursor control. These studies have demonstrated movement
control. At the same time, performance is highly variable both
within and across subjects, and, at present, is not substantially
greater than that achievable with an EEG-based BCI [29] (com-
pare the noninvasive EEG-based BCI movement control [203]

with the invasive intracortical BCI movement control [204]).
Extensive further animal and human studies are needed to try to
achieve stable intracortical BCI control that is substantially
better than that possible with less invasive BCI methods
(e.g., through development of better algorithms and user train-
ing methods) and to develop and validate wholly implanted, safe
and reliable intracortical BCI systems for long-term human use. 

BCIs using nonelectrical signals
The signals that have been discussed thus far are all electrical.
Some investigators have explored the use of nonelectrical sig-
nals as a possible basis for a BCI. These methods include
fMRI [15,52], fNIR spectroscopy [19,20] and MEG [16,21]. While
these signals are appealing because, similar to EEG, they are
noninvasive and involve little risk, they face substantial meth-
odological and/or practical problems. fMRI and fNIR both
rely on changes in the brain’s blood flow, which develop more
slowly than electrical activity. Moreover, fMRI and MEG are
extremely expensive and technically demanding, and require
highly controlled environments [31].

BCI signal processing
Once signals are acquired by one of the methods described
above, the second component of a BCI, the signal processing
unit (FIGURE 1), extracts signal features and translates them into
messages or commands. The signal processing unit first ana-
lyzes the raw signal and isolates those features to be used by
the BCI. Feature extraction may use relatively simple
approaches, such as autoregressive frequency analysis [29], or
more complex techniques, such as independent component
analysis (ICA) [59,85,86]. The translation algorithm then trans-
lates these extracted features into an output command. For a
BCI to be a practical method for communication, the system
must perform this and all other tasks rapidly and online.
Translation algorithms vary widely in complexity, from linear
methods, such as stepwise discriminant analysis or weighted
frequency summation, to nonlinear neural and adaptive logic
networks [18,41,57,60,83,87–90]. 
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Signal processing parameters need to adapt to each user. Ide-
ally, a BCI first identifies the most appropriate signal features for
each user and continues to adapt to changes in these features that
occur spontaneously (e.g., due to time of day, fatigue, medication
or hunger) or that occur as the user adapts to the BCI [7].

BCI output devices
After the features of the brain signal are extracted and trans-
lated, the third component of the BCI, the output device,
implements the messages or commands conveyed by the trans-
lation algorithm. To date, the most commonly used BCI out-
put device is a computer monitor. Monitor-based BCIs have
been developed in which users move a cursor to chosen targets
in one [39,48] or more dimensions [15,29,59,81,91], select one item
from two or more choices [60,68], select items from a scrolling
[92] or iterative [66,93] menu, browse the internet [51,61,94,95,205] or
navigate a virtual environment [85,96–98]. Some BCIs use speak-
ers or headphones to provide auditory stimulation or feedback
[50,60,62,99,100]. BCIs have also been used to control switches
[101,102], common appliances, such as an air conditioner, telev-
ision or music player [66,68,130], medical devices [6,61,66,68,93,103],
robotic arms [80,81,84], mobile robots [77], functional electrical
stimulators or orthoses [18,24,44,45,67,104] and a full-motion flight
simulator [67].

BCI operating protocols
The operating protocol defines the real-time interactions
between the user’s brain and the BCI system. It provides a front
end for the user and operator, governs how the other three mod-
ules interact with each other and the operating system, and
mediates details of user–system interaction, such as what selec-
tions are available to the user, when and how user activity may
effect control, and the nature and timing of feedback [7,38,105]. 

Similar to other BCI components, operating protocols have
advanced significantly in the last several years. Many papers have
addressed timing, feedback and usability [18,38–40,46,106–110].
Error correction based on EEG activity, such as the error-related
negativity, P300 or other measures, may improve performance
in some users [111–114]. Some operating protocols allow a much
larger vocabulary than most early BCIs, either by presenting
many options [68,110,115] or by letting the user select from among
different palettes of options, sometimes via a menu [51,66,93,116].

The most widely used BCI operating system is BCI2000 [117],
which is currently being used by over 150 laboratories world-
wide [SCHALK, PERS. COMM.]. BCI2000 has many features that
make it appealing to researchers. It is highly flexible and inter-
changeable, and has been validated with a wide variety of signal
acquisition, signal processing and output systems. It offers a
variety of real-time and offline analyses and is available free of
charge for research use [206]. 

Devices that are not BCIs
Some devices record brain signals but are not BCIs. For exam-
ple, devices that evaluate cognitive and neural activity associ-
ated with alertness or workload [ALLISON & POLICH UNPUBLISHED

DATA] [118,119], sleep stage [120], sleep apnea [121], depth of
anesthesia [72,122,123], deception [124,125], error detection [111,113]

or image recognition [126] may seem similar to BCIs but do not
provide the user with real-time communication or control. Sys-
tems that send signals to the brain are not BCIs, though they
might be called computer–brain interfaces (CBIs) [127–129].
Finally, it is essential to distinguish actual BCIs from systems
that use non-CNS signals recorded from the head, such as EMG
or electrooculographic activity.

Other terminology
Readers of BCI literature frequently encounter a number of
important terms and distinctions [25,130,131]. The most prominent
ones are briefly defined here.

BCI versus BMI
While the term BCI now predominates in both the scientific
and popular literature, other terms are sometimes used to
describe a BCI system. These include: brain–machine interface
(BMI) [9,28], direct brain interface (DBI) [78], brain interface
[25,131], cognitive neural prosthetic [8,79], neural interface system
[13] and brain actuated control [77,132,133]. Although efforts are
sometimes made to give these terms different meanings, they all
mean essentially the same thing: a communication and control
system that uses signals generated in the CNS and does not
depend on peripheral nerves or muscles. 

Dependent versus independent BCIs
BCIs can be either dependent or independent. Dependent BCI
systems require some muscle control to produce the neural
activity used for communication or control. Independent or
‘pure’ BCIs do not require any muscle control. For example,
some SSVEP BCIs are dependent on gaze control and, thus, on
muscle activity [207]. By contrast, typical P300-based or
sensorimotor rhythm-based BCIs appear to be independent of
muscle activity [7,29,134]. While dependent BCIs may be of use
for a variety of applications, they may not be considered pure
BCIs since individuals without motor control may not be able
to use them. 

Synchronous versus asynchronous BCIs
In synchronous BCI systems, the timing of operation is deter-
mined by the BCI, not by the user. For example, most P300
BCIs require the user to observe flashes that are presented at a
fixed pace controlled by the system [57,59,60]. Most µ and SCP
BCIs require users to produce activity when so instructed by
the BCI. By contrast, in asynchronous BCI systems, the user
controls the timing of communication [71,131]. For example,
some BCI systems allow users to voluntarily imagine or
perform mental tasks or movements at their own
pace [18,77,92,135]. Asynchronous BCIs may be more vulnerable
to the phenomenon of unrelated activity being interpreted as a
message or command [108]. This problem has fostered
exploration of methods for turning a BCI on or off with brain
activity [101,136]. 
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Automaticity
In the context of BCI technology, the term automaticity refers to
the degree to which a person can, with practice, learn to use a
BCI without paying exclusive attention to doing so [137,138].
Learning to use some BCIs appears to be similar to learning to
play the piano, to type, to drive or to perform another motor
task [6,7,49,52,55]. Anecdotal experience with some sensorimotor
rhythm- and SCP-based BCI methods suggests that novices
devote their full attention to the mental imagery needed for BCI
operation, whereas experienced users find BCI use much less
demanding. They often dispense with motor imagery and are
able to perform other tasks simultaneously [116]. As with many
other skills, improvements in BCI performance tend to be most
rapid early in skill acquisition [29,97]. 

Other BCI systems do not rely overtly on operant condition-
ing. While long-term use of P300, SSVEP, mental task and
some sensorimotor-rhythm BCI approaches have not been
extensively studied, learning to use these BCIs may be more like
learning facts, events or other declarative memories [42,57,92,98].
Users typically perform effectively once given initial instructions
and rarely develop new strategies or improve performance with
practice [59,60,67,109,112]. 

Terminology relating to the degree of a patient’s disability
Some patients described in the BCI literature as having ‘locked-
in syndrome’ or having ‘complete motor paralysis’ do retain
minimal motor function, such as limited eye-movement con-
trol, which may or may not be sufficient to provide a simple
communication channel [54]. By contrast, people with complete
locked-in syndrome retain absolutely no useful motor control
and, thus, cannot operate any conventional assistive communi-
cation device. For these individuals, only a BCI or perhaps a
system that uses autonomic function, might provide a means of
communication [139]. 

Moving BCI systems from the laboratory to the home
The central goal of BCI research is to develop BCIs that pro-
vide disabled people with communication and control in their
homes on a daily basis to improve their quality of life. Although
many groups have reported successful BCI use with severely
disabled people, including some in their home environments
[24,59–61,140,141], BCIs have not yet been available for use by sub-
stantial numbers of disabled users in their homes for important
purposes every day. Such deployment is just beginning [61,208].

Several significant obstacles currently impede the wide-
spread adoption of BCIs. Few healthcare providers and reha-
bilitation experts are familiar with the capabilities that BCIs
can offer their patients. Although healthcare providers and
family members often assume that people with chronic and
severe motor impairment are depressed and do not want to
go on living, studies have shown that these individuals are lit-
tle more likely to be depressed than healthy individuals and
that, given a good support system and a means to communi-
cate, they can lead lives that they consider to be enjoyable
and productive [12,49,142,143]. 

Long-term use of a BCI in a patient’s home requires ongoing
support by the user’s family and caretakers, as well as some basic
degree of technical support. One of the greatest challenges in BCI
research and development is to make the systems sufficiently user-
friendly and robust so that caretakers and patient users can operate
them on a daily basis with minimal technical support [135,144,145]. 

Reimbursement by insurers is another important issue. Cur-
rently, Medicare guidelines allow reimbursement for communica-
tion devices only if they provide speech. Thus, under current
guidelines, BCIs that only allow word-processing, internet brows-
ing, device control and environmental control are not covered.
However, auditory output, including speech, could be added to
most systems with little difficulty. Many patients may have no
access to reimbursement. Moreover, since ongoing technical sup-
port of a BCI may be more expensive than the purchase of the
BCI system itself, it is essential to develop BCIs that are easy to
use, reliable and adaptive to the needs of the user and caregiver.

The preferences of people with severe disabilities may some-
times be difficult to anticipate. For example, Kübler and col-
leagues describe a patient who had been unable to communicate
for months, whose first requests via her BCI pertained to her
clothing and her desire for a manicure [6]. This may seem surpris-
ing to able-bodied people trying to imagine life unable to move
or communicate and underscores the need for further research
and continuing efforts to customize BCIs to patients’ abilities,
needs and desires.

At the present time, no commercial entities supply clinically
practical BCIs for the general patient population. Thus, current
BCI users typically work with the BCI system and protocol of a
particular BCI research group rather than a system best suited to
their needs, desires and abilities. Since some people exhibit much
better performance with certain BCI approaches than others
[12,202] and often have different preferences and goals [6,108,145], it
will be important to ensure that each potential user has access to
a range of BCI options. 

Although BCI systems are sometimes evaluated and compared
based on their information throughput or information transfer
rate (ITR), it is important to note that factors other than speed
and accuracy may be important. For example, some users prefer
interfaces with a slower ITR because they are easier to use, less
fatiguing, easier to customize, more reliable or otherwise more
suitable. A BCI that allows rapid spelling may be less desirable
than a much slower BCI that instead allows control of a thermo-
stat, television, wheelchair, prosthesis or other personal medical
device. Availability, invasiveness, cost, portability, training time,
online and personal support, cosmesis, and the time and skill
needed to prepare for BCI usage are also important considerations. 

Expert commentary 
People with severe motor disabilities need BCIs more than any
other group. Systems must be reliable, easy to use, widely availa-
ble at a reasonable cost and operable by disabled people in their
homes without the need for extensive ongoing technical support.
They should entail little or no additional health risk to people
who are already heavily burdened with health concerns. Users,
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healthcare and rehabilitation professionals, families
and caretakers must be educated about the opportunities and
limitations offered by the various BCI alternatives.

BCIs are becoming useful to a wider audience. As BCIs
become more powerful and better integrated with existing hard-
ware and software, BCIs may out-perform or complement other
assistive communication systems. For example, the patient
described in [61,208] has an eye-tracking system that he could use
but instead chooses to communicate via a BCI because he con-
siders it easier to use. BCI systems have been used in combina-
tion with other assistive interfaces, such as a switch controlled by
mouth or foot movement [101,103], and might even be used in
combination with a conventional interface, such as a keyboard or
mouse. People without severe disabilities, including healthy
users, might use a BCI despite the availability of faster interfaces
for many reasons, such as novelty, confidentiality, access to other-
wise unavailable information or because the user’s hands are busy
with other tasks [130,209]. BCI research might also inspire systems
to treat disorders that do not directly impair communication,
such as epilepsy, anxiety, attentional disorders, psychopathy and
stroke [12,53,145,163–166,210].

BCI research can capitalize on advances in basic science and
technology. Cognitive neuroscience can inform and inspire
research concerning training, feedback, display parameters, con-
trol strategies, usability, distraction, fatigue, motivation and dis-
comfort [6,39,40,46,49,102,109,115,146]. Questionnaires, interviews,
performance and neuroimaging data can assess subjective and
objective factors across subjects with different backgrounds,
pathologies, needs, abilities and interests. 

Conversely, BCI progress has created opportunity for basic
science research. Implanted BCI research has elucidated the fir-
ing patterns of individual and small groups of neurons [9,22,147].
Studies using µ and SCP BCI systems have clarified mecha-
nisms underlying the generation and regulation of these signals
[32,35,49,146,148,149]. BCI studies have improved understanding of
disease pathology and patient psychology [6,12,59,60,143,149–151]

and addressed EMG and EEG interactions [134,152]. 

Five-year view
Signal acquisition methods for invasive and noninvasive BCIs are
likely to advance in different ways. Invasive electrodes may soon
exhibit better signal quality and long-term reliability with less tis-
sue damage [26,147]. Scalp electrodes will become easier to apply,
use and integrate with existing headgear. Newer electrodes have
been described that require little or no gel and/or do not require
contact with the scalp [153,154]. While EEG-based BCIs are likely
to remain most widely used over the next several years owing to
their ease of use and success to date, some other methods
(e.g., ECoG, fNIR) hold considerable promise for the future
[20,22,31]. fMRI and MEG-based methods are likely to remain too
expensive and cumbersome for long-term practical patient use
within the next 5 years. As noted above, the future use of intra-
cortical BCI methods depends on demonstrating that they can
provide better control than less invasive methods and are safe and
practical for long-term use.

Signal processing will continue to be a very active area in BCI
research and development. Data analysis competitions have
already provided an international venue for comparing signal
processing methods and will probably continue to do so [155,156].
Pattern recognition is a very active area of research for other
purposes and, thus, many researchers have the experience and
tools necessary to contribute to this aspect of BCI research.
Improved approaches to pattern recognition may identify addi-
tional useful components of existing signals. For example, spec-
tral activity might change reliably with selective attention and,
thus, might be used to improve classification in a P300 or
SSVEP BCI [17,69,89,157,158]. 

The next 5 years will also probably see several new output
devices for BCIs. Current versions of mobile robots are not yet
useful to the BCI user population but may be stepping stones
to more practical output devices, such as BCI-controlled
wheelchairs [77,159]. Highly immersive virtual environments,
which often require a head-mounted display or several large
displays, may produce a more absorbing experience for BCI
users and accelerate learning [46,85,97,112,132,210]. BCI systems
may also be adapted to work with headgear, clothing or
alternative displays [106,160]. 

Operating protocols are likely to develop in many different
ways. Improved feedback approaches, perhaps including new
modalities, such as auditory or somatosensory feedback, may
facilitate training and usability [26,90]. Error correction, response
verification, improved letter selection and word completion
algorithms are likely to improve performance and reduce frustra-
tion [116,161]. Goal-oriented operating protocols, which do not
burden the subject with unnecessary details of the process that
must be followed to attain a goal, could also substantially
improve usability and effective information throughput [14].
Efforts to integrate BCIs with other output devices, as well as
other interfaces, such as eye-trackers, EMG detectors and even
keyboards and mice, will also require new operating protocols
[5,106,130,160,162]. Hybrid BCI systems may allow a user to com-
bine different BCI approaches, such as different signal features,
imaging approaches or mental activities, to improve information
throughput, reliability and ease of use [7,85,130,154]. 

BCI systems have just begun to provide significant assistive com-
munication technology to people without other effective means of
communication in their home environments. As BCI research and
development advances, and more people become aware of available
options, BCIs may soon provide more customized assistance to a
larger and more eclectic group of users. Given the pace of BCI
development and the progress it has spurred in related disciplines,
the next few years should see the deployment and adoption of a
variety of such devices and their ongoing development to help
improve the lives of many different people. 
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Key issues

• Brain–computer interfaces (BCIs) are provided for people with severe disabilities to use in their homes.

• Effective information throughput is being improved by developing or improving sensor and hardware technology; signal processing 
and translation approaches; error correction and response verification; word and/or sentence selection and/or completion 
algorithms; additional signals, including hybrid BCIs; sequential menus; and goal-oriented protocols. 

• The right BCI for a given user can be found by considering factors including performance, fatigue, training time, invasiveness, 
reliability, cost, flexibility, environment, cosmesis, comfort, ease of set-up and use, the user’s needs, desires, motivation and abilities, 
and access to assistance with preparing, using, repairing, cleaning or updating the BCI.

• BCIs can be integrated with conventional computers, medical equipment, headwear, software, accessories and interfaces, allowing 
more flexible, usable mainstream BCIs. 

• BCI-related clinical and research infrastructure should continue to be improved to provide information to and among researchers, 
medical personnel, patients and other users, support staff, students, potential and actual funding sources, the media and the public.
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