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Abstract

Three-dimensional reconstruction of ribosome particles from electron micrographs requires selection of many single-particle

images. Roughly 100,000 particles are required to achieve approximately 10 �AA resolution. Manual selection of particles, by visual

observation of the micrographs on a computer screen, is recognized as a bottleneck in automated single-particle reconstruction. This

paper describes an efficient approach for automated boxing of ribosome particles in micrographs. Use of a fast, anisotropic non-

linear reaction-diffusion method to pre-process micrographs and rank-leveling to enhance the contrast between particles and the

background, followed by binary and morphological segmentation constitute the core of this technique. Modifying the shape of the

particles to facilitate segmentation of individual particles within clusters and boxing the isolated particles is successfully attempted.

Tests on a limited number of micrographs have shown that over 80% success is achieved in automatic particle picking.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Electron microscopy (EM) techniques comprise a

powerful and diverse collection of methods that facilitate

visualization of biological structures at a macromolecu-

lar level. Electron microscopy covers a range of resolu-
tion that spans several orders of magnitude, bridging the

gap between crystallography and light microscopy (Sali

et al., 2003). The resolution of an image of macromo-

lecular structures depends on the number of electrons

applied to the sample, since a trade-off exists between

statistical definition and damage to sample (Glaeser,

1971). Micrographs showing projections of macromo-

lecular assemblies must be recorded at very low electron
dose to minimize radiation damage, resulting in low

image contrast (Henderson, 1995). Overcoming the lim-
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itations posed by the low electron exposures that are

‘‘safe’’ requires merging data from images of up to mil-

lions of molecules in order to increase the signal-to-noise

ratio. The number of macromolecule images required for

a volumetric reconstruction increases significantly with

the resolution of the micrograph (Frank, 1996). When
images of currently available quality are used, it is be-

lieved that at least one million particles are required to

reconstruct a protein molecule with ‘‘atomic’’ resolution

(Henderson, 1995; Sali et al., 2003).

For reconstructing the three-dimensional (3-D) shape

of a protein molecule, particles from each micrograph

are selected either manually, using interactive graphics

software or by computer aided semi-automatic methods.
Either method becomes a very labor intensive job when

the number of particles required becomes very large.

Automation of particle selection is hence necessary to

prevent this stage from becoming a serious bottle neck

in visualization of the structure of a protein molecule.

Several approaches to automate particle picking have

been proposed which have met with varying degrees of

mail to: upadiga@lbl.gov


Fig. 1. Flow diagram of particle boxing process.
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success (Nicholson and Glaeser, 2001). Among these,

particle extraction based on texture features of candi-

date particles obtained by peak search of the Gaussian

smoothed micrograph was proposed by Lata et al.

(1995). Although this method remains one of the most

effective that has been described to date, many false
positives still get through and a manual editing of the

resulting data is required as a final step.

In this paper, we present a methodology based on non-

linear preprocessing of micrographs followed by multi-

level, region-based thresholding and morphological seg-

mentation. Fig. 1 shows the flow diagram of various

procedures integrated in a pipeline fashion for particle

picking purpose. Our objective is not just extraction of
single particles but also to segment those single particles

which are located rather close to one-another, thus in-

creasing the throughput of the boxing process without

increasing erroneous selection of particles.
Fig. 2. Histogram of a micrograph (A) before (B) after stretching.
2. Segmentation of ribosome particle images

Micrographs of ribosome particles lack clarity and

definition because of the high level of electron shot

noise mentioned above (Glaeser, 1971). The design of
computational techniques that can extract particles from
the background and from interfering materials in the

image is thus essential. Normalization of the micro-

graphs to have approximately the same mean and grey-

level distribution for all the micrographs, followed by an

anisotropic reaction-diffusion and rank-leveling to

smooth the background texture and to remove the illu-

mination variation, constitute the pre-processing steps.

Pre-processed micrographs are then thresholded and
individual particles and clusters are separated. Particles

within the clusters are then segmented by a combined

erosion-dilation and region growing algorithm. This is

followed by a second stage of particle picking and

boxing of the segmented particles in the micrograph.

2.1. Pre-processing

When we digitize the micrographs, the measured op-

tical density (OD) values reflect the electron image in-

tensity at each point on the micrograph. Within a large

data set, however, one can expect to have significant

variations in the average electron intensity due to varia-

tions in specimen thickness from one micrograph to the

next, variations in condenser lens setting, different choice

of imagemagnification fromone day to the next and other
factors. Standardization of micrographs is thus essential.

Standardization is done by selective histogram stretching.

Selective histogram stretching consists of stretching only

a selected part of the histogram that contains most of the

pixels. The max and min values are defined as the grey-

levels where the histogram curve falls to below 1%+offset

and 1%) offset of the number of pixels at the mode point

of the histogram on both sides of the peak, respectively.
Then the selective histogram stretching is given by

Iðx; yÞ ¼ ðK� 1Þ � ðIðx; yÞ �minÞ=ðmax�minÞ; K is the

expected maximum intensity level in the histogram-

stretched image and Iðx; yÞ is the image function. Fig. 2
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shows, a histogram of a micrograph where the curve falls
below 1% of the peak at grey-levels 210 and 250. With

offset¼ 20 and maximum grey scale in a byte image being

255, we use max¼ 255 and min¼ 190 for histogram

stretching. Since the max and min grey-levels calculated,

based on the initial histogram curve, are data dependent,

the result of histogram stretching standardizes micro-

graphs by tending to produce a common mean and grey-

scale distribution.
Micrographs, in general, have poor signal-to-noise

ratio (SNR) as has been stated above. The main type of

noise that corrupts micrographs of ice embedded spec-

imens is electron shot noise. In order to increase the

SNR, a high degree of smoothing of micrographs is

required. Smoothing an image using low pass filters like

the Gaussian smoothing filter will also blur the image

and compromise the boundary (or the edge) informa-
tion. What we desire is an image denoising scheme that

reduces the background noise and texture variation,

while preserving the particle shape boundaries. We em-

ploy the non-linear partial differential equation based

smoothing technique called the Beltrami flow equation

(Sochen et al., 1996, 1998).

Consider the image function U ¼ Iðx; yÞ. Linear dif-

fusion can be achieved by a parabolic partial differential
equation (PDE), namely

It ¼
oU
ot

¼ o2U
ox2

þ o2U
oy2

: ð1Þ

This process is also called isotropic diffusion. The blur-

ring of important features such as edges that occurs while

moving from finer to coarser scales can be avoided by
application of anisotropic diffusion methods. The use of

diffusion equation for image processing originated with

the work of Perona and Malik (1990) where the authors

pre-select a diffusion coefficient that preserves the edge

information. Image smoothing by way of level set cur-

vature motion (Alvarez et al., 1992; Rudin et al., 1992;

Malladi and Sethian, 1996), thwarts the diffusion in the

edge direction, thereby preserving the edge information.
The main motivation behind the work of Sochen et al.

(1996) was to find a natural way of dealing with different

types of image mappings, grey scale, color, volumetric

etc. The key idea is to view images as embedded maps

between two Riemannian manifolds and to define an

action potential that provides a measure on the space of

these maps. To be specific, let us denote by ðR; gÞ the

image manifold and its metric, and by ðM ; hÞ the image
space-feature manifold and its metric, the so-called ac-

tion potential is the weight of the map X :R ! M , i.e.

S X i; glm; hij
� �

¼
Z

dmr � g1
2glm@lX i@mX jhijðX Þ; ð2Þ

where m is the dimension of R, g is the determinant of

the image metric, glm is the inverse of the image metric,

the range of indices is l; m ¼ 1; . . . ; dimR and
i; j ¼ 1; . . . ; dimM , and hij is the metric of the embedding
space. This action is the natural generalization of the L2

norm to non-Euclidean manifolds and is known as the

Polyakov action (Polyakov, 1981). Minimizing the above

potential with respect to the embedding or the feature

coordinates leads to different flows that are known in the

literature as the Gaussian, curvature flow, etc. We choose

a particular minimization, one that sets the first variation

of the potential with respect to the embedding to zero. As
an example, a grey-level image is an embedding of a sur-

face described as a graph in R3, as follows:

X : ðx; yÞ ! ½x; y; Iðx; yÞ� and the metric is defined

ðglmÞ ¼
1þ I2x IxIy
IxIy 1þ I2y

� �
: ð3Þ

The explicit equation describing the smoothing flow is

realized by minimizing the action potential with respect

to the third coordinate I , namely

It ¼
ð1þ I2y ÞIxx � 2IxIyIxy þ ð1þ I2x ÞIyy

ð1þ I2x þ I2y Þ
2

ð4Þ

with the initial condition Iðx; y; t ¼ 0Þ ¼ I0ðx; yÞ, the

original noisy image. By simple algebraic rearrange-
ments of terms in Eq. (4), we can write the flow equation

as

oU
ot

¼ ðcos bÞ � rh � rU þ ðsin bÞ � h � r2U ; ð5Þ

where the edge indicator function h ¼ 1=ð1þ I2x þ I2y Þ,
thus providing a minimum diffusion at the edges and ex-

tensive diffusion elsewhere (Malladi and Ravve, 2001,
2002) The first term, fðcos bÞ � rh � rUg is a reaction

term responsible for edge-enhancement while the second

term fðsin bÞ � h � r2Ug is a diffusion term responsible for

smoothing. b is a parameter that determines the relative

contribution of reaction and diffusion terms and varies

from 0� to 90�. b ¼ 0� is a pure reaction term, b ¼ 45� is a
non-linear diffusion flow, b ¼ arctan 2 � 63:4� is the

Beltrami flow (Sochen et al., 1998), andb ¼ 90� is the pure
diffusion. Thus by suitably selecting b we can achieve

desired amount of smoothingwithout substantially losing

edge information. Fig. 3 shows the result of smoothing

achieved by the reaction-diffusion technique using dif-

ferent values of b, while parameter such as time step for

reaction-diffusion are kept same. We have used b ¼ 75�.
This value is selected experimentally by considering a

number of correctly detected particles.
Due to variation in the sample thickness and other

factors, micrographs normally show some degree of

uneven illumination. Such illumination variation could

be corrected by removing low frequency components

from the image by high-pass filtering. We have used a

rank-leveling approach which is an adoptive high-pass

filtering implemented in a mathematical morphology

domain (Russ, 1995). In the first step, a background
image is constructed by replacing every pixel by the



Fig. 3. Effect of changing b in Beltrami-flow based smoothing.
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minimum grey-level in its neighborhood (if the particles

are brighter than the background) until the objects in

the image disappear. The neighborhood size is selected

based on the approximate size of the object, i.e., the

particle size in the micrograph. If the objects are darker,

i.e., have lower grey value than the background, we
replace each pixel grey-level by the maximum in its

neighborhood. The resulting image is an approximate

representation of the background. In the second step,

the background image is subtracted from the micro-

graph, and the grey values below zero are clipped to zero

value. Fig. 4, shows the result of pre-processing a



Fig. 4. Result of pre-processing (A) histogram-stretched micrograph, (B) after non-linear smoothing, (C) after rank-leveling.

Fig. 5. (A) Part of the pre-processed image. (B) After thresholding and

noise removal by morphological filters.
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histogram-stretched micrograph followed by non-linear
smoothing and rank-leveling.

2.2. Segmentation of particles

Ideally, a segmentation method finds those sets of

pixels that correspond to distinct structures or regions of

interest in the image and gives a unique label to each

individual set. Segmentation of complex images involves
several stages such as thresholding to separate back-

ground from foreground, distinguishing artifacts from

objects, edge and/or region based algorithms to separate

objects which are touching or closely located, compo-

nent labeling and tuning the boundary pixel location for

better precision.

2.2.1. Thresholding

Thresholding is a conversion from a grey-level image

to a bi-level image. A bi-level image should contain all

the information concerning the number, position, and

structure of the objects that are present in the grey-level

image while containing much less other information.

The problem is to select a proper threshold that ac-

complishes the above task. We have observed that se-

lection of a single threshold for an entire micrograph is
not possible in most of the cases due to overlapping of

the grey-levels of the particles and background from

different regions of the image. The first issue that must

then be addressed, if regional thresholds are to be used,

is to determine how many thresholds are needed and

what the sizes of the regions are. We have implemented

an adaptive region selection method. In the first step, the

image is amplitude thresholded at a global mean inten-
sity value ðk � lÞ, where k is a tuning parameter and l is

the mean intensity of the pre-processed micrograph. All

connected components in the foreground are identified

by component labeling (Dillencourt et al., 1992). Each

such connected component is then considered as an in-

dividual region. In the second step, the mean grey-level

li of connected component i is calculated. Connected

component i is further thresholded at a unique threshold
value (k1 � li). The tuning factor k1 is experimentally set

(we have used k ¼ 1:0 and k1 ¼ 0:5).
Bi-level micrographs thus obtained still contain many
artifacts in the form of tiny isolated structures and small

holes within the particles which are dealt with in the

following way. Using a circular structuring element

(Serra, 1982), the thresholded micrograph is �opened.� If
S is the structuring element and A is the image then grey-

scale opening of A by S is defined as S � fSHAg; where,

SHA ¼ minfA½i� r; j� c� � S½r; c�½i� r; j� c� 2 A½r; c�
2 Sg

S � A ¼ maxfA½i� r; j� c� þ S½r; c�½i� r; j� c� 2 A½r; c�
2 Sg;

� is the dilation operator and H is the erosion operator.

This opening operation reduces small noisy objects that

resulted from thresholding micrographs that are still

somewhat textured. Following this, a closing operation

SHfS � Ag, reduces noisy holes in the particles. The

structural smoothing due to morphological filtering also
force the objects to have a convex shape that can be

better segmented. Fig. 5 shows the result of multi-level,

region-based thresholding followed by morphological

opening and closing.

2.2.2. Relative feature filtering

Once the binarization process described above has

been completed, it is still necessary to distinguish arti-
facts from individual particles and/or clusters of parti-



Fig. 6. (A) Normalized micrograph. (B) After binarization. (C) Objects

isolated as individual particles. (D) Objects flagged-off as cluster of

particles. Note that the larger white ‘‘clumps’’ in (B) have been elim-

inated from (C) and (D) by relative size filtering.
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cles in the image. The use of some simple and intuitively
obvious filters such as relative size and the relative av-

erage intensity of pixels within the candidate particle are

recommended for this purpose. When the size and the

average intensity values of the particles in the micro-

graph are known, this information can be provided as a

priori information to the filtering process for selecting

individual isolated particles and flagging cluster of par-

ticles for further processing. Otherwise a data-driven
process to filter-out the artifacts is recommended. We

have tested one such approach in which the relative size

of the object rv defined as the ratio of the size of that

object to the average size of objects in the image, is used

to eliminate artifacts. Particles are first ordered based on

their sizes, i.e., number of pixels within the particles. The

average size is calculated by an a-trimmed filter which

excludes a number of extreme size elements in the size
ordered list of objects for calculation of the average

object size in the image (Oten, 2000). We have excluded

25% of the particles on both extremes of the ordered list

of particles. If the size of the object i is Vi, then the

relative size of the object i is given by:

rvi ¼
Vi

1
ðN�2aÞ �

PN�a
k¼a Vk

; ð6Þ

where N is the number of isolated objects present in the

image and a is the cut-off threshold of a-trimmed filter.
The relative intensity of the object rIi is defined as the

ratio of the average intensity of the object pixels to the

average intensity of foreground pixels in the image. If

the average intensity of the object i is Ii, then

rIi ¼
Ii

1
ðN�2aÞ �

PN�a
k¼a ð�IIkÞ

: ð7Þ

All those particles with relative average intensity less

than 0.3 or relative size less than 0.5 are considered as

artifacts and eliminated. Fig. 6A is a normalized mi-

crograph, Fig. 6B, shows a thresholded image while
Fig. 6C displays all the isolated individual ribosome

particles. In addition, objects with relative mean object

size more than 1.5 and less than 3.0 are considered as

possible clusters of two or three particles and are flag-

ged-off for further segmentation. Objects with relative

size more than 3.0 are eliminated from further process-

ing. Fig. 6D shows the image that has been flagged-off

for further segmentation which we call the ‘‘residue
image.’’
2.2.3. Cluster segmentation

The residue-image, consisting of particle clusters

flagged-off by relative feature filtering, is labeled using a

component labeling algorithm. Segmentation of clusters

is done in two independent stages.

Stage 1: the foreground of the residue-image is ero-
ded one pixel thickness at a time. Ideally, this erosion
process continues until a unique marker is obtained for

each particle in the region of interest. Markers are the

small group of connected pixels located at the approxi-

mate center of individual particles. The markers are

tagged with a unique label and the number of erosion

iterations needed to bring it to marker size. In the sec-

ond step, markers are subject to controlled dilation.
Markers are grown into their neighboring background

pixels under certain conditions.

• No two growing markers are allowed to overlap or

touch one another.

• The growing process is terminated when the grown

region covers all the foreground pixels in the original

residue-image.

A pixel level logical AND operation between the resi-
due image and the dilated markers image provides seg-

mentation of many particles in the cluster. The relative

size filter with feature parameters obtained from already

isolated particles can then be used to extract particles that

are isolated by the erosion-dilation process.

Stage 2: if there are clusters of particles still left in the

residue-image, then a final step of segmentation based

on region growing over a distance map, which is a
generalized version of the watershed technique, is ap-

plied (Umesh Adiga and Chaudhuri, 2001; Vincent and

Soille, 1991). A distance map of the residue-image is

generated using the Borgefors algorithm (Borgefors,

1996). Homogeneous regions in the distance map are

identified and the distance values of those pixels are

rescaled to reduce flat fields (Bleu and Joshua, 2000).

Let dist(.) represent the distance value of pixels in the
distance map.



Fig. 8. Illustration of second stage of particle picking. (A) Pre-pro-

cessed micrograph after replacing all the particle area by a grey value

less than the mean grey value of the pre-processed micrograph. (B)

Particles and particle clusters picked during the second stage only.
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Step 1: connected group of pixels having maximum
distance dmax in the distance map are considered as

markers. A marker may consist of single pixel or a

group of connected pixels. The markers are labelled by

the component labelling algorithm. Let dmax be the

maximum distance in the distance map, dnext is the next

maximum distance level, and dmin is the minimum dis-

tance value in the distance map.

Step 2: pixels having a distance value ðdnextÞ and lo-
cated in the immediate neighborhood of the labelled

regional markers are merged with their neighboring re-

gional marker. This step can also be viewed as growing

markers into their neighborhood pixels that have a

distance value dnext by reassigning their distance values

to be dmax and tagging them with the corresponding

label of the marker.

The isolated pixel or group of connected pixels in the
distance map with distance dnext and not having a la-

belled regional marker in their immediate neighborhood

are considered as new markers and given a new unique

label as well as having its distance value upgraded to

dmax.

Step 3: dnext ¼ next maximum distance value in the

image which is less than dmax.

Step 4: if the dnext 6¼ dmin then steps 2 and 3 are re-
peated.

The resulting image is filtered using relative size fil-

ters. Fig. 7, shows an example of segmentation of clus-

ters of ribosome particles.

A second stage of analysis is necessary to identify

missed ribosome particles in the first stage. Every seg-

mented particle projection in the original unprocessed

micrograph is replaced by a background texture patch.
The resulting image is then considered as a new, pre-

processed micrograph, and all the steps of segmentation

are applied again. As most of the parameters controlling

segmentation are data driven, it is not necessary to re-

tune them at this intermediate stage. Particles thus ex-

tracted are added to the original set of segmented

particles. Fig. 8 shows the result of second stage analysis

to pick particles that were left-out in the first stage. We
have observed that about 10–15% of the total particles

segmented are obtained from the second stage of pro-
Fig. 7. (A) Same as Fig. 6C, (B) result of erosion-dilation, (C) result of regi
cessing. The increase in number of false positives due to
the second stage of processing is negligible.

Our aim is to extract each particle as a small sub-

image. All the sub-images should have the same size

(same number of columns and rows) so that they can be

used for further analysis towards 3-D construction. To

accomplish this, the centroid of each particle that is

segmented from the micrograph is calculated, and a

fixed size box is stamped around the centroid such that
the complete particle is enclosed within the box. Fig. 9

shows an example of a micrograph where segmented

ribosome particles are boxed.
3. Experimental results and discussion

The basic idea behind this methodology for picking
ribosome particles is to pre-process the image to an

extent that the standard segmentation algorithms can

successfully identify each particle in the image. A two

tone version of the image is then used to measure the

size (i.e., the area) of the particles and the average

density within this area is further used to identify the

particles. Our goal is to consistently achieve, on a large

set of data, 80% efficiency with respect to manual se-
lection, with less than 10% false positives contained in

the data set, and to do so without human intervention.

Table 1 gives a quantitative analysis of the efficiency of
on growing/watershed on a distance map for segmentation of clusters.



Fig. 9. Illustration of boxing of recognized ribosome particles. Most of

the apparent ribosome particles that can still be seen without boxes

are, in fact, particles that are not picked by human either.
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our automatic procedure in the case of a few micro-

graphs with routine image quality. We have achieved
and in most cases exceeded the expected target of 80%

recognition with less than 10% false positives. The effi-

cacy of our approach needs to be further tested on a

large number of micrographs before accepting the soft-

ware as a routine tool for picking ribosome particles.

The image files Smic01.spi, Smic02.spi, and Smic03.-

spi, with particle coordinates that are known from man-

ual boxing, were used as gold standards to test the
performance of the protocol and to establish the param-

eter values used in the algorithm. The number of particles

that were boxed both manually and automatically was

used to compute the efficiency of the softwarewith respect

to themanual boxing process. IfHman ¼ fp1; p2; . . . ; png is
Table 1

Quantitative analysis of manual particle picking and automatic method

No. Image name No. of particles

manual

No. of part

automatic

1 Smic01 591 583

2 Smic02 645 596

3 Smic03 634 521

Table 2

Effect of the smoothing parameter on particle picking

Image

name

Manual pick PDE b ¼ 30�
count/false +ve

PDE b ¼ 45�
count/false +ve

Smic01 591 533/71 589/64

Smic02 645 513/51 546/48

Smic03 634 598/81 580/58
the set of manually boxed particles, where the size of the
set #fHmang ¼ n, andHaut ¼ fp1; p2; . . . ; pmg is the set of
particles boxed automatically, where #fHautg ¼ m, then
fHman \Hautg is the set of particles that are picked by

both automatic and manual methods. The symbol �\� is
the set intersection that brings out those elements that are

common to both sets. The set fHman n fHman \Hautgg is

the set of particles that aremanually picked but not picked

up by the software. The symbol �n� denotes the set differ-
ence. The set, fHaut n fHman \Hautgg is the set of false

positives, i.e., set of particles boxed by the automatic

method while rejected as non-particles by the manual

method. The percentage efficiency of the automatic

method is then calculated by % efficiency ¼ ð# Hman \f
Hautg=nÞ � 100. The particles that are marked by the

automatic process but not by manual boxing are consid-

ered to be false positives. The efficiency of automatic
particle picking, as defined above, is calculated based on

the total number of false positives listed in column 5 ra-

ther than the estimatednumber listed in column6ofTable

1. The column ‘‘estimated false positives’’ is provided

because some of the boxes that are marked by the soft-

ware, but not by the manual process, appeared to have

actual particles in them.

Increasing b increases the diffusive property of the
anisotropic diffusion process. An optimal trade-off be-

tween protecting the boundary of the particles, and

smoothing the noisy texture in the interior of the par-

ticles as well as in the image background, is achieved by

trial-and-error. This trade-off resulted in our choice of

b ¼ 75� as a default value, as it produced a marked re-

duction in the already small percentage of false positives

with only a modest loss in the recognition of true posi-
tives. Table 2 shows the effect of using different values of

b in the Beltrami flow based pre-processing. Selection of

the threshold value for binarization is a fairly robust

process. Thresholding at the average brightness in

the first stage and calculating unique thresholds for
icles False positives Estimated false

positives

% recognition/

efficiency

25 11 94%

21 8 89%

18 14 80%

PDE b ¼ 62:3�
count/false +ve

PDE b ¼ 75�
count/false +ve

PDE b ¼ 90�
count/false +ve

646/57 583/25 484/28

558/45 596/21 433/30

601/47 521/18 455/31
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subsequent regions formed by first stage of thresholding
is a novel approach towards region selection in region

based thresholding. Since the selective histogram

stretching standardizes average brightness and histo-

gram shape of all the micrographs, retuning of pre-pro-

cessing and segmentation parameters is not necessary

while working on different micrographs. In cases where

the binarization does not produce enough single-particle

signatures, a simple rearrangement of the steps, i.e.,
performing cluster segmentation on the binarized data

before relative size filtering would reduce the necessity of

tuning filter parameters. Thus, the software is more-or-

less independent of parameter tuning while operating on

a set of micrographs obtained under similar settings.

It has been observed that our software performs with

a better computational efficiency when the images are of

size, say, 1024� 1024, rather than when they are
4096� 4096 and above. This is an issue of implemen-

tation of the algorithms and the efficiency of the com-

puter. To make our software work efficiently for a large

image on smaller machines such as PC, etc., a divide and

conquer method can be adopted. The large image is

divided into optimum size for the software to run effi-

ciently on each image part. When each image part is

processed, however, we reject those particles that are too
close to the image border. For example, when an image

of 4096� 4096 pixels is divided into 16 parts of size

1024� 1024, a large number of particles in each part

would be rejected as being too close to the border. This

problem can be solved by not rejecting any objects until

the whole image is reconstructed by tiling individual,

processed/segmented, image parts.

To complete all stages of automatic particle picking
on a 2048� 2048 image with about 600 particles, the

program took 21min on a 1GHz/256Mb PC with

Win2000 operating system. The program is implemented

in Interactive Data Language (www.rsi.com). Re-im-

plementing it in C or C++ would improve the efficiency

at least by 50%. The efficiency of the program is also

directly related to the quality of the image and the

number of single isolated particles present, as well as the
number of particle clusters present.

An important difference from the existing methods of

particle selection is that this method can be defined as

blind, as no manual intervention is allowed. The high

degree of accuracy achieved in particle selection is due to

extensive pre-processing that improves the particle

contrast from its background. The application of the

PDE-based Beltrami flow equation for smoothing and
enhancing features helps in retaining the particle

boundary, which in turn preserves the particle size and

shape. Though the program was tested on relatively

similar data sets, we expect it to work generally well on

all micrographs acquired with similar instrument set-

tings. Under different settings, retuning of one or several

parameters may be necessary.
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