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Abstract
This study examines the effects of expanding the classical P300 feature space on the classification
performance of data collected from a P300 speller paradigm [9]. Using stepwise linear discriminant
analysis (SWLDA) to construct a classifier, the effects of spatial channel selection, channel
referencing, data decimation, and maximum number of model features are compared with the intent
of establishing a baseline for not only for the SWLDA classifier, but for related P300 speller
classification methods in general. By supplementing the classical P300 recording locations with
posterior locations, online classification performance of P300 speller responses can be significantly
improved using SWLDA and the favorable parameters derived from the offline comparative analysis.
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I. INTRODUCTION
A brain-computer interface (BCI) is a device that uses brain signals to provide a non-muscular
communication channel [26], particularly for individuals with severe neuromuscular
disabilities. The P300-event related potential is an evoked response to an external stimulus that
is observed in scalp-recorded electroencephalography (EEG). The P300 response has proven
to be a reliable signal for controlling a BCI [9]. In [9], Farwell and Donchin describe the P300
speller, which presents a selection of characters arranged in a 6 × 6 matrix. The user focuses
attention on one of the 36 character cells of the matrix while each row and column of the matrix
is intensified in a random sequence. The row and column intensifications that intersect at the
attended cell represent the target stimuli, which occur with a probability of 1/6. The rare
presentation of the target stimuli in the random sequence of stimuli constitutes an Oddball
Paradigm [8] and will elicit a P300 response to the target stimuli. With proper P300 feature
selection and classification, the attended character of the matrix can be identified and
communicated.

A variety of feature extraction and classification procedures such as stepwise linear
discriminate analysis (SWLDA) [6][17], wavelets [5], support vector machines[11][13][23],
and matched filtering [19] have been implemented, improving the performance beyond that
originally reported in [9]. Based on multiple studies in healthy volunteers [6][17][19], and
initial studies in persons with physical disability [25], the P300 speller has potential to serve
as an effective communication device for persons who have lost or are losing the ability to
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write and speak. An individual with advanced-stage ALS reported the P300 speller to be
superior and preferential to his modern eye-gaze system and uses the BCI 4–6 h/day for e-mail
and other computer applications [25]. Initial reports from other disabled individuals currently
testing the P300 speller BCI also indicate that its speed, accuracy, and ease of use are superior
or competitive with other assistive technologies.

Up to the present, BCI-related P300 research has focused almost exclusively on signals from
standard P300 scalp locations (i.e., Fz, Cz, Pz). While recent offline evaluations suggest that
the use of additional locations, particularly posterior sites, may improve classification accuracy
[1][2][3][4][11][21][24], this possibility has not been formally addressed in comprehensive
offline and online studies.

To address this possibility, the present study explores the value of incorporating information
from electrode locations that are not traditionally associated with the P300 response. In
addition, several data preprocessing and model parameters are evaluated to assess the relative
effects with respect to the new spatial information. Using a SWLDA classifier, both offline
and online results obtained from 64-channel data show that some of the most discriminable
EEG features evoked by the P300 speller occur at posterior electrodes (namely PO7, PO8, Oz),
and that these features can significantly improve classification performance when used in
conjunction with the classical P300 feature space (i.e., EEG features at electrodes Fz, Cz, Pz
[20]). The results are also relevant to current speculations concerning the nature of the neural
processes underlying P300-based BCI operation and the question of their dependence on gaze
direction.

II. DATA COLLECTION
A. Participants

Seven able-bodied people were the participants in this study. The demographics and previous
speller matrix experience of the participants are listed in Table I. The participants varied in
their previous BCI experience, but all participants had either no experience or relatively few
sessions with a P300-based BCI system. The study was approved by the New York State
Department of Health Institutional Review Board, and each participant gave informed consent.

B. Task, Procedure, & Design
The participant sat upright in front of a video monitor and viewed the matrix display. The task
was to focus attention on a specified letter of the matrix and silently count the number of times
the target character intensified, until a new character was specified for selection. All data was
collected in the copy speller mode: words were presented on the top left of the video monitor
and the character currently specified for selection was listed in parentheses at the end of the
letter string (see Figure 1). Each session consisted of 9 experimental runs; each run was
composed of a word or series of characters chosen by the investigator. This set of characters
spanned the set of characters contained in the matrix and was consistent for each participant
and session. The rows and columns were intensified for 100 ms with 75 ms between
intensifications. A sequence length of 15 row/column intensifications constituted one character
epoch. Specifically, the classification was performed after every row and column has been
intensified 15 times. Each session consisted of 36 character epochs, equivalent to 6480 stimuli
(row/column intensifications). A single session, lasting approximately one hour, per participant
was collected per day. Five sessions, collected over a period of weeks, were obtained from
each of the seven participants. Two additional sessions were collected from five of the
participants for verification of the offline analysis.

For each channel used in the analysis, 800-ms segments of data (192 samples) following each
intensification were extracted for the offline analysis. The data segments were concatenated
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by channel for each intensification, creating a single feature vector corresponding to each
stimulus. The N features X 6480 stimuli observation matrix was used to derive the SWLDA
weights for each participant, where N = [# channels X 192 samples].

C. Data Acquisition
The EEG was recorded using a cap (Electro-Cap International, Inc.) embedded with 64
electrode locations distributed over the entire scalp, based on the International 10 – 20 system
[20]. All 64 channels were referenced to the right earlobe, and grounded to the right mastoid.
The EEG was bandpass filtered 0.1 – 60 Hz and amplified with a SA Electronics amplifier
(20,000X), digitized at a rate of 240 Hz, and stored. All aspects of data collection and
experimental procedure were controlled by the BCI2000 system [16].

III. STEPWISE LINEAR DISCRIMINANT ANALYSIS
Determining the presence or absence of a P300 evoked potential from EEG features can be
considered a binary classification problem with a decision hyper-plane defined by:

(1)

where x is the feature vector as described in Section IIB, w is a vector of feature weights, and
b is the bias term. However, because it is assumed that a P300 is elicited for one of the six row/
column intensifications, and that the initial results indicate that the P300 response is invariant
to row/column stimuli, the resultant classification is taken as the maximum of the sum of scored
feature vectors for the respective rows, as well as for the columns:

(2)

(3)

This design selects the response with the largest positive distance from the trained separating
hyper-plane, which is ideally analogous to selecting the response that strongly represents the
characteristic P300 as defined by the training data. The predicted character is located at the
intersection of the predicted row and column in the matrix.

Stepwise linear discriminant analysis [7] is a technique for selecting suitable predictor variables
to be included in a multiple regression model as given in equation (1). For binary classification
tasks such as this, the linear discriminant and least-squares regression solutions are equivalent.
A combination of forward and backward stepwise regression is implemented. Starting with no
initial model terms, the most statistically significant predictor variable having a p-value < 0.1,
is added to the model. After each new entry to the model, a backward stepwise regression is
performed to remove the least significant variables, having p-values > 0.15. This process is
repeated until the model includes a predetermined number of terms, or until no additional terms
satisfy the entry/removal criteria.

The SWLDA algorithm can be considered efficient because the terminating heuristic is
implemented in such a way that suitable features are selected in a non-exhaustive manner. The
only required parameters, the maximum model order and the termination heuristic, are intuitive
and can be easily gauged based on the expected characteristics of the data. In a sense, SWLDA
has the advantage of having automatic feature extraction. Because insignificant terms are
removed from the model (i.e. weights are set to zero), using less training data is less likely to
corrupt the classification result because insignificant features are completely eliminated from
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the model. Though SWLDA can be tuned to provide faster convergence by limiting the model
order or termination heuristic, it is not guaranteed to be convergent and will not provide a model
if the heuristic cannot be satisfied. However, this typically occurs only if the model is
inadequate or if there is not discriminable information contained within the features. When
properly configured, this result can be used to conclude that P300 evoked potentials are not
present in the session.

IV. ANALYSIS PROTOCOL
In the previous work on SWLDA for classifying P300 responses [1][9][17], only channels Fz,
Cz, and Pz were used for analysis. However, the posterior response seems to provide significant
additional discriminative information for the P300 speller [1][2][3][4][11][21][24]. Thus far,
neither the temporal attributes of this posterior response nor its relationship to the central P300
response have been characterized. Because of this, the present study examines several aspects
of the feature space in order to determine if the classification performance can indeed be
improved by incorporating additional channels and possibly altering the data preprocessing.
The effects of the following four factors on SWLDA classification of offline P300 speller data
are evaluated: Channel Set, Reference, Decimation Factor, and Maximum Features. A
description of each of these factors is given below.

Channel Set
Several overlapping and non-overlapping subsets of channels are examined to compare the
relative emphasis of spatial information on classification as well as to define a robust, minimum
set that can serve as a starting point for future analysis. The four individual channel sets selected
for analysis are illustrated in Figure 2. Channel set 1 represents the classical channels used for
extracting the P300 response. Channel set 2 represents the posterior regions that have strong
correlations with desired matrix targets. Channel set 3 is the union of channel sets 1 and 2, to
demonstrate the interaction effects of the central and posterior information. Channel set 4
represents an expanded number of channels from the key regions to demonstrate the effects of
providing SWLDA additional spatial diversity for selection. Channel set 0 is defined purely
for illustration purposes as the residual subset of channel set 4 not provided by the other channel
sets.

Reference
To compare whether the global effects interact with the localized channel sets, the ear
referenced data is compared to data using a common average reference (CAR) of all 64
channels.

Decimation Factor
Because of the high sampling rate of the recordings relative to the low frequency of the P300
response, a dimensionality reduction for removal of redundant features is beneficial for
classification. Rather than simply decimating the data, the data are segmented into blocks
having length equal to the selected decimation factor. The mean of these blocks is calculated
and used as the feature, effectively smoothing and decimating the data. This is equivalent to
passing the data through a moving average filter before decimating. Three different decimation
factors are examined: 6, 12, and 24, corresponding to sample rates of 40, 20, and 10 Hz
respectively. The basis of the P300 response is believed to lie within these frequency ranges
[10].
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Maximum Features
The maximum number of features permitted for inclusion in the regression model is evaluated
to determine a reasonable value for a given number of spatial/temporal features that
demonstrate good generalizability to test data. Setting the number of maximum features too
low may exclude relevant classification information, whereas values too high may begin to
over-fit the data.

The classification performance of each combination of factors was evaluated using the offline
data. The total number of features available to SWLDA for each combination is given in Table
II. For each of the seven participants and combinations of factors, SWLDA was used to derive
feature weights from the participant’s first session data only, using all 15 intensification
sequences. These weights were then tested on all four subsequent sessions. For the test sessions,
the feature vectors for each subsequent intensification in the sequence (up to 15) were averaged
by corresponding row/columns for each character epoch and classified to compare performance
for a minimum number of intensifications. The results presented are the averages of the
resulting performances from each of the four test sessions.

V. RESULTS
A. Offline Evaluation

The four factors of primary interest were examined separately offline. Figure 3 illustrates the
fundamental effects of channel set, reference, decimation, and maximum features, respectively.
Because all combinations of factors were initially evaluated, factors that are clearly superior
or show consistent performance across conditions are fixed for presentation purposes. For
example, the factors of decimation and maximum features do not result in significantly different
performance for any of the conditions, but values of 12 for decimation and 60 for maximum
features appear to be superior for practically all conditions and are therefore fixed to those
values for the analysis of the other factors. The ear reference is used to compare the channel
sets because the CAR incorporates global spatial information, which could possibly mask the
true contribution of the smaller, localized channel sets. The ear reference is also used in the
decimation factor plot because there is not an appreciable difference between it and the CAR.
The best reference for each participant is compared for the maximum features factor because
it demonstrates more directly the effect of the maximum features in a best-case scenario. The
best channel set was also selected across factors because the results are consistent within
participants and more representative of how the factors affect the best-case scenario. Table III
provides a summary of the factors used in the plots.

A repeated measures analysis of variance (ANOVA) was performed on the four factors. The
only factor that yielded a significant effect was channel set (F(3,24)=5.02, p=0.0077). As
shown in Figure 3, channel sets 3 and 4 performed significantly better than channel sets 1 and
2. No difference was observed between sets 3 and 4, and no difference was observed between
sets 1 and 2 (Fisher LSD = 18.44, p<0.05).

Overall, the CAR is not different from the ear reference for the best channel set (F(1,24)=0.01,
p=0.9064). This indicates that the majority of essential P300 response information is contained
in channel sets 3 and 4, and that the CAR contributes little or no additional information to these
two specific channel sets.

The factor of decimation did not yield a significant difference for the tested values of 6, 12,
and 24 (F(2,24)= 0.17, p=0.8459). Despite the lack of statistical significance, the results
consistently show that a decimation factor of 24 is less desirable than 6 or 12. It is possible
that the current analysis lacked sufficient power to detect a significant difference.
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The statistical analysis performed on the factor of maximum features also resulted in no
statistical differences between the four levels (F(3,24)=1.09, p=0.373). A consistently lower
performance for a maximum feature set of 15 is observed but is not identified as significant
from the statistical analysis. Again, this could be due to a lack of sufficient power to detect a
significant difference.

B. Online Performance
Following the offline analysis, an additional set of two experimental sessions was performed
for 5 of the 7 participants. The additional sessions served two purposes. First, to validate the
offline results in an online situation. Second, to examine differences between the commonly
used midline electrodes (Set 1) and the set of electrodes that classifies most accurately for each
participant. Based on the offline findings, two sets of classification weights were derived for
online use. One set used only the midline electrodes and a second set was the set that performed
best for each of the five participants. The factors of reference, decimation, and maximum
iterations were set to ear reference, 12, and 60, respectively. Each session was conducted using
both sets of weights to provide online feedback. Half of each session was conducted using the
SWLDA weights representing the best channel set for the particular participant, the other half
was conducted using channel set 1. The application of the different weights used for each
session was counterbalanced. The elapsed time between the initial weight generating session
and the online verification sessions was eleven months for Participant E, seven months for
Participants B and C, and two months for Participants A and D.

The results are shown in Figure 4. The figure shows that all five participants performed best
with the set of weights derived from the large electrode set. In addition, the expanded set of
electrodes performed approximately 25% better, on average.

VI. DISCUSSION
It is evident from the results that an essential factor in optimizing the performance of the P300
classifier is the identification of an appropriate channel set for the individual. Channel set was
the only factor that yielded a significant statistical effect on classification rates; however, the
analyses of the other factors have provided important information. The analyses conducted
here suggest that, on average, a decimation of 12, ear reference, maximum features of at least
45, and either channel set 3 or 4 provide the best classification parameters for SWLDA.

In general, the performance of the classical P300 electrode set (Set 1) was inferior to the
expanded sets of electrodes (Sets 3 and 4), and statistically equivalent to the posterior set (Set
2), indicating that the posterior electrodes contribute additional information to P300 speller
classification. Performance is significantly increased when the central and posterior channel
sets are combined in Set 3. Moreover, an additional 13 electrodes (Set 4) does not produce a
significant increase in performance over the performance achieved by the 6 electrodes in Set
3, although Set 3 is a subset of Set 4. This suggests that including 19 electrodes results at best
in no appreciable improvement from 6 electrodes, and at worst in a small amount of overfitting.
Thus, SWLDA is not exactly optimal in terms of feature extraction because introducing
additional input features to the model that provide little additional information can lead to a
decrease in performance in some instances. Based on the results of this study, channel sets 3
and 4 serve as reasonable starting points that can be minimally extended or pruned to identify
a suitable channel set for a particular participant. It should be noted that SWLDA actually
performs pruning since feature from all input channels are not guaranteed to be weighted by
this procedure. Alternative feature extraction methods in a BCI context are given in [12][14].
Additional evidence for the efficacy of using electrodes that include posterior, central, and
frontal electrodes is provided in [21]. In this study, PCA was performed on oddball data and
demonstrated that a component extending from Cz to Oz and P7 to P8 accounted for the largest
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portion of variance, and a component extending from Cz to Fz accounted for the second largest
portion of variance.

With the feature weights derived by SWLDA, as described in the offline analysis, online
performance confirmed what the offline analyses suggested. That is, performance was superior
using expanded electrode sets as compared to the three midline electrodes. In addition, using
the expanded set of electrodes, all participants reached accuracy levels of at least 60% correct.
Three of the five participants performed above 90% correct with fewer than 15 sequences. This
indicates that the classification can be performed on a minimal number of sequences without
compromising accuracy, effectively increasing the communication rate. These results
demonstrate the stable and robust nature of the EEG response to the P300 speller, because the
weights used online were derived from data collected up to one year prior to the online sessions.
This finding is consistent with results reported by Sellers and Donchin [17]. Interestingly,
Participant E’s performance was markedly better during the online experiment that occurred
nearly a year after the session from which the classification weights were generated. Participant
E’s performance didn’t plateau in the early sessions, indicating that the performance could
have continued to increase with additional trials. However, based on the improved online
performance, the performance during the early sessions could be attributed to the novelty of
the task or the nature of the feedback during these sessions that was based on suboptimal
classification weights. The drastic decrease in online performance for participants B and D is
presumed to be due to concentration and attentional issues reported by the participants during
the online sessions, rather than to obsolete feature weights. However, this is merely speculation
and the participants were not systematically or explicitly asked to report on fatigue, attention,
concentration, etc. during the sessions.

The relative contribution of the posterior responses raises the possibility that transient ocular
responses could be involved and that foveating the target may be a factor in P300 speller
performance. This would be important since BCI systems that are dependent upon peripheral
movements are perhaps less useful for those with severe motor disabilities [26]. However, it
is by no means certain that P300 speller performance is dependent in this way. First of all, the
P300 response can be observed when spatial attention is not a factor, as with the use of auditory
stimuli or visual stimuli that appear sequentially in the same location [17]. Secondly, spatial
attention involves both overt eye gaze and covert processes. Covert visuospatial attention has
been shown to modulate neuronal activity [22] and ERP components [15]. Thus, definitive
information on the relative contribution of overt eye movements to the P300 speller
performance will require either studies controlling for the effect of eye movements or studies
with individuals lacking voluntary control of eye movements. It is hypothesized that the
posterior features contribute to the classification because the visual evoked responses observed
at these sites differ depending on whether the target flash is in the focal or peripheral field. An
initial inspection of the posterior target responses (focal field) shows that all participants had
a prominent event-related negativity between 200–250 ms at PO7, PO8, and/or Oz (discussed
in [18]). The posterior standard responses (peripheral field) tend to exhibit a sinusoidal steady-
state visual evoked pattern at the flashing frequency as expected.

In conclusion, with the addition of posterior features and a SWLDA trained classifier, the
participants of this study were able to achieve speed/accuracy levels suitable for practical online
communication. When blind tested on Data Set II (P300 Speller) from the 2005 BCI
Competition III [2][4], the SWLDA method (using ear referencing, electrode set 3 in addition
to electrodes P3 and P4, a decimation factor of 12, and a maximum of 60 model features)
classified the data set at 92.5% accuracy, results that rank second1 (to Rakotomamonjy [2])
amidst contributions that primarily employ advanced support vector machine and clustering
techniques. Additionally, for each subject, the competition winner performed an extensive
optimization of the channel selection using all 64 channels, as opposed to the 8 standardized
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channels used in the proposed SWLDA method. These performance results indicate that a
comparatively straightforward and intuitive linear classifier with minimal preprocessing is as
viable and capable as many complex, modern classification techniques for the P300 speller.
When trained on a feature space expanded to include information from posterior as well as
central electrodes, SWLDA’s comparatively straightforward and minimal implementation and
training requirements, rapid convergence, modeling robustness, and, most importantly,
classification accuracy, make it a very appealing and effective approach for practical
application of the P300 speller.
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Fig. 1.
The 6×6 matrix used in the current study. A row or column intensifies for 100 ms every 175
ms. The letter in parentheses at the top of the window is the current target letter “D.” A P300
should be elicited when the fourth column or first row is intensified. After the intensification
sequence for a character epoch, the result is classified and online feedback is provided directly
below the character to be copied.
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Fig. 2.
The 64-channel electrode montage and the channel sets. Set 0 is a subset defined purely for
illustration purposes, sets 1 through 4 were used in the analysis.
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Fig. 3.
Performance curves at each level of the 4 factors for all 15 stimulus intensification sequences.
Each of the 4 rows of plots indicates a single factor for each participant. The rightmost column
of plots shows the average for each factor across participants.
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Fig. 4.
Online Performance for each participant using the best set of feature weights (solid line) or Set
1 weights (Fz, Cz, and Pz only) (dashed line). Each participant completed two sessions. Half
of each session was conducted with the best weights and half with Set 1 weights, in
counterbalanced order.
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Table I
Participant demographics

Age Gender # Prior Sessions
Participant A 24 Male 6
Participant B 47 Male 0
Participant C 50 Female 12
Participant D 36 Male 6
Participant E 27 Male 0
Participant F 24 Male 0
Participant G 32 Male 0
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Table II
Total features available for a given channel set and decimation factor

Decimation factor 24 12 6
# Electrodes
3 (Sets 1 & 2) 24 48 152

6 (Set 3) 48 96 304
19 (Set 4) 96 192 608
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Table III
Factors used in Figure 3

Ch. Set Ref. Dec. Fact. Max. Feat.
Ch. Set X Ear 12 60

Ref. Best X 12 60
Dec. Fact. Best Ear X 60
Max. Feat. Best Best 12 X
Each row indicates a single dependent factor considered in Figure 3. The columns give the fixed independent factor settings used for the analysis of each
dependent factor. “Best” indicates the value of the factor that gives the highest overall performance for a particular participant, consistent across all
conditions.
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