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Toward a gaze-independent matrix speller brain–computer interface
See Article, pages 1127–1136
Many people affected by debilitating neuromuscular disorders
such as amyotrophic lateral sclerosis (ALS), brainstem stroke, or
spinal cord injury are impaired in their ability to communicate.
Conventional assistive devices (e.g., letter boards, cheek or tongue
switches, or eye trackers) that aim to restore communication all re-
quire muscular control, which is often lost in the progress of neu-
romuscular disorders.

A brain–computer interface (BCI) uses brain signals directly,
rather than muscles, to re-establish communication with the out-
side world. One well-known BCI approach is the so-called ‘‘P300
matrix speller’’ that was first described by Farwell and Donchin
(1988). In this system, the user pays attention to a character in a
matrix while each row and column is intensified rapidly and ran-
domly. The brain produces a response to the row or column that
contains the intended character (i.e., the oddball); this response
is not present for the other rows or columns. The BCI typically
averages several responses, detects the row and column with the
strongest responses, and thereby identifies the character the user
wants to select.

The individual parameters of the matrix speller have each been
studied and optimized extensively. This includes the matrix size
(Allison and Pineda, 2003), stimulation frequency (Sellers et al.,
2006a), stimulation intensity (Takano et al., 2009), classification
algorithm (Krusienski et al., 2006), and electrode locations
(Krusienski et al., 2008). The matrix speller approach has been used
in several application contexts, such as web browser navigation
(Mugler et al., 2008), control of ambient environment (Edlinger
et al., 2009), wheelchair navigation (Rebsamen et al., 2007), and
mouse movement (Citi et al., 2008). Moreover, it has recently been
shown that more than 80% of the healthy population can use such a
BCI (Guger et al., 2009), which demonstrates the broad applicabil-
ity of this approach in people without disabilities.

Most important to the eventual goal of BCI research, there is
mounting evidence that the matrix speller can also restore func-
tion in severely disabled individuals (Piccione et al., 2006; Sellers
et al., 2006b, 2010; Vaughan et al., 2006; Nijboer et al., 2008; Kübler
and Birbaumer, 2008; Silvoni et al., 2009; Hoffmann et al., 2008;
see Donchin and Arbel, 2009 or Mak and Wolpaw, 2009 for
comprehensive reviews). However, these studies typically report
spelling performance that is lower than that reported in similar
studies using healthy individuals.

This decreased spelling performance in patients compared to
healthy individuals may be related in part to cognitive impairment
(Phukan et al., 2007) or to the inability to maintain gaze. For exam-
ple, eye gaze is often impaired or lost in subjects affected by ALS.
Although some people with ALS maintain residual eye movement
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for years (Cohen and Caroscio, 1983; Palmowski et al., 1995;
Birbaumer and Cohen, 2007), others progress to near-complete or
complete paralysis. This is problematic, because recent studies
(Brunner et al., 2010; Treder and Blankertz, 2010) showed that
the traditional design of the matrix speller not only relies on the
P300 evoked potential, which does not depend on eye gaze, but
also on other features such as visual evoked potentials, which
strongly depend on foveation and thus the ability to control eye
gaze direction. This recent finding has contradicted the widespread
assumption that the performance of the matrix speller does not
depend on the subject’s ability to fixate on the target character
(Donchin et al., 2000; Serby et al., 2005; Sellers et al., 2006b). In
addition to the dependence on eye gaze, the spelling rate sup-
ported by the matrix speller BCI is still an order of magnitude low-
er than what conventional assistive devices can provide (Majaranta
and Räihä, 2002; Schalk, 2008). In sum, the limited speed and
dependence on gaze of the traditional design of the matrix speller
BCI limits the practical value of this BCI approach to individuals in
the target population.

Recent studies have attempted to address these two issues. To
improve spelling performance, studies have optimized stimulus
presentation and algorithms to detect the intended letter. For
example, recent studies employed faster stimulation (McFarland
et al., 2011), more robust coding (Hill et al., 2009; Townsend
et al., 2010), or probabilistic measures of the letter frequency
(Martens et al., 2010). However, these approaches have only mod-
estly increased or in some case even decreased spelling perfor-
mance. It is likely that the limited gains of these approaches is
due to physiological constraints of the brain. For example, limited
speed of cortical processing will define the maximal stimulation
frequency.

To remove or mitigate the dependence of the matrix speller on
eye-gaze, recent studies used oddball paradigms with auditory
(Klobassa et al., 2009; Kübler et al., 2009; Schreuder et al., 2010),
tactile (Brouwer and van Erp, 2010), or simplified visual stimuli
(Treder and Blankertz, 2010).

In the latter study, the selections were arranged within the
peripheral visual field in a circle rather than a matrix. In this
approach, the selection was performed using a two-stage process,
i.e., initial selection of a group of characters followed by the selec-
tion of the intended character. This study showed in healthy indi-
viduals with constrained eye gaze that spelling accuracy using the
traditional row/column speller was 40%, but that this accuracy
improved to 60% with the circular approach. While this result is
encouraging, further improvements to accuracy in this gaze-inde-
pendent approach were needed.
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In their study, in this issue, Liu et al. (2011) used a one-stage
selection scheme that arranged the stimuli (i.e., only the characters
of intensified rows or columns of a matrix rather than all charac-
ters of that matrix) in a circular fashion. This circle of characters
was presented around the center of a computer screen, and the
subjects were asked to fixate gaze on the center of the circle. In
contrast to the traditional matrix speller, in which characters were
always presented at the same position (which subjects can memo-
rize), in this paradigm, the subjects needed to search for the target
character, which limits the speed at which the characters can be
presented. In other words, the only change relative to the conven-
tional matrix speller was the visual presentation of the 6 � 6 ma-
trix. This study in eight healthy subjects reported an average
accuracy greater than 90% (2.6% chance) at a rate of about one char-
acter per minute. In summary, this study combined high spelling
accuracy with gaze independence. With additional verification in
people with paralysis and limited gaze, this approach may lead to
an accurate spelling solution for this population. In conclusion, this
study further encourages exploration of the value of this and similar
BCI approaches to people with severe neuromuscular disorders.
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