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Abstract

Objective. Electrocorticographic (ECoG) signals contain noise that is common to all channels
and noise that is specific to individual channels. Most published ECoG studies use common
average reference (CAR) spatial filters to remove common noise, but CAR filters may
introduce channel-specific noise into other channels. To address this concern, scientists often
remove artifactual channels prior to data analysis. However, removing these channels
depends on expert-based labeling and may also discard useful data. Thus, the effects of
spatial filtering and artifacts on ECoG signals have been largely unknown. This study aims
to quantify these effects and thereby address this gap in knowledge. Approach. In this study,
we address these issues by exploring the effects of application of two types of unsupervised
spatial filters and three methods of detecting signal artifacts using a large ECoG data set (20
subjects, four task conditions in each subject). Main results. Our results confirm that spatial
filtering improves performance, i.e., it reduces ECoG signal variance that is not related to the
task. They also show that removing artifactual channels automatically (using quantitatively
defined rejection criteria) or manually (using expert opinion) does not increase the total
amount of task-related information, but does avoid potential contamination from one or more
noisy channels. Finally, applying a novel ‘median average reference’ filter does not
require the elimination of artifactual channels prior to spatial filtering and still mitigates the
influence of channels with channel-specific noise. Thus, it allows the investigator to

retain more potentially useful task-related data. Significance. In summary, our results

show that appropriately designed spatial filters that account for both common noise

and channel-specific noise greatly improve the quality of ECoG signal analyses, and

that artifacts in only a single channel can result in profound and undesired effects on all
other channels.

Keywords: electrocorticography, spatial filtering, common average reference, signal artifact
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artifacts

1. Introduction

In recent years, there has been increased interest in electro-
corticographic (ECoG) signals, which are recorded directly
from the surface of the brain. ECoG signals are attractive for

* Authors contributed equally to this work.
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research because they have a much higher signal-to-noise
ratio (SNR) than noninvasive recording methods such as
scalp-recorded electroencephalography. However, even
ECoG signals are susceptible to noise. This noise can con-
veniently be divided into two different types: (1) noise that is
common to all channels (e.g., noise introduced by the signal
reference), and (2) noise that is unique to a particular channel

© 2015 I0OP Publishing Ltd  Printed in the UK
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Figure 1. Using a common average reference (CAR) filter improves the relationship between ECoG signals and a motor task. Blue/small
black circles indicate which electrode locations did/did not hold signals that were significantly modulated by a motor task, respectively. The
activation indices (i.e., negative logarithm of p-values associated with the correlation between the ECoG broadband gamma signals and the
task) are color-coded and rendered on the cortical surface (see methods for details on signal processing and visualization/rendering). (A):
results that were derived without any spatial filtering. Black traces show representative unfiltered signals from channels with low-frequency
noise components. The gray trace shows the average of the black traces, i.e., an estimate of the underlying common noise. The star in the
topography indicates the reference electrode used at time of data acquisition (same in (B)). (B): results that were derived when using a

common average reference (CAR) filter (i.e., the gray common average trace was subtracted from each signal). In (B), more locations are

statistically modulated by the task compared to (A).

(e.g., noise introduced by a broken wire). Our ability to
extract task-related information from ECoG data sets is
affected by both sources of noise.

Common noise (source 1) is usually either ignored
(Pistohl et al 2008, Anderson et al 2012, Flamary and
Rakotomamonjy 2012, Flint et al 2012, Liang and Bou-
grain 2012) or addressed by re-referencing to a common
signal average, a procedure most often referred to as spatial
filtering in the ECoG literature (Schalk et al 2007, Brunner
et al 2009, Ganguly et al 2009, Gunduz et al 2009, 2012,
Kubanek et al 2009, Acharya et al 2010, Chao et al 2010, Pei
et al 2011, Wang et al 2011, 2012, Miller et al 2012, Potes
et al 2012). These spatial filters are typically referred to as
common average reference (CAR) filters. While systematic
studies that investigated the effect of signal contamination on
ECoG signals have been scarce (Ball et al 2009), it is widely
believed that spatial filters improve the SNR in ECoG signals,

and hence allow investigators to make more specific state-
ments about the relationship of these ECoG signals with
relevant task parameters (see figure 1 for an example).
Channel-specific noise (source 2) is often addressed by
simply removing noisy channels from analyses. In this con-
text, it is important to recognize that there is a balance
between the detrimental effect of artifacts and the beneficial
effect of task-related information contained within a given
channel—this balance and the nature of the research question
at hand will determine the extent to which removing artifac-
tual channels will be beneficial overall. In addition, identifi-
cation of such noisy channels is inherently subjective and
depends on the availability of an expert. However, appro-
priate identification of these noisy channels is critical, as their
inclusion may not only lower the SNR ratio of the analyses
but also inject spurious task-related effects (i.e., a signal
artifact) into a large number of channels (figure 2). This effect
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Figure 2. A single noisy channel can introduce spurious task-related signals into an entire data set. In this example, one channel contains very
few samples that are very large outliers (see traces in figure 8(B)). These outliers create a spurious task-related correlation. (A): when no

spatial filter is applied, ECoG signals in several locations show correlations with a passive listening task. These locations (in posterior parts of
the superior temporal gyrus) are consistent with expectations based on prior research. (Dots/colors and reference electrode are shown as in
figure 1.) (B): using a CAR filter that includes the noisy channel can introduce the channel-specific noise (e.g., the few outlier samples in this
example) into all other channels, and thus lead to spurious activations in many locations across wide areas of the brain that are not believed to
participate in processing auditory stimuli. (C): by using a CAR filter that excludes the noisy channel, one can avoid the problem in figure 2(B)
and identify additional locations with task-related information. See methods for details on the task, and signal processing and rendering

procedures.

has serious and undesired consequences for scientific inter-
pretation, but has not received formal attention in the ECoG
literature. Efforts to address signal contamination with more
sophisticated techniques such as adaptive or supervised spa-
tial filters have yielded promising results in certain contexts
(Marathe and Taylor 2013), but these approaches are often
impractical as they require previous knowledge about task
parameters or come with their own limitations when inter-
preting neuroscientific results (Haufe er al 2014). Accord-
ingly, unsupervised, non-adaptive spatial filters are often
preferable despite their relatively unknown efficacy.

In this study, we evaluated the effects of two types of
unsupervised spatial filters and three methods to identify
noisy channels on a large ECoG data set (20 subjects, four
tasks). The results show that the addition of a spatial filter
greatly improves results. Specifically, the results for both a
mean and a novel median CAR filter significantly outperform
the results when no spatial filter is applied (63.4% and 84.4%
average improvement over no spatial filter, respectively). We
show that removing channel-specific noise automatically by
using reasonable, quantitatively defined rejection criteria, or
manually by using expert opinion, does not overall increase
the total amount of task-related information. More impor-
tantly, we show that excluding channels in these ways can
avoid potential task-related contamination from one or a few
particularly noisy channels. Finally, we find that a median
average reference filter can be applied to all channels
(including those with channel-specific noise) and will miti-
gate the influence of those noisy channels while also allowing
the investigator to retain the potentially task-related signals
contained in those channels.

2. Methods

2.1. Subjects

Subjects included in this study were twenty patients with
intractable epilepsy who underwent temporary placement of

subdural electrode arrays to localize seizure foci prior to
surgical resection. Table 1 summarizes the subjects’ clinical
profiles. All gave informed consent for this study, which was
approved by the Institutional Review Board of Albany
Medical College. Electrode grids consisted of platinum-iri-
dium electrodes that were 4mm in diameter (2.3 mm
exposed), embedded in silicone, and spaced with an inter-
electrode distance of 1 cm. Grid placement and duration of
ECoG monitoring were based solely on the requirements of
the clinical evaluation, without any consideration of this
study. Following placement of the subdural grid, each subject
had postoperative anterior-posterior and lateral radiographs,
as well as computerized tomography (CT) imaging, to iden-
tify grid locations. Figure 3 shows locations of recorded
electrodes (shown as small black dots) from all 20 subjects,
projected onto the standard Montreal Neurological Institute
(MNI) brain model and separately for right and left
hemisphere.

2.2. Experimental paradigm

Each subject performed alternating sequences of repetitive
movements of the hand (manipulating a Rubik’s cube) or
orofacial muscles (protruding and retracting the tongue or
lips), passive listening (short stories presented with computer
speakers), and periods of rest. See figure 4 for a diagram of
this experiment. Each subject was visually cued by the words
‘solve Rubik’s cube’, ‘stick out tongue’, ‘kiss’, ‘listen care-
fully’, or ‘stop and relax’. Each task was performed for 15 s
(17-36 s for passive listening, depending on which narrative
was presented). The motor tasks were performed at a self-
paced rate of about two repetitions per second. Each task was
followed by a resting period of 15s before the next task
proceeded. One run consisted of 5 repetitions of this sequence
over the course of 10.22 min (4.75 rest, 1.25 hand moving,
1.25 tongue moving, 1.25 lips moving, and 1.72 min passive
listening). We typically recorded one initial run to familiarize
the subject with the task. All analyses in this article are for
one run following the initial training run.
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Table 1. Clinical profiles of the 20 subjects. All subjects had normal cognitive capacity and were literate and functionally independent.
Language lateralization (LL) was based on the Wada test. ‘# of elec.’ refers to the number of electrode contacts on each implanted grid or

strip.

Subject Age Sex Handedness LL Seizure focus Grid/Strip location # of elec.
A 36 F R L Right temporal  Right frontal 40
Right temporal 24
B 24 M R L Right temporal  Right frontal 64
Right temporal 33
C 29 F R L Left temporal Left fronto-parietal 64
Left temporal 23
Left temporal pole 3
Left occipital 6
D 30 M R L Left temporal Left frontal 40
Left temporal 35
Left temporal pole 4
Left occipital 4
E 29 F R L Left temporal Left frontal 56
Left temporal 35
Left temporal pole 4
Left orbital pole 6
F 18 M R Bilateral = Left frontal Left frontal 78
Left frontal pole 6
G 26 F R L Left temporal Left frontal 64
Left temporal 35
Left temporal pole 4
Left occipital 6
H 56 M R L Left temporal Left frontal 56
Left temporal 35
Left occipital 6
1 24 M R L Left frontal Left frontal 64
Left frontal pole 12
J 23 R L Right temporal  Right frontal 64
Right temporal 35
Right frontal pole 6
Right occipital 6
K 25 M R L Right frontal Right frontal 64
Right parietal 28
Right temporal 8
Right orbital 4
L 45 M R L Left temporal Left fronto-temporal 54
Left temporal pole 4
M 49 F L NA Left temporal Left frontal 41
Left temporal 24
Left temporal pole 4
Left superior temporal 6
N 52 M L L Left parietal Left fronto-parietal 64
(0] 29 F R Bilateral  Left temporal Left frontal 40
Left temporal 68
Left temporal pole 4
Left orbital pole 4
Left occipital 4
P 45 F L L Left temporal Left frontal 31
Left temporal 27
Q 60 M R NA Left temporal Left temporal 17
Left parieto-occipital 42
R 14 F R NA Right frontal Right frontal 49
Right superior temporal 6
S 28 M R L Left temporal Left frontal 52
Left temporal 66
Left parietal 16
T 25 F R L Left temporal Left frontal 16
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Table 1. (Continued.)

Subject Age Sex Handedness LL

Seizure focus

Grid/Strip location # of elec.

Left temporal 66

Figure 3. Locations of recorded electrodes from all 20 subjects, projected onto the standard MNI brain model. (A): electrodes from the 15
subjects with electrodes on the left hemisphere. (B): electrodes from the five subjects with electrodes on the right hemisphere.

15sec 15sec 15 sec 15 sec

15 sec 15 sec 17-36 sec

I 5 repetitions (10.22 min total) |

Figure 4. Experimental setup. Subjects followed instructions displayed on computer monitors in front of them. They alternated between task
and rest (baseline) conditions while ECoG signals were simultaneously recorded. Each of the four task conditions was repeated five times, for

a total task run time of 10.2 min.

2.3. Data collection

We acquired ECoG signals from 58-134 electrodes using g.
USBamp or g.Hlamp biosignal acquisition devices (g.tec,
Graz, Austria). These devices employed anti-aliasing filters,
used sample-and-hold to deliver synchronous (no-phase-
delay) readouts, and provided data at a rate of 1 200 Hz. Data
acquisition, storage and stimulus presentation were accom-
plished using the BCI2000 software package (Schalk
et al 2004, Mellinger et al 2007, Schalk and Mellinger 2010).

2.4. Cortical mapping

We used Curry software (Neuroscan, El Paso, TX) to create
subject-specific three-dimensional (3D) cortical brain models
from high-resolution pre-operative magnetic resonance ima-
ging (MRI) scans. We co-registered the MRIs with post-
operative CT images and extracted, for each grid electrode,
the stereotactic coordinates and functional area according to
the Talairach atlas (Lancaster et al 2000). We used the 3D
cortical template provided by the MNI to display aggregate

electrode locations from multiple subjects onto a common
coordinate space. Finally, we projected electrodes onto sub-
ject-specific brain models to render activation maps using our
NeuralAct software package (Kubanek and Schalk 2014).
Briefly, to compute activation maps, the activation index
value for each electrode location was spatially convolved with
a linear decay spatial kernel whose value reached zero at the
interelectrode distance (10 mm in this study). Thus, maps are
the result of linear interpolations at locations between the
electrodes.

2.5. Spatial filter design

One goal of our study was to compare different spatial fil-
tering methods with regard to their ability to remove spatial
noise. To do this, we used the following signal pre-processing
and feature extraction methods: first, we removed all fre-
quencies below 5 Hz from the ECoG signals with a high-pass
filter. Then, we implemented three spatial filter conditions (no
CAR, mean CAR, and median CAR) and three channel
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exclusion conditions (no channel exclusion, automatic (based
on criteria described below) or manual (based on expert
opinion)), for a total of seven different spatial filter conditions
(see section 3.1 for more details on spatial filter conditions).
To implement mean CAR filters, we obtained the CAR-fil-

. . 1 H
tered signal s, at channel £ using s, = s;, — - z | Sq Sn Was
q:

the original signal sample at a particular time. For mean CAR
filters that included all channels, H was the total number of
channels in that subject. For mean CAR filters that excluded
channels, H was the number of channels remaining after
removing noisy channels. We implemented median CAR
filters similarly, by obtaining the filtered signal s;, at channel &
using s, minus the median value of all signal samples (instead
of the mean). Next, ECoG signals from each channel were
band-pass filtered in the broadband gamma frequency band
(70-170 Hz), because activity in this frequency band has been
shown in many previous ECoG studies to be an accurate
measure of task-related activity (Miller et al 2007, Schalk
et al 2007, Sinai et al 2009, Pei et al 2011, Pasley et al 2012).
We then estimated broadband gamma power by extracting the
amplitude envelope of activity in the broadband gamma band
using the Hilbert transform, low-pass filtered (moving aver-
age with a 150 ms window width), and downsampled to
10Hz before submitting the resulting broadband gamma
power estimates to subsequent analyses.

2.6. Channel exclusion methods

We identified noisy channels (to be excluded from spatial
filters) based on either expert opinion (manual selection) or
one of three quantitative rejection criteria (automatic selec-
tion). These rejection criteria identified channels with abnor-
mal amplitude distributions, excessive line noise, or outlier
data points. To identify channels with abnormal amplitude
distributions, we log-transformed the root mean square of the
raw voltage values (RMSV5s) for all channels and normalized
them by calculating z-scores. We then calculated p-values
using a Gaussian distribution that was fitted to the data and
excluded a channel if its mean amplitude was statistically
significantly different from the mean amplitude of all other
channels (p < 0.05). To identify channels with excessive line
noise, we calculated a SNR by dividing the power (calculated
using the fast Fourier transform) at each channel’s line noise
frequency (60 Hz) by the median amount of line noise (i.e.,
60 Hz power) across all channels in that subject. We again fit
a Gaussian to this distribution of SNR values, obtained p-
values from this Gaussian, and excluded channels with sta-
tistically significant deviations from the average amount of
noise across all channels (p < 0.01). To identify channels with
outliers, for each channel’s raw signals, we defined outlier
thresholds of greater than ten standard deviations below or
above the raw signal values’ 2nd and 98th percentiles,
respectively. We then excluded channels that contained at
least one data point that exceeded either of these thresholds.
Figure 5 shows some time courses, spectra, and amplitude
distributions from a typical ECoG signal channel
(figure 5(A)) and from channels with significant deviations in

signal amplitude and line noise (figure 5(B)), or outliers
(figure 5(C)).

2.7. Detection of task-related cortical locations

To determine the cortical locations that were related to each of
the four tasks (movement of the hand, tongue, lips, and
passive listening), we first calculated, separately for each task
and location, the pairwise Spearman’s correlation coefficient
(Spearman’s rho, hereafter referred to as ‘r’) between task
labels (i.e., task and rest) and broadband gamma power. We
then created a surrogate data set by destroying the temporal
relationship between broadband gamma power values and
task labels before recalculating the correlation. We did this by
randomly shuffling the task labels for each sample (i.e.
sample-by-sample randomization). Similar to (Schalk
et al 2007), we repeated this operation 250 times and obtained
a Gaussian distribution of correlation coefficients. We then
compared the one true correlation coefficient to the Gaussian
surrogate to derive a significance level (p-value). For loca-
tions with significant correlation coefficients (i.e., p < 0.001
after Bonferroni correction), we projected the negative loga-
rithm of the corresponding p-values (i.e., —log10(p)) onto the
corresponding individual brain model. The negative logarithm
of the p-value has been used in many previous studies (e.g.,
Schalk et al 2007, Kubanek et al 2009, Gunduz et al 2011) as
an ‘activation index’ to visualize results from similar corre-
lation analyses.

2.8. Performance metric (PM)

To quantify the performance of each spatial filter condition,
we derived a PM by summing the values of squared corre-
lation coefficients (Spearman’s r*s) from all locations with
statistically significant correlation with a task (i.e., p < 0.001
after Bonferroni correction). Thus, the PM defined here
reflects both the number of electrodes that our analyses could
identify as task-related, as well as the degree of the rela-
tionship with the task. Finally, to evaluate the performance in
each of our spatial filter conditions, we averaged performance
values across all four task conditions.

3. Results

3.1. Quantitative results

The main results of our study are shown in figure 6, which
shows a comparison of the performance of each of the seven
different spatial filter conditions (i.e., no spatial filter, a mean
and a median CAR filter with all channels included, a mean
and a median CAR filter with noisy channels removed auto-
matically, and a mean and a median CAR filter with noisy
channels removed manually). The results demonstrate that
using a spatial filter greatly improves results over not using
any spatial filter: both mean and median CAR filters sig-
nificantly outperformed the no spatial filter condition (63.4%
and 84.4% average improvement over no spatial filter,
respectively). For both mean and median CAR filters,
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Figure 5. Different sources of signal noise. Left column: raw ECoG signal time course for three different channels. Middle and right columns:
spectra and amplitude distributions of the channel shown on the left (blue traces/histograms, respectively) and of the average across all
channels in that subject (red traces/histograms, respectively). (A): typical ECoG signal channel. (B): channel with a significant amount of line
noise and an abnormal amplitude distribution. (C): channel with outliers.
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Figure 6. Comparison of the performance of different spatial filters.

p < 0.05%; p < 0.01%%; p < 0.001%**,

automatic and manual exclusion of noisy channels achieved
similar results.

3.2. Qualitative results

Figure 6 shows quantitative evidence that spatial filtering has
a strong effect on the detection of task-related ECoG activity.
Figure 7 provides qualitative examples that highlight this
effect. This figure also illustrates an example of how the
exclusion of noisy channels from the common average can in
some cases profoundly affect the results.

3.2.1. Excluding noisy channels does not increase the total
amount of task-related information. In this paper, we
evaluated two methods for removing these channels:
automatic removal according to quantitative rejection
criteria, and manual removal by subjective expert opinion.
The results for both methods are similar to when no channel
was removed (figure 6). At the same time, figure 7 shows an
exemplary topography from one subject who performed the
lip protrusion/retraction task. Although we would expect to
see task-related activations in oral motor areas, without
applying a spatial filter (figure 7(A)) or removing noisy
channels from this filter (figure 7(B)), such activations are not
readily apparent. In contrast, when noisy channels are
removed using automated/manual selection (figures 7(C),
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Figure 7. Excluding channels manually (based on the judgment of a human expert) yields results similar to those generated by automatic,
computerized techniques (reference electrode and dots/colors are shown as in figure 1, derived from the same motor task). (A): using no
spatial filter does not highlight task-related activations in oral motor (i.e., inferior posterior frontal) cortex. (B): application of a CAR filter
results in somewhat higher activation indices. (C)/(D): excluding channels using computerized algorithms/expert opinion, respectively,
reveals the expected activations throughout oral motor cortex.

Activation Index

Figure 8. A median average reference filter is robust to outliers (dots/colors are shown as in figure 1, derived from a passive listening task;
reference used at time of data acquisition is the same as depicted in figure 2(A)). Star shows reference electrode used at time of data
acquisition. Black traces show representative signal recordings for (A)—(C), respectively. Red traces show signals recorded from the channel
responsible for the effect seen in (B). (A): no spatial filtering yields physiologically plausible results with small activation indices and does
not contaminate other channels with noise from the red artifactual channel. (B): using the spatial signal mean to build a CAR filter leaves the
filter susceptible to signal artifacts unique to individual channels. In this case, the outliers from the red trace were introduced into all other
channels by the filter, yielding seemingly task-related but (almost certainly) erroneous results (note that this is the same analysis result
depicted in figure 2(B)). (C): the same analysis, using a median CAR filter. Note that these results, which include all channels, are
qualitatively similar to the results shown in figure 2(C), in which a mean CAR filter is used after removing noisy channels.
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(D), respectively), task-related activations in oral motor areas
are apparent.

3.2.2. Applying a median average reference mitigates the
effect of noisy channels. Defining noisy channels depends
on the availability of an expert, is time consuming, and is
subjective. In addition, since data are often scarce, exclusion
of noisy channels may also discard potentially meaningful
physiological information contained in those channels. Thus,
there are several reasons why scientists may want to retain all
or as many channels as possible. Our results show that using a
median average reference filter instead of a mean average
reference filter can mitigate the influence of channels with too
much channel-specific noise (figure 8) while still avoiding the
problem of discarding potentially useful data. Importantly,
this novel spatial filter design introduced here performs
equally to the more traditionally used mean CAR filter, but
also allows the investigator to retain additional task-related
information while simultaneously preventing one or a few
noisy channels from injecting spurious signal phenomena into
other channels.

4. Discussion

In this study, we explored the effects of two types of unsu-
pervised spatial filters and three methods of addressing noisy
channels on task-related analyses that were performed on a
large ECoG data set (20 subjects, four task conditions). These
results confirm and quantify the important effects of spatial
filter application. For example, using a mean CAR filter will
reduce common spatial noise. At the same time, in rare cases,
a mean CAR filter can also spread artifacts from some
channels into other channels. Distinguishing these two effects
is difficult if not impossible, since both increase the rela-
tionship with the task and/or the number of locations that
show such relationships. However, the results shown in
figure 6 suggest that mean CAR filtering including all chan-
nels tends to perform worse than mean CAR filtering
excluding noisy channels, and that median CAR filtering may
perform better than mean CAR filtering. Thus, we conclude
that spreading apparently task-related artifacts across channels
can substantially affect the results, but almost certainly occurs
only rarely.

Our results highlight the importance of systematic
approaches to identifying those channels that should be
excluded from spatial filters. They also demonstrate that,
should investigators wish to include all channels in their
analyses, using a median average reference filter can mitigate
the influence of channels with too much channel-specific
noise without discarding valuable task-related data. Never-
theless, although using a median average filter avoids many of
the potential problems of the more traditional CAR filter, it
does not remove the important need to visually inspect indi-
vidual channels.

In contrast to most other studies, we studied not only the
effect that common noise has on data analyses but also the

effect that channel-specific noise can have on data analyses.
Results can be worse when noisy channels are included in the
most frequently used spatial filter, a mean CAR (Schalk
et al 2007, Brunner et al 2009, Ganguly et al 2009, Gunduz
et al 2009, Kubanek et al 2009, Acharya et al 2010, Chao
et al 2010, Pei et al 2011, Wang et al 2011, 2012, Gunduz
et al 2012, Hermes et al 2012, Miller et al 2012, Potes
et al 2012). Howeyver, it is clear that the balance between the
detrimental effect of artifacts and the beneficial effect of task-
related information contained within a given channel will
determine whether including or excluding it from a spatial
filter will improve or degrade results in subsequent analyses.
Unfortunately, there is no simple answer to this quandary; as
the results shown in figure 6 illustrate, excluding noisy
channels does not overall improve the total amount of task-
related information. However, in some cases, such as when
highly artifactual data points occur during only small portions
of the signal (see figures 2 and 8 for an example), removing
channels can clearly be beneficial. In light of this, a critical
takeaway from our study is that otherwise clean channels with
significant signal artifact or data point outliers can pollute
entire data sets under certain conditions. These channels must
be dealt with, either by removing them entirely, by removing
just outlier data points, or by using alternative spatial filters
that are intrinsically robust to outliers (such as the median
CAR filter introduced here).

While the results of our study were derived from a large
ECoG data set, the extent to which they may generalize to
other data acquisition equipment, other types of tasks, or other
types of analysis procedures, is currently unclear. Thus, fur-
ther work will be needed to verify that the results from our
study still apply to other scenarios.

In summary, the results shown in this paper demonstrate
that both common noise and channel-specific noise degrade
the quality of ECoG signals and can impede the extraction of
task-related information from these signals if not properly
addressed. Removing noisy channels from certain spatial fil-
ters (e.g., a mean CAR filter) or incorporating them into
spatial filters that are robust to outliers (e.g., a median
CAR filter) are both efficient means with which an investi-
gator can address the problem of noise in ECoG signals.
Future work should investigate the degree to which these
findings generalize to other types of data sets and analysis
approaches.
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