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Brain–computer interface (BCI) systems frequently use signal processing methods, such as spatial filtering, to
enhance performance. The surface Laplacian can reduce spatial noise and aid in identification of sources. In BCI
research, these two functions of the surface Laplacian correspond to prediction accuracy and signal orthogonality.
In the present study, an off-line analysis of data from a sensorimotor rhythm-based BCI task dissociated these
functions of the surface Laplacian by comparing nearest-neighbor and next-nearest neighbor Laplacian algorithms.
The nearest-neighbor Laplacian produced signals that were more orthogonal while the next-nearest Laplacian
produced signals that resulted in better accuracy. Both prediction and signal identification are important for BCI
research. Better prediction of user's intent produces increased speed and accuracy of communication and control.
Signal identification is important for ruling out the possibility of control by artifacts. Identifying the nature of the
control signal is relevant both to understanding exactly what is being studied and in terms of usability for individ-
uals with limited motor control.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Scalp-recorded EEG activity can be the basis for non-muscular
communication and control systems, commonly called brain–computer
interfaces (BCIs) (Birbaumer et al., 1999; Farwell and Donchin, 1988;
Pfurtscheller et al., 1993; Wolpaw et al., 1991). EEG-based communica-
tion systems measure specific features of EEG activity and use the
results as control signals. In some systems, these features are time-
domain potentials evoked by stereotyped stimuli (e.g., Farwell and
Donchin, 1988). Other systems use EEG components in the frequency
domain that are spontaneous in the sense that they are not dependent
on specific sensory events (e.g., McFarland et al., 2010; Wolpaw and
McFarland, 1994, 2004).

One popular approach to BCI research uses sensorimotor rhythms
(SMR) in mu (8–13 Hz) and/or beta (18–27 Hz) frequency bands over
sensorimotor cortex as control signals. SMRs are focused over central
scalp regions and are reactive to movement and movement imagery
(Pfurtscheller and McFarland, 2012). Learned voluntary control of the
SMR was shown to be possible by Kuhlman (1978) and later used as a
BCI control signal by Wolpaw et al. (1991). Subsequently SMR-based
BCI devices were evaluated as possible methods for communication
(e.g., Muller and Blankertz, 2006) and control (e.g., Leeb et al., 2007).
More recently, there has been interest in using SMR-based methods
for rehabilitation following impairment of motor function by stroke
(e.g., Ramos-Murguialday et al., 2013).
e advantages of the surface L
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SMR rhythms are not always apparent in “monopolar” surface
recordings, in part due to volume conduction of activity from cortical
regions associated with other functions. For example, visual alpha
rhythms from posterior regions may be volume conducted to the central
electrodeswhere SMRs are typically recorded (Andrew and Pfurtscheller,
1997). In addition, there are distinct effects associated with movements
of specific body parts, such as the hands or feet.Movement or imagery in-
volving the hand often produces desynchronization over areas associated
with that hand and simultaneous synchronization over foot areas
(Pfurtscheller et al., 1997). Thus, there may be several SMRs associated
with movement or imagery of different body parts. Signal processing
methods to separate themultiplicity of signals present at any single elec-
trode can enhance SMR detection.

With the Wadsworth sensorimotor rhythm-based BCI system, par-
ticipants learn over a series of training sessions to use SMR amplitudes
tomove a cursor on a video screen in one ormore dimensions (Wolpaw
andMcFarland, 1994, 2004; McFarland et al., 2010).We use the surface
Laplacian as a spatial filter to improve the signal-to-noise ratio of the
signal and aid identification of the source(s) (McFarland et al., 1997b).
Other BCI researchers also use the surface Laplacian. In a review of
signal processing methods used by 96 BCI studies, Bashashati et al.
(2007) report that for spatial filtering, 32% used the surface Laplacian,
22% used principal component or independent component analysis,
14% used common spatial patterns, and 11% used common average
reference. BCI studies generally compute the surface Laplacian with
the finite difference approximation of the second derivative (Hjorth,
1975).
aplacian in brain–computer interface research, Int. J. Psychophysiol.
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The surface Laplacian can serve at least two functions in BCI
research; it serves as a spatial filter that provides a means of reducing
spatial noise (McFarland et al., 1997b), and it helps constrain potential
sources of the signal (Tenke and Kayser, 2012). The surface Laplacian
has spatial band-bass characteristics that depend upon factors such as
the spacing of the electrodes and any spatial smoothing of the particular
implementation of the Laplacian being considered. Signals such as
sensorimotor rhythms are often focused (i.e., they have a relatively
high spatial frequency) relative to artifacts such as eyeblinks and EKG.
In addition, since the surface Laplacian emphasizes local sources, it
will minimize signals volume conducted from distant sources. The role
of the surface Laplacian as a spatial filter can be evaluated by whether
it enhances prediction of the BCI user's intent. The surface Laplacian
also improves spatial resolution (Law et al., 1993) and thus can aid
source identification. The role of the surface Laplacian in source con-
straint can be evaluated in part by the extent to which it produces sig-
nals that are uncorrelated. Both the effects of the surface Laplacian as
a spatial filter and in constraining sources are potentially influenced
by the spacing of the electrodes that are used in computing the surface
Laplacian.

McFarland et al. (1997b) showed that BCI target prediction
based on the SMR was better with the use of next-nearest neigh-
bor electrodes as compared to nearest neighbor electrodes using
a 64 channel montage (Sharbrough et al., 1991). This effect is
probably due to the fact that the Laplacian computed with next-
nearest neighbors has lower spatial frequency band-pass charac-
teristics than that computed with nearest-neighbor electrodes
(McFarland et al., 1997b). Tenke and Kayser (2012) have
discussed the role of electrode spacing on the performance of
the Laplacian for constraining sources. For this issue the effects
of spacing are complex, depending upon the nature of the source.
While most BCI studies emphasize prediction, source identifica-
tion is also important to the extent that it is necessary to eliminate
the possibility that BCI control is due to artifacts (McFarland et al.,
2005).

The present study evaluated the impact of electrode spacing on the
role of the surface Laplacian in prediction and source constraint. Predic-
tion of target location and the correlation between adjacent electrodes
were evaluated by an offline analysis of data collected while BCI partic-
ipants were learning a cursor movement task based on sensorimotor
rhythms. The aim of this analysis is to show that the spatial filtering
and source constraining roles of the surface Laplacian are affected differ-
ently by electrode distance.
2. Methods

2.1. Participants

The participants were 14 adult volunteers (7 males and 7 females,
aged 27–56) who worked at the Empire State plaza in Albany, NY and
responded to announcements for paid volunteers. Twelve of the 14
were right-handed. All gave informed consent for the study, which
had been reviewed and approved by the New York State Department
of Health Institutional Review Board.
2.2. BCI protocol

After an initial evaluation defined the frequencies and scalp locations
of each person's spontaneous sensorimotor rhythm activity, he or she
learned EEG-based cursor control over 10 sessions (2–3 sessions/week).
The standard online protocol, described in previous publications
(McFarland et al., 2005), is summarizedhere. All aspects of data collection
and experimental design were controlled by the BCI2000 general pur-
pose software platform (Schalk et al., 2004).
Please cite this article as: McFarland, D.J., The advantages of the surface
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2.3. Initial session

All participantsfirst participated in an initial session involvingmove-
ment and movement imagery of the right and left hands to identify the
SMR features to be used for on-line control (see McFarland et al., 2000).
The user sat in a reclining chair facing a 51-cm video screen 3 m away,
and was asked to remain motionless during performance. Scalp elec-
trodes recorded 64 channels of EEG (Sharbrough et al., 1991), each refer-
enced to an electrode on the right ear (a relatively quiet site, distant to
the left central scalp, as the majority of subjects used C3 or CP3) with
an amplification of 20,000, bandpass of 0.1–60 Hz and 160 Hz sampling
rate. Data collection lasted 17 min, and was divided into six 2-min runs
separated by 1-min breaks. Each run consisted of fifteen 4-s trials sepa-
rated by 4-s intertrial intervals. During the trials, a vertical bar was pres-
ent on the left or right edge of the screen. During the intertrial interval the
screen was blank. Three movement runs were interspersed with three
imagery runs. During the trials of movement runs, the subject repeatedly
opened and closed the hand ipsilateral to the target. During the trials of
the imagery runs, the subject imagined doing so. During the intertrial in-
tervals, the subject did neither and simply tried to relax.

2.4. Standard online protocol

A daily session had eight 3-min runs separated by 1-min breaks, and
each run had 20–30 trials. Each trial consisted of a 1-s period from target
appearance to the beginning of cursor movement, a 2-s period of cursor
movement, a 1.5-s post-movement reward period that provided feed-
back, and a 1-s inter-trial interval. Each participant had 2–3 sessions/
week at a rate of one every 2–3 days.

To control vertical cursor movement, one EEG channel over left sen-
sorimotor cortex (i.e., electrode locations C3 or CP3) and/or one channel
over right sensorimotor cortex (i.e., C4 or CP4) were derived from the
digitized data according to a Laplacian transform (McFarland et al.,
1997b). These channels were chosen based on analysis of the data
from the initial session that selected the maximum bivariate r2 value
when comparing imagery and rest conditions across both frequency
and electrode location. Every 50 ms, the most recent 400-ms segment
from each channel was analyzed by a 16th-order autoregressive model
using the Berg algorithm (i.e., an efficient least-squares algorithm for es-
timating autoregressive coefficients, see Marple, 1987) to determine the
amplitude (i.e., square root of power) in a 3-Hz-wide mu or beta fre-
quency band, and the amplitudes of the one or two channels were
used in a linear equation that specified a cursor movement as described
above. Thus, cursor movement occurred 20 times per second. Complete
EEG and cursor movement data were stored for later offline analyses.

2.5. Offline analysis

The basic performance of the participants across these early training
sessions was evaluated in terms of spectra and topographies of the bi-
variate correlation (r2) between target position (i.e., a dummy variable,
coded −1 and +1) and EEG features. This was done with the signal
processing parameters used for on-line training. All subsequent analy-
ses were limited to central locations in the mu and beta bands on the
side of the scalp with the peak location of r2. Following the recommen-
dations of Jensen (1971), I am using r2 to express variance predicted by
a model (as opposed to r for the relationship between two variables).
Use of Pearson's r tends to produce a skewed distribution that may be
normalized by Fishers-Z transformation, but squaring r also reduces
skew. The frequencies evaluated were 3 Hz wide bins centered at
9,12,15,18, 21 or 24 Hz. For two participants, the peak r2 was at C1, for
four participants the peak was at C3, for five participants this was at
CP3, and for three participants this was at C4 (after Sharbrough et al.,
1991). Three different spatial filtering conditions were evaluated at
the peak frequency and location of these correlations. These were the
nearest neighbor Laplacian, the next-nearest neighbor Laplacian
Laplacian in brain–computer interface research, Int. J. Psychophysiol.
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(electrodes either anterior–posterior or medial-lateral to the central
electrode), and no transformation (i.e., raw data, the surface potentials
referenced to the right ear). These spatial filtering conditions were next
evaluatedwith a multiple correlation at the peak frequency and includ-
ing 17 channels over the central area of the peak side. In addition, the
multiple correlation between the signal at the peak location and
frequency and central channels at the same frequency and side was
computed separately for each of these three spatial filtering conditions.
These 17 central channels were FC5, FC3, FC1, T7, C5, C3, C1, Cz, TP7,
CP5, CP3, CP1, CPz, P5, P3, P1 and PO3 for the left side and the corre-
sponding channels on the right for participants having a peak r2 at C4.

The local Hjorth algorithm (Hjorth, 1975) was used to estimate the
secondderivative of the scalp voltage basedon afinite-differencemethod.
This was done according to:

Vlap
i ¼ Vear

i–ΣgijV
ear

ij ð1Þ

where Veari is the voltage recorded at the ith electrode with an ear refer-
ence, Vearij is the jth neighbor of Veari (i.e., j= 1 to 4) and:

gij ¼ 1=dij=Σ1=dij ð2Þ

where dij is the distance between electrodes i and j in relative units. The
value of dij thus varied depending upon whether the nearest neighbor
or next-nearest neighbor Laplacian was computed. It should also be
noted that the value of dij (and hence, the spatial band-pass) also depends
upon the density of the electrodes in the montage (e.g., the next-nearest
neighbor distance for C3 in the Sharbrough et al. (1991) montage is the
same as the nearest-neighbor distance for C3 in the standard 10–20
montage).

The resulting data were analyzed with two-factor ANOVAs with re-
peated measures on both factors. The p values reported are the result
of the Greenhouse–Geisser correction where appropriate (i.e., there
were more than two levels of a given factor).

3. Results

An overall summary of the BCI user's control of their EEG is shown in
Fig. 1. The figure shows the average spectrum of the channel for which
participants hadmaximum control (i.e., largest values of the correlation
between target location and EEG feature) as well as the average topog-
raphy of the frequency associated with maximum control. For compar-
ison, these same data are presented for a single individual. As can be
seen in Fig. 1, the BCI user's control was localized over central scalp
areas in the mu and beta frequency bands. Comparison with the single
individual illustrates that group data are generally not as sharply
focused as that for individuals, owing to individual differences in the
spatial location and frequency of peak activities. The spatial and fre-
quency specificity of the data shown in Fig. 1 helps to rule out cursor
control based on artifacts, which generally have different spatial and
spectral characteristics than sensorimotor rhythms (McFarland et al.,
1997a).

Group average correlations between target location and the EEG
feature at the peak location and frequency in the mu and beta bands
for the three spatial filtering conditions are shown in Fig. 2A. Analysis
of variance indicated that the effect of spatial filter type (i.e., raw data,
next-nearest-neighbor and nearest neighbor Laplacians)was significant
(df = 2/25, F = 20.734, p b 0.001, epsilon = 0.632) while the effect of
frequency band and the interaction between spatial filter type and fre-
quency band were not significant. Post hoc analysis (Newman–Keuls
test) indicated that all of the spatial filter typeswere significantly differ-
ent (p b 0.05 in each case). The next-nearest Laplacian produced the
best prediction of target location, while the nearest neighbor Laplacian
was better than the raw (untransformed) data. These results are consis-
tent with the findings of McFarland et al. (1997b).
Please cite this article as: McFarland, D.J., The advantages of the surface L
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Group average multiple correlations between target location and
the EEG features at the peak frequency for all channels in the analysis
are shown in Fig. 2B. Analysis of variance indicated that both the
main effects of spatial filter type (df = 2/25, F = 20.734, p b 0.001,
epsilon= 0.632). Post-hoc tests indicated that all of the spatial filter
types were significantly different (p b 0.05 in each case). The next-
nearest Laplacian produced the best prediction of target location,
while the nearest neighbor Laplacian was better than the raw data.
The difference between the frequency bands within each spatial
filter type was not significantly different. However the largest fre-
quency band difference was in the raw data.

Group average multiple correlations between the EEG feature at the
peak frequency and location and all of the other channels at the peak
frequency as a function of spatial filter type and frequency band are
shown in Fig. 3. This metric represents the commonality between the
signal at the peak location with its neighbors. Analysis of variance indi-
cated that themain effect of spatial filter type (df = 2/25, F= 56.853,
p b 0.001, epsilon = 0.949) and the interaction between spatial filter
type and frequency band (df = 2/25, F = 3.625, p b 0.050, epsilon =
0.847) were both significant. Post-hoc tests indicated that all of the spa-
tial filter types were significantly different (p b 0.05 in each case). The
nearest Laplacian was least correlated with the other channels in the
analysis, while the next-nearest-nearest neighbor Laplacian was less
correlated than the raw data. However the effects of frequency bands
within each spatial filter type were not significantly different.

4. Discussion

The present study illustrates the two functions of the surface
Laplacian; as a spatial filter and as a means of constraining source local-
ization. As a spatial filter, the surface Laplacian can reduce spatial noise
and enhance prediction. As a means of constraining source localization,
the surface Laplacian produces signals that are less correlated with
adjacent channels. The next-nearest neighbor Laplacian was best for
prediction while the nearest neighbor Laplacian was best for reducing
the correlation between adjacent electrodes. The fact that these two
functions can be dissociated indicates that these two roles of the surface
Laplacian are somewhat independent.

The utility of signal processing algorithms in BCI research has gener-
ally been evaluated in terms of the accuracy with which they predict
target identity (Bashashati et al., 2007). Both the nearest-neighbor and
the next-nearest neighbor surface Laplacians resulted in improved pre-
diction of target membership. This is likely due in part to the fact that
these spatial filters reduce noise from low spatial frequency artifacts
such as eyeblinks and EKG (McFarland et al., 1997b). Whether surface
Laplacians are effective in attenuating EMG artifacts is uncertain.
Goncharova et al. (2003) report that surface Laplacians are not effective
in reducing EMG contamination while Fitzgibbon et al. (2011) report
that they are. One possibility is that the proximity of the EMG source
to the electrodes used to compute the Laplacian may be important.
That is, it may be the case that the Laplacian can attenuate distant
EMG sources that are volume conduced. In contrast, the Laplacian
might actually enhance local EMG sources.

Surface Laplacians also reduce the impact of signals in the same fre-
quency range as sensorimotor rhythms that are volume conducted from
remote areas. For example, visual alpha rhythms from posterior regions
may be volume conducted to central electrodeswhere SMRs are typically
recorded (AndrewandPfurtscheller, 1997). Thus, surface Laplacian trans-
formations serve as spatial filters that reduce both neural and non-neural
noise.

The next-nearest neighbor surface Laplacian produced somewhat
better prediction performance than the nearest neighbor Laplacian.
Thiswas true for both the best single channel aswell as a composite pre-
diction using all 17 central channels included in the present analysis.
This result is consistent with results reported by McFarland et al.
(1997b) who interpreted the superiority of the next-nearest neighbor
aplacian in brain–computer interface research, Int. J. Psychophysiol.
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Fig. 1. Characterizing the EEG in BCI performance. A. Electrodes used for raw (top), next-nearest neighbor (middle) and nearest neighbor (bottom) transformations for the signal derived
from channel C3. Red represents the electrode of interest and green represents the neighbors used to compute the transformation. B. Correlation (r2) of spectral features derived by each of
the three methods with BCI target location. The left panel shows data from the average of all subjects at the channel with maximum control and the right panel shows data from an in-
dividual BCI user. C. Topographies of the correlation (r2) between spectral features and target location for the three methods. Values formu represent themaximumbetween 9 and 13 Hz
and those for beta represent the maximum between 18 and 24 Hz. The left panel shows data averaged from all participants at their best frequency. The right panel shows the same indi-
vidual as in B at 10 and 20 Hz.
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algorithm as being due to how closely the band-pass characteristics of
the Laplacian matched the spatial extent of the potentials of interest.
Consistent with this interpretation, Tenke et al. (1993) showed that
simulated signals are attenuated when the spacing of electrodes is
smaller than the extent of the source. McFarland et al. (1997b) simulated
characteristics of several spatial filters and showed that, with the 64
channel montage used here, the next-nearest neighbor Laplacian has
Please cite this article as: McFarland, D.J., The advantages of the surface
(2014), http://dx.doi.org/10.1016/j.ijpsycho.2014.07.009
lower spatial band-pass characteristics than the nearest-neighbor
Laplacian. The relative prediction performance of these spatial filters
would be expected to depend upon the size and distance of the source.
It should also be noted that the band-pass characteristics of the surface
Laplacian can be modified by other means. For example, Perrin et al.
(1989) varied theflexibility of spherical splines and Lu et al. (2013) adap-
tively varied the radius of a Gaussian kernel-based Laplacian. These
Laplacian in brain–computer interface research, Int. J. Psychophysiol.
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Fig. 2. Target prediction (r2) with each of the three spatial filters for mu and beta bands.
The top panel shows prediction for the best channel for each BCI user. The bottom panel
shows prediction using all channels in a multiple regression. Note that the next nearest
neighbor transformation produced the best prediction for both bands in both analyses.
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methods provide alternativemeans to adjust the spatial band-pass of the
surface Laplacian.

In contrast to the superior prediction performance of the next-
nearest neighbor Laplacian, the nearest-neighbor Laplacian had superi-
or spatial resolution, as illustrated in Fig. 3. Here spatial resolution was
indexedby themultiple correlation of the best featurewith all other fea-
tures derived from the central channels included in the present analysis.
The extent to which a given algorithm reduces the effects of volume
conduction should be reflected in the extent to which the resulting
signal is uncorrelatedwith adjacent signals. Thus, themultiple corre-
lation should be inversely related to spatial resolution. The finding
that the nearest-neighbor Laplacian produced better spatial
Fig. 3. Commonality (prediction of the channel with the greatest control by all other
channels) between the best channel for mu and beta bands and the other channels
in the analysis. Note that the nearest neighbor transformation produced the lowest
correlations for both bands.
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resolution is consistent with the simulations of Tenke et al. (1993)
who showed that more closely spaced electrodes resulted in less
spatial smearing.

As discussed earlier, BCI researchers have used other spatial filters to
enhance prediction (Bashashati et al., 2007). Some of these are data-
driven, such as independent components analysis (Naeem et al., 2006)
or common spatial patterns (Koles et al., 1990; Ramoser et al., 2000).
Naeem et al. (2006) describe a rather involved labor-intensive process
of selecting independent components for use by a classifier. Despite
this effort, subsequent classification of a four-target sensorimotor
rhythm task was not significantly different than that with a surface
Laplacian transform. Common spatial patterns (CSP) often outperform
fixed filters when compared in offline analysis with large amounts of
training data (e.g., Sannelli et al., 2011). CSP optimizes a series of spatial
filters by simultaneous diagonalization of the covariance matrices of
two classes to be discriminated. Resulting principal components are
then used as features in a classifier. Since the number of estimated
parameters of CSP filters increases with the square of the number of
channels, CSP is very sensitive to noise and prone to overfitting with a
limited number of training trials (Lotte and Guan, 2011). The surface
Laplacianhas the advantage of beingusable early in trainingprior to col-
lection of many observations. In addition, some EEG signals used for
real-time BCI applications are not stationary (i.e., they have changing
statistics over time) and benefit from on-line, real-time adaptation
(McFarland et al., 2011). Efficient adaptation may require the use of
short timewindows that donot favor complex data-driven spatialfilters
that require estimation of a large number of parameters. Recently Lu
et al. (2013) described an adaptive Laplacian algorithm that only re-
quires estimation of a single parameter to optimize the spatial band
pass.

In addition to the problem of prediction, BCI systems need to be
concernedwith identification of the sources of the signals that aremod-
ulated by participants. Source identification is important since there is
the possibility that BCI control could be the result of various artifacts
(McFarland et al., 2005). Generally BCI research has emphasized predic-
tion over identification and many papers do not deal with the issue of
artifacts (Fatourechi et al., 2007). However the source identification
problem is also important given the potential for artifacts to masquer-
ade as EEG (e.g., EMG or eyeblinks). There are at least two reasons for
BCI researchers to be concerned with artifacts. The first reason is scien-
tific. If a potential BCI user is actually controlling something other than
EEG then the interpretation of the results will be in error. Furthermore,
knowledge of the signal provides insight into how best to record and
process the signal. For example, if one wants to use EMG as a control
signal then using high density scalp recordings and spectral analysis is
very inefficient. The second reason for concern about the nature of the
signals used by BCI participants relates to potential practical applica-
tions. Much of BCI research has involved the use of healthy participants.
However, individuals who could actually benefit from this technology
would have very limited motor control and hence would probably
have difficulty generating the same kinds of artifacts that healthy volun-
teers do.

Laplacian transforms provide a well understood method that helps
constrain potential sources (Tenke and Kayser, 2012). In contrast, with
data driven methods such as CSP (Ramoser et al., 2000) or independent
components analysis (Naeem et al., 2006), each realization produces a
unique solution. As a consequence, the properties of the derived spatial
filters are novel and may have unknown spatial filter characteristics.
Consider, for example, that investigators often use several of the principal
components derived from CSP as features for a classifier (e.g., Ramoser
et al., 2000). Each of these principal components is defined by weights
for each of the channels that were used for the derivation and a separate
analysis is done for each subject. Thus, there is a considerable challenge in
determiningwhat is being used to perform this task for any given subject.
Often BCI papers do not report sufficient information to inform the reader
about this issue.
aplacian in brain–computer interface research, Int. J. Psychophysiol.

http://dx.doi.org/10.1016/j.ijpsycho.2014.07.009


6 D.J. McFarland / International Journal of Psychophysiology xxx (2014) xxx–xxx
5. Conclusion

The surface Laplacian is a theoretically based spatial filter that re-
duces spatial noise and aids in source identification. These two functions
are differentially influenced by Laplacian filter design characteristics
(e.g., electrode spacing). The Laplacian is particularly useful in BCI re-
search when large amounts of training data are not available or when
signals are not stationary.
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