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Objective: Brain-computer interface technology can restore communication and control to people who
are severely paralyzed. We have developed a non-invasive BCI based on the P300 event-related potential
that uses an 8 � 9 matrix of 72 items that flash in groups of 6. Stimulus presentation rate (i.e., flash rate)
is one of several parameters that could affect the speed and accuracy of performance. We studied perfor-
mance (i.e., accuracy and characters/min) on copy spelling as a function of flash rate.
Methods: In the first study of six BCI users, stimulus-on and stimulus-off times were equal and flash rate
was 4, 8, 16, or 32 Hz. In the second study of five BCI users, flash rate was varied by changing either the
stimulus-on or stimulus-off time.
Results: For all users, lower flash rates gave higher accuracy. The flash rate that gave the highest charac-
ters/min varied across users, ranging from 8 to 32 Hz. However, variations in stimulus-on and stimulus-
off times did not themselves significantly affect accuracy.
Providing feedback did not affect results in either study suggesting that offline analyses should readily
generalize to online performance. However there do appear to be session-specific effects that can influ-
ence the generalizability of classifier results.
Conclusions: The results show that stimulus presentation (i.e., flash) rate affects the accuracy and speed
of P300 BCI performance.
Significance: These results extend the range over which slower flash rates increase the amplitude of the
P300. Considering also presentation time, the optimal rate differs among users, and thus should be set
empirically for each user. Optimal flash rate might also vary with other parameters such as the number
of items in the matrix.
� 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
1. Introduction

Many people with severe motor disabilities require alternative
methods for communication and control. Numerous studies over
the past two decades show that scalp-recorded EEG activity can
be the basis for non-muscular communication and control systems,
commonly called brain-computer interfaces (BCIs) (e.g., Birbaumer
et al., 1999; Farwell and Donchin, 1988; Pfurtscheller et al., 1993;
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Wolpaw et al., 1991; see Wolpaw et al., 2002 and Wolpaw, 2009
for reviews). EEG-based communication systems measure specific
features of EEG activity and use them as control signals. Some
BCI systems use features that are potentials evoked by stereotyped
stimuli (Farwell and Donchin, 1988). Others use EEG components
in the frequency domain that are spontaneous in the sense that
they are not dependent on specific sensory events (e.g., Wolpaw
and McFarland, 2004).

The P300-based matrix speller, originally described by Farwell
and Donchin (1988), is a promising approach to providing communi-
cation to users with severe motor disabilities (Vaughan et al., 2006).
As noted by Farwell and Donchin, (1988), the P300 occurs when a
subject recognizes a rare target stimulus. Since the P300 signals
ed by Elsevier Ireland Ltd. All rights reserved.
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the subjects’ recognition of the target event without the requirement
for an overt response it represents a useful signal for a BCI. Although
the rate at which users communicate with P300-based BCIs is at
present slow in comparison to muscle-based assistive devices, it
does provide a useful alternative for those in whom severe paralysis
prevents use of such conventional methods. Improving the P300-
based speller so as to increase speed and accuracy would augment
its value and expand the population of potential users.

The P300 potential itself has been the focus of many psychophys-
iological studies (see Polich, 2007 for a review). The rate of stimulus
presentation is one of the parameters that has been shown to affect
the magnitude of the P300 response (e.g., Hansen and Hillyard,
1984). This effect appears to be due to the time between target stim-
uli, with longer target-to-target times producing larger P300 re-
sponses (Croft et al., 2003; Gonsalvez and Polich, 2002).

This study examined the role of the stimulus rate (i.e., the flash
rate) as a determinate of speed and accuracy for the P300 speller.
We varied the flash rate in two experiments: the first varied flash
rate and flash duration proportionately while the second varied
them independently.

2. Experiment 1 methods

The BCI users were six adults (two women and four men, ages
27–62), all with previous P300-based BCI experience. One woman
had ALS and required artificial ventilation and one man had ALS
and was ambulatory. The study was approved by the New York
State Department of Health Institutional Review Board and all
the users provided informed consent. Each participated in eight
sessions, four sessions without feedback (as to the item selected)
followed by four with feedback. Weights (see below) for the feed-
back sessions were computed from the prior no-feedback sessions
using data obtained with the same ISI (i.e., interval between each
flash onset).

EEG was recorded with a cap (Electro-Cap international, Inc.)
containing 16 scalp electrodes (F3, Fz, F4, T7, C3, Cz, C4, T8, CP3,
CP4, P3, Pz, P4, PO7, Oz, PO8 after Sharbrough et al., 1991). All
channels were referenced to the right mastoid and grounded to
the left mastoid since we have found that these work well with
ALS patients in their typical environment. The EEG was amplified
with a g.USBamp (Guger Technologies), digitized at 512 Hz, fil-
tered between 0.5 and 30 Hz, and stored. All aspects of data col-
lection and experimental design were controlled by the BCI2000
general purpose software platform (Schalk et al., 2004).

The user sat 1.4 m from an LCD monitor (20’’ diagonal) and
viewed a matrix display (see Fig. 1). The user’s task was to focus
attention on one character in the matrix (i.e., that target) and note
Fig. 1. The P300 Speller matrix. A. A group of six characters flashes. This is the on-period.
duration of the on- and offline periods in seconds is the flash rate. C. A new group of si
the number of times it flashed. The word(s) to be spelled were pre-
sented above the matrix and the current target letter was specified
at the end of the word in parenthesis and remained on until the
next selection began. One-half second after the letter to be spelled
was indicated, the letters of the matrix began to flash in groups of
six. The letters comprising each group varied with each presenta-
tion (i.e., a given letter was not always presented with the same
five other letters). Each letter flashed 10 times for each selection
with the constraint that a given letter did not flash twice in succes-
sion (see Townsend et al., (2010) for a more complete description).
In feedback sessions, the letter selected was presented for 3.5 s in
the feedback line immediately below the target word(s). This line
was blank during no-feedback sessions. Each session was com-
posed of six runs in which the users spelled 5–9 characters from
the sequence ‘‘The quick brown fox jumps over the lazy dog
17459’’. Flash rates of 4, 8, 16, and 32 Hz varied across runs within
sessions. Flash rate values were counterbalanced across the char-
acter sequences and order of the run within a session. All users re-
ceived the same order of flash rates so as not to confound
individual differences with order of presentation. The duration of
the flash was always half of the time between successive flash on-
sets. That is, when the flash rate was 4 Hz, the time between flash
onsets was 250 ms and the flash duration was 125 ms, while when
the flash rate was 32 Hz, the time between flash onsets was
31.25 ms and the flash duration was 15.625 ms.

Amplitudes and latencies of individual ERP components were
evaluated at Pz separately for each user’s target and non-target
averages. The N200 component was defined as the most negative
point between 80 and 240 ms. The P300 component was defined
as the most positive point between 230 and 450 ms. The negative
slow wave was defined as the most negative point between 400
and 800 ms.

Stepwise linear discriminant analysis, implemented in Matlab
7.0 using the Statistics toolbox STEPWISEFIT function, was used
to determine coefficients for online classification (Krusienski
et al., 2008). A subset of eight channels (Fz, Cz, P3, Pz, P4,
PO7, Oz, PO8) and averages of 25 time points, collected over
the first 800 ms post-stimulus, were used as features for classifi-
cation (the data was low-pass filtered and then decimated). The
selection of channels was based on a prior study (Krusienski
et al., 2008) that indicated that these electrodes provided classi-
fication comparable to a full set of 64 electrodes. A reduced set
is desirable since we wish to work toward a practical system
that can be used on a routine basis in patients’ homes. For each
condition and subject there were a total of 450 target flashes
and 4950 non-target flashes used to train classifiers. Additional
analyses were performed with the SAS DISCRIM function in con-
B. No characters are highlighted. This is the off-period. One divided by the combined
x characters flashes.



Fig. 2. Waveforms at Pz for the user with ALS on a respirator (left column) and the group average (right column) for each interstimulus interval. Average waveforms for
targets are represented by the solid line and average waveforms for non-targets is represented by dashed lines.
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junction with the CROSS-VALIDATE option, which classifies each
observation in the data set using a discriminant function com-
puted from all other observations in the data set, excluding
the observation being classified (i.e., leave-one-out cross-valida-
tion). The individual observations were the 200 features associ-
ated with each specific flash of six letters.
3. Experiment 1 results

ERPs at Pz for each interstimulus interval for the most severely
affected ALS user and for the group average are shown in Fig. 2.
Average amplitudes and latencies for the N200, P300 and late
negative slow wave are shown in Table 1. The interstimulus inter-
val effect was highly significant for the P300 component (df = 3/5,
F = 18.01, p < 0.0001) and the late negative slow wave (df = 3/5,
F = 16.33, p < 0.0001). Both of these components showed near-lin-
ear increases in amplitude with larger interstimulus intervals. The
effect of interstimulus interval on the N200 amplitude and all la-
tency measures were not significant.
Table 1
Amplitudes (microvolts) and latencies (milliseconds) of the N200, P300 and late negative

Interstimulus Interval (msec) N200 amplitude N200 latency P300 am

31.25 �0.524 168.5 0.454
62.5 �0.519 154.3 0.798
125 �0.722 150.7 1.249
250 �0.869 163.5 1.529
For each subject and flash rate, data sets for the no-feedback
(i.e., calibration) and feedback conditions were evaluated sepa-
rately with SAS DISCRIM using the CROSS-VALIDATE option. Accu-
racy of classification as a function of flash rate and condition is
shown in Fig. 3. An ANOVA revealed a significant effect for rate
(F(3,15) = 26.38, p < 0.0001). Neither condition (F(1,5) = 0.08,
p < 0.7922) nor the condition by rate interaction (F(3,15) = 1.18,
p < 0.3522) had a significant effect. Accuracy increased with slower
flash rates but did not depend on condition (i.e., on whether feed-
back was present).

We next analyzed the effects of flash rate on accuracy in the
feedback sessions using data from individual runs within users.
Accuracy for each user as a function of flash rate is shown in
Fig. 4. ANOVA on these data revealed significant effects for rate
(F(3,15) = 30.32, p < 0.0001), user (F(5,25) = 15.61, p < 0.0001),
and the interaction between rate and user (F(15,75) = 2.77,
p < 0.0019). Accuracy increased with slower flash rates for all six
users, but there were marked differences across users.

The number of characters/min was computed for each run as
the difference between the number correct and number wrong di-
slow waves at Pz. Values represent the averages over all users.

plitude P300 latency Slow Wave amplitude Slow Wave latency

329.3 �0.307 574.2
346.2 �0.357 524.5
309.0 �0.958 615.8
300.8 �1.275 563.3



Fig. 3. Average classification accuracy for all users as a function of flash rate for
calibration (no-feedback) (solid) and feedback (dashed) sessions.

Fig. 4. Classification accuracy as a function of flash rate for individual users. The
user with ALS who is on a respirator is represented by the solid black line, the user
with ALS who is ambulatory is represented by the dashed black line, and all other
users are represented by gray lines. Note that all users show increased accuracy
with slower rates.

Fig. 5. Characters/min as a function of flash rate for individual users. The user with
ALS who is on a respirator is represented by the solid black line, user with ALS who
is ambulatory is represented by the dashed black line. All other users are
represented by gray lines. Note that the flash rate that gives the maximum
characters/min varies across the users.
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vided by the total time in minutes. Townsend et al. (2010) showed
that if the probability of making an error is q, then the number of
trials required to make N selections given error correction which
itself is prone to error is N/(1�2q). Using their formula to deter-
mine accuracy adjusted for error correction involves taking the re-
ciprocal of this with N set to a value of 1. This reduces to 1�2q,
which is equivalent to p�q (given that p is 1�q, the probability
of a correct response). These data are shown in Fig. 5. ANOVA on
these data with rate and users as factors and interactions of the
factors in question with separate runs as error terms showed sig-
nificant effects for rate (F(3,15) = 4.24, p < 0.0234) and for the rate
by user interaction (F(15,75) = 2.66, p < 0.0028). The main effect of
users was marginally significant (F(5,25) = 2.50, p < 0.0576). The
maximum characters/min differed across users. Similar effects
were obtained in an analysis of bit-rate.

We then asked whether the effects of flash rate on the P300
waveforms were qualitative (i.e., changing the waveform) or sim-
ply quantitative (i.e., changing magnitude). To evaluate this in each
user, we compared for the test data obtained with each flash rate,
the classifications produced by the weights obtained from the
training sets obtained with the different flash rates. The results
are shown in Table 2. An analysis of variance on this data indicated
that the main effects of training set rate (df = 3/15, F = 11.23,
p < 0.0004) and test set rate (df = 3/15, F = 25.89, p < 0.0001), as
well as the training X test set rate interaction (df = 9/45,
F = 27.66, p < 0.0001), were significant. The significant interaction
reflects the fact that classification of a given test set was optimal
when the set was classified with weights obtained from the train-
ing set that had the same flash rate. Thus, it appeared that flash
rate did have a qualitative effect on the waveforms.

We used a leave-one-out cross validation procedure to assess
the effects of feedback. Thus, we felt it important to evaluate the
potential effect of this algorithm on the results. For each user, we
examined classification error rates for weights obtained with data
at the 4 Hz rate. We compared three methods: leave-one-out cross
validation; resubstitution (i.e., classification of the same data used
for generating the weights); and generalization to new data ses-
sions. We evaluated weights obtained from the no-feedback data
set and generalized to the feedback data as well as weights ob-
tained from the feedback data set and generalized to no-feedback
data. The mean results for all users are shown in Fig. 6A. Analysis
of variance indicated that only the main effect of method was sig-
nificant (df = 2/9, F = 31.56, p < 0.0001), condition (i.e., feedback or
no-feedback) did not have a significant effect. As Fig. 6A shows,
resubstitution gave the lowest error rate, cross validation was
intermediate, and generalization to new data produced the highest
error rate. Post-hoc Newman-Keuls tests indicated that the differ-
ence between resubstitution and cross validation (p < 0.05) and the
difference between cross validation and generalization (p < 0.05)
were both significant. This suggests two possible effects. The dif-
ference between resubstitution and cross validation was probably
due to overfitting for resubstitution that was not present for cross-
validation. This is in accord with the rational for using crossvalida-
tion (Mosier, 1951). The difference between cross validation and
generalization to new data may be due to sampling of data from
different sessions. That is, there may be some differences in the
statistics of the data acquired in different sessions. Most important,
this evaluation indicated that our finding that condition (i.e., feed-
back/no-feedback) did not affect classification was not simply an
artifact of our assessment method.

To evaluate the possible role of changes in data statistics across
sessions, this analysis was repeated with data sets that were con-
catenated across sessions and then reformed by random sampling
(i.e., by forming two new data sets from observations randomized
across sessions). Fig. 6B shows the results. The effects of method
were again significant (df = 2/10, F = 41.82, p < 0.0001). The differ-



Table 2
Accuracy (proportion of correct classifications) for the test (feedback condition) data for each stimulus rate as a function of the stimulus rate of the training (no-feedback
condition) data used to parameterize the classification algorithm. Training rates are associated with the rows and test rates are associated with the columns. Note that for each
test rate (columns), the highest accuracy occurs at the same training rate as that used in testing (in bold).

Stimulus Rate for Training Data (Hz) Stimulus Rate for Test Data

32 Hz 16 Hz 8 Hz 4 Hz Mean

32 0.6211 0.6469 0.6539 0.6257 0.6359
16 0.5898 0.6881 0.7224 0.7120 0.6781

8 0.5643 0.6590 0.7625 0.7698 0.6889
4 0.5320 0.6047 0.7184 0.7861 0.6603

Mean 0.5768 0.6487 0.7143 0.7234 –
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ence between resubstitution and crossvalidation was significant
(p < 0.01), but the difference between crossvalidation and general-
ization was not. Indeed, cross validation and generalization pro-
duced nearly identical results. This suggests that the significant
difference found between cross validation and generalization when
session identity was maintained was due to sampling of sessions
with different statistics.
4. Experiment 2 methods

The BCI users were four men and one woman, ages 26–55, with-
out previous BCI experience except for the man with ALS from the
first study. The study was approved by the New York State Depart-
Fig. 6. Classification rate evaluated: on the training data (resub), by leave-one-out
cross-validation (cross), and on a new data set (generalize). In A, the identity of the
separate sessions’ data sets is maintained. In B, the individual observations have
been randomized across data sets. Note that resubstitution (resub) always results in
lower classification error. Generalization to a new data set results in greater
classification error when the identity of the sessions is maintained but not when
observations are randomized, indicating that the statistics of the data vary across
sessions.
ment of Health Institutional Review Board and each user gave in-
formed consent.

The methods of Experiment 2 were the same as those of exper-
iment 1 with the following exceptions. There were five conditions
consisting of flashes with either 27 ms on and 27 ms off, 82 ms on
and 27 ms off, 191 ms on and 27 ms off, 27 ms on and 82 ms off,
and 27 ms on and 191 ms off. Thus the second and fourth condi-
tions flashed at the same overall rate (9.17 Hz) but differed in on
and off times. Likewise the third and fifth conditions flashed at
the same overall rate (4.56 Hz) but differed in terms of on and
off times.
5. Experiment 2 results

An ANOVA on accuracy during the feedback sessions indicated
that both the main effect of user (F(4,16) = 23.33, p < 0.0001) and
the time x user interaction (F(8,32) = 5.95, p < 0.0001) were signif-
icant. Rate did not have a significant effect on this measure, pre-
sumably due to a ceiling effect.

In order to avoid this ceiling effect (i.e., insensitivity of the anal-
ysis due to near perfect performance in most conditions), we used
the SAS cross-validate option to calculate the single-flash classifi-
cation accuracy (i.e., the accuracy for determining whether the
group of items in a single flash included or did not include the tar-
get). Fig. 7 shows the results. An ANOVA on these data included
three levels of time between flash onsets (54, 109, and 218 ms),
two levels of stimulus proportion condition (flash or inter-flash
interval lengthened), and two levels of feedback condition (no
feedback or feedback). Only the effects of rate were significant
(F(2,8) = 86.31, p < 0.0001).
Fig. 7. The accuracy for single-flash classification as a function of the interval
between the onset of successive flashes for calibration (no feedback) (solid) and
feedback (dashed) sessions in Experiment 2.
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6. Discussion

The present results show that the accuracy of a P300-based BCI
spelling application increases as flash rate decreases. This finding is
consistent with previous basic research on the P300 showing that
the magnitude of the response increases with longer interstimulus
intervals (ISIs) (e.g., Gonsalvez and Polich, 2002; Hansen and Hill-
yard, 1984). However, like most P300-BCI studies, the present
study employed a range of ISI values that were much faster than
those used in conventional P300 studies. For example, the Gonsal-
vez and Polich (2002) study used ISI values of 1,2 and 4 s. A previ-
ous BCI study using the P300 matrix speller evaluated a different
range of flash rates (as well as different matrix sizes) and did not
find consistent effects of flash rate on accuracy (Sellers et al.,
2006). This study is difficult to compare with the present one
due to differences in the size of the matrix and the earlier study’s
use of the row-column presentation format. Using target-to-target
interval (probably the most important parameter) for comparison,
the present study had an average target-to-target interval range of
750–5882 ms, while Sellers et al. (2006) had an average interval
range of 1052–4167 ms. Thus, the somewhat wider range evalu-
ated in the present study may help to account for its finding that
flash rate had a significant effect.

Martens et al. (2009) studied a P300 matrix speller with a con-
stant flash rate of 6 Hz. In an analysis of variation in the pattern of
targets and non-targets, they found better classification with long-
er target-to-target intervals. They suggested that two factors might
have contributed to this effect: overlap of waveforms with shorter
intervals (Woldorff, 1993); and refractory effects (Noguchi et al.,
2004).

The presence or absence of feedback did not appear to modify
P300 classification accuracy. This seems somewhat surprising since
feedback might be expected to have multiple positive effects on
performance (Salmoni et al., 1984). These include effects on learn-
ing as well as short term motivational effects. Nonetheless, in nei-
ther experiment did accuracy for sessions with feedback differ
from that in sessions without feedback. In the paradigm used here,
even when feedback is provided, there is a substantial delay be-
tween the stimuli and the feedback. Since multiple targets are pre-
sented at random intervals, the minimum delay between the last
target and feedback would be 800 ms., but even with the fastest
rate, the could be as great as 4550 ms. Smith and Smith (1987) sug-
gest that the ideal human–machine system should provide instan-
taneous feedback. Thus, the P300 matrix speller may not provide
knowledge of results soon enough to facilitate user performance.
Alternatively, the processes involved in the generation of the
P300 may not be readily influenced by feedback.

The lack of a feedback effect observed in the present study,
combined with the apparent effectiveness of cross-validation, sug-
gests that offline studies of P300 BCI data may generalize well to
online usage. One possible consideration is that there appears to
be some variation in the statistics of the data across sessions. This
variation may not be systematic given that the four calibration (i.e.,
no feedback) sessions preceded the four feedback sessions but did
not differ in accuracy. Rather this inter-session variation might be
due to slight differences in recording factors, such as the exact
positioning of the electrodes or electrode impedances. Inter-ses-
sion differences in the user (e.g., in level of alertness) might also
contribute. To the degree that these effects are simply random,
classification might be improved by using more sessions from each
user for calibration.

Slower flash rates consistently increased accuracy for all the
subjects in this study. However, there were marked individual dif-
ferences in the optimal flashrate when the number of characters
per min. was considered. Individual differences could be due to
any of several factors. For example, P300 varies with age, physical
fitness, and neuropsychological factors (Pontifex et al., 2009; Po-
lich, 2007). The present results suggest that individual differences
in the P300 might well be characterized in terms of a function that
relates accuracy to target-to-target interval. The intercept and
slope of this function might also characterize P300 association with
other individual differences. These could conceivably relate to a
more general factor, such as speed of information processing
(Sheppard and Vernon, 2008).

Bianchi et al. (2010) have suggested that, in addition to cogni-
tive potentials, early visual components are involved in the perfor-
mance of typical P300-BCI classifiers. In fact, it may be misleading
to refer to the flashing visual matrix paradigm as a P300 paradigm
since features from the entire 0–800 ms interval may be involved
in classifier performance. Whether or not it is desirable to include
early visual responses is debatable however given that patients
who could most benefit from the use of BCI technology may have
compromised eye movement control (Wolpaw et al., 2002). The re-
sults of the present study suggest that longer ISI values benefit late
components most (see Table 1). These include not only the P300
component, but also a late slow negative wave. The preferential ef-
fect of ISI on late cognitive components might explain the dramatic
improvement of our most severely impaired ALS user (see Fig. 2).

The P300-based matrix speller represents a promising approach
to providing basic communication to users with severe motor dis-
abilities (Vaughan et al., 2006). This paradigm requires some
amount of time to highlight the alternatives a sufficient number
of times to provide accurate classification. Optimization of the
parameters used online can speed this process. While considerable
attention has been devoted to comparing alternative classification
algorithms (Lotte et al., 2007), it appears that different alternatives
often produce comparable results (Krusienski et al., 2006). Custom-
izing the features used for classification (i.e., channels and time
points) may be more important for improving accuracy (Krusienski
et al., 2008). The present study shows that the stimulus rate is also
an important factor that should be adjusted for individual users.
Rate might also interact with other factors, such as the number
of items in the matrix and the number of items flashed simulta-
neously. These variables affect the target-to-target interval, which
may be a critical underlying factor for determining the strength of
the P300 response.
7. Summary

The accuracy of the P300 matrix speller increased as stimulus
rate decreased. While this was true in all subjects, the form of
the relationship, and the rate that maximized characters/min, var-
ied across individuals. The fundamental factor accounting for these
results may be the change in average target-to-target interval
caused by change in stimulus rate. The presence or absence of
feedback of the classification result for each trial did not affect
the results although there was evidence of non-stationarities be-
tween sessions.
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