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Abstract

This report describes a temporally based method for identifying repetitive firing of motor units. This approach is ideally suited
to spike trains with negative serially correlated inter-spike intervals (ISIs). It can also be applied to spike trains in which ISIs
exhibit little serial correlation if their coefficient of variation (COV) is sufficiently low. Using a novel application of the Hough
transform, this method (i.e. the modified Hough transform (MHT)) maps motor unit action potential (MUAP) firing times into
a feature space with ISI and offset (defined as the latency from an arbitrary starting time to the first MUAP in the train) as
dimensions. Each MUAP firing time corresponds to a pattern in the feature space that represents all possible MUAP trains with
a firing at that time. Trains with stable ISIs produce clusters in the feature space, whereas randomly firing trains do not. The
MHT provides a direct estimate of mean firing rate and its variability for the entire data segment, even if several individual
MUAPs are obscured by firings from other motor units. Addition of this method to a shape-based classification approach
markedly improved rejection of false positives using simulated data and identified spike trains in whole muscle electromyographic
recordings from rats. The relative independence of the MHT from the need to correctly classify individual firings permits a global
description of stable repetitive firing behavior that is complementary to shape-based approaches to MUAP classification. © 2002
Elsevier Science B.V. All rights reserved.
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1. Introduction

The pattern of discharge of motor unit action poten-
tials (MUAPs) provides insight into the firing behavior
of motorneurons. Potential information increases with
increasing numbers of MUAPs in the recorded elec-
tromyographic activity (EMG) in parallel with increas-
ing difficulty in their separation and identification.
Resolution of multi-motor unit EMG into its con-
stituent MUAPs usually is achieved by identifying times
of likely discharges (i.e. MUAP candidates) and classi-
fying the waveforms around these times on the basis of
cluster formation in an n-dimensional feature space
(Schmidt, 1984; Stashuk and Qu, 1996a; Lewicki, 1998).
This feature space usually contains shape-related prop-

erties of the MUAP, either the candidate waveform
itself or a reduced property set that captures the essen-
tial differences in shape among the different waveforms.
The latter may include simple shape-based features (e.g.
peak-to-peak amplitude, rise time), other time domain
features (e.g. principal components (Stitt et al., 1998)),
or time–frequency components (e.g. wavelet coeffi-
cients (Zouridakis and Tam, 1997; Letelier and Weber,
2000)).

Ideally, candidate MUAPs form non-overlapping
clusters in this n-dimensional space. However, moment-
to-moment variation in MUAP shape and superposi-
tion of multiple MUAPs cause clusters to overlap. As
more motor units are recruited and their firing rates
increase during increasing levels of muscle contraction,
discrimination of individual MUAP signatures becomes
increasingly difficult. Improvements in MUAP discrimi-
nation have been achieved by increasing the signal-to-
noise ratio (e.g. spike triggered averaging (Thomas et
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al., 1990), non-linear filtering (Fiore et al., 1996) or
multichannel electrodes (Ekstedt et al., 1969)) or by
optimizing existing information (e.g. by using decompo-
sition to resolve superpositions of individual motor
units into its constituent components (Mambrito and
De Luca, 1984; McGill et al., 1985; Stashuk and De
Luca, 1989; Joynt et al., 1991; Loudon et al., 1992;
Etawil and Stashuk, 1996; Fang et al., 1999; Gut and
Moschytz, 2000; Stashuk, 2001)).

Methods of MUAP discrimination based on the tem-
poral relationships among motor unit firings have not
been developed as extensively as shape-based methods.
The temporal pattern of motor unit firing provides little
additional information when the activity pattern is un-
predictable or not controlled. Under conditions where
motor units detected by shape-based methods fire at
predictable intervals, addition of temporal information
has been used to improve discrimination of MUAP
candidates (Joynt et al., 1991; Stashuk and Qu, 1996a)
and to analyze MUAP occurrence patterns using a joint
interval histogram (Siebler et al., 1992). However, both
approaches are based on measurements of individual
inter-spike intervals (ISIs). While robust algorithms can
estimate motor unit firing-pattern statistics in the pres-
ence of incorrect ISI measurements (e.g. Stashuk and
Qu, 1996b), they are bound to fail when an EMG
signal containing two temporally distinct spike trains
whose MUAPs have shapes that are too similar to
distinguish.

Alternatively, use of temporal information that does
not rely on classification of individual MUAPs could be
a useful addition to motor unit discrimination schemes.
For example, analysis of the overall motor unit firing
patterns by Fourier transform (Lange and Hartline,
1979) or autocorrelation techniques (Liu, 1989) are less
dependent on individual MUAP measurements than
shape-based methods. However, these global methods
are strongly influenced by the shape of the individual
MUAPs and the degree of superposition, limiting their
applicability to classification of individual motor units.

Development of global methods for analysis of mo-
tor unit firing behavior that do not rely on MUAP
shape could supplement the more commonly used
shape-based methods in situations in which there is a
reasonable expectation of stable firing, i.e. ISIs exhibit a
stationary mean and low coefficient of variation (COV).
This report describes one such approach to improving
MUAP discrimination that we are developing for use in
our studies of operant conditioning of the triceps surae
H-reflex (see Wolpaw, 1997 for review). In developing
methods for identifying single motor units in the EMG
prior to the H-reflex and analyzing their firing behav-
ior, we discovered that shape-based methods of MUAP
discrimination were of limited utility. Since several
thousand H-reflexes are recorded every day from be-
having animals, manual definition of MUAP discrimi-

nation parameters is impractical. In addition, individual
H-reflex trials can be far apart in time, making it
impossible simply to infer these parameters from pre-
ceding trials. Furthermore, the necessity of using low
impedance chronically implanted electrodes to record
whole-muscle EMG often results in MUAP shapes that
are difficult to discriminate.

The conditioning paradigm requires that the back-
ground rectified EMG remains within a defined range
for 2.3–2.7 s before H-reflex elicitation. Thus, the
number and firing rates of motor units that comprise
this background EMG are likely to be relatively stable.
Our approach to MUAP discrimination is based on the
concept that underlies the Hough transform (Hough,
1959, 1962). Widely used in the field of image process-
ing (Gonzalez and Woods, 1992), its original applica-
tion was the detection of straight lines in pixel images.
It transforms the pixel image in a Cartesian coordinate
system into a feature space with axes that represent
parameters derived from a model that describes straight
lines (e.g. the distance from an origin and the angle of
the line’s normal vector to the x-axis). Lines in the pixel
image result in clusters in the feature space and the
location of the clusters correspond to the model
parameters of these lines. The Hough transform is able
to perform correct global classification (i.e. identifica-
tion of a straight line) despite noisy local measurements
(i.e. obscured pixels). In a similar fashion, we model
rhythmic repetitive spike trains with two parameters
and employ a modified Hough transform (MHT) of
MUAP candidate occurrence times into a two-dimen-
sional (2-D) space. MUAP spike trains with stable
repetitive occurrence patterns form clusters in this space
that indicate their mean rate and variability.

2. Methods

2.1. Application of the MHT to simulated single-unit
spike trains

In order to identify a spike train that occurs in a
stable, repetitive fashion, we envision a temporal grid
with a spacing and alignment that coincides with the
actual firing times of the motor unit. Temporal varia-
tion in firing times causes misalignment of the grid to
the spike train. The ith time predicted by such a global
grid, i.e. the expected firing time of the ith discharge of
such a spike train with a given spacing (i.e. mean ISI)
and alignment (i.e. a positive offset relative to an
arbitrary reference time) can be described as:

ti(ISI, offset)=ISImean* i+offset (1)

As illustrated in Fig. 1(A), any expected firing occur-
ring at time ti is determined by both ISImean and offset.
Thus, there are many possible combinations of these
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Fig. 1. (A) Model of a spike train with a constant ISI of tISI and an offset of its first spike of toffset relative to an arbitrary starting time of tstart.
(B) Resulting MHT of one arbitrary firing time ti. The bright pattern in the feature space represents all combinations of tISI and toffset describing
all spike trains that would contain a spike at time ti. The triangular region shown in gray is not part of the feature space (per definition, toffset

must be smaller than tISI).

two variables (i.e. many possible spike trains) that
could produce a spike at ti. Consequently, for a given
firing time ti and an assumed ISImean, the corresponding
value of offset can be calculated by iteratively subtract-
ing ISImean from ti to obtain the smallest non-negative
remainder less than ISImean. Fig. 1(B) illustrates many
of the combinations of ISImean and offset that could
account for the spike firing at ti. This mapping of a
single spike in the time domain to a pattern in the
ISI–offset feature space forms the basis of the MHT.

Practical implementation of the MHT required quan-
tizing the feature space into finite intervals. This granu-
larity defines the resolution of the feature space and
thus the smallest unit of ISI that can be distinguished.
In addition, the range of ISIs evaluated has to be
limited (for real motor unit data, physiological proper-
ties constrain the range of values to be assessed). The
MHT is implemented according to the following
algorithm.

for each ti do
for each ISImean (in the feature space) do

determine offset
increase cell value at (ISImean, offset) by one

repeat inner loop for all mean ISIs
repeat outer loop for all MUAP candidates
The computational complexity of the MHT is, there-

fore, proportional to the number of different mean
ISI’s in the feature space (nISI) times the number of
transformed firing times.

Each spike increments the discrete accumulator cells
at the calculated ISI–offset locations (white pattern in
black feature space of Fig. 1(B)). This pattern repre-
sents all possible spike trains with a firing at time ti.

Cell values depend on the number of expected firings
in the observed time period (i.e. a spike train with a
constant ISI of 10 ms will have a maximum cell count

of 100 in any 1 s period, whereas a spike train with an
ISI of 100 ms will have a maximum cell count of 10).
To account for this uneven representation, the feature
space is normalized after the MHT by dividing the
accumulated value in each cell (cell(ISImean, offset)) by
the total number of discharges expected for its ISI
during the analyzed time period (nexp(ISI)).

cell(ISI, offset)=
cell(ISImean, offset)

nexp(ISI)
(2)

Since this normalization procedure is performed on
each cell in the feature space, its computational com-
plexity is proportional to n ISI

2 .

2.2. Properties of the feature space

2.2.1. Feature space representation of spike trains
Repeating the MHT for all spike firing times popu-

lates the feature space with a pattern of accumulated
ISI–offset combinations that describe the firing behav-
ior of the underlying spike trains. Fig. 2 illustrates the
differences in feature space patterns for spike trains
that fire repetitively with constant ISIs (rows A and B)
or with randomly distributed ISIs (rows C and D). For
stable repetitive firing, sequential addition of spikes
(increasing from column one to three) sharpens the
contrast between combinations of ISI and offset that
represent the actual firing rate and timing offset of the
spike train. It suppresses other combinations that are
randomly distributed throughout the remainder of the
feature space. In contrast, randomly firing spike trains
produce no focus for any one combination of ISI and
offset. Sequential addition of these spikes adds a ran-
dom distribution of combinations of ISI and offset that
eventually fills the feature space uniformly. This trans-
formation clearly distinguishes stable from random
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firing patterns when a sufficient number of spikes are
considered (e.g. compare Fig. 2(B3) with 2(D3)).

2.2.2. Ghosts
In addition to accumulating cell counts at the ISI–

offset combination representing the actual firing rate
and timing offset of a spike train with stable ISIs, the
feature space also accumulates counts at other locations
(Fig. 3). We refer to the bright areas corresponding to
these additional locations as ghosts. They arise from
the multiple ways the observed firing pattern could be
generated.

For example, using a spike train with a constant
ISI= tISI and offset= toffset, the MHT produces an in-
creased cell value at the expected ISI–offset combina-
tion. In addition, there is an increased cell count at

Fig. 3. MHT of a simulated spike train with a constant ISI= tISI and
offset= toffset produces an increased cell value at this ISI–offset
combination. Increased cell values at other locations in the feature
space (i.e. ghosts) reflect firing patterns that provide alternative
explanations of the actual spike train (see text for further descrip-
tion).

Fig. 2. Simulated spike trains with the same mean ISI having either a
constant (row A) or randomly distributed (row C) ISI and their MHT
feature spaces (rows B and D, respectively). The ticks on the ISI axes
of the feature spaces correspond to the actual mean ISI of the
simulated spike trains. Grayscale shading indicates the number of
ISI–offset combinations accumulated in a given cell normalized for
the expected number of spikes for its ISI (see text for description of
normalization procedure). To facilitate comparison, the grayscale
values of each feature space in row B were normalized to their highest
value; the grayscale values of the feature spaces in row D were
normalized to the same maximum value as used for the correspond-
ing feature space in row B with the same number of spikes. Increasing
the number of firings (five, ten, and 20 firings in columns 1, 2, and 3,
respectively) sharpens the contrast between the underlying ISI–offset
combination of the spike train with a constant ISI and the surround-
ing cells (row B). It decreases the contrast throughout the feature
space of the spike train with a random ISI.

ISI= tISI/2 and offset= toffset. This represents an alter-
nate possible explanation of the data, a train of spikes
firing at twice the rate of the actual spike train. It
appears only half as bright, because the actual train
contributes only every other spike of the expected num-
ber of firings for the ghost’s ISI. Additional ghosts will
appear at ISIs with higher integer divisors of tISI (e.g.
ISI= tISI/3, tISI/4, etc.), which are not shown for the
sake of clarity. Ghosts also appear in the feature space
reflecting multiples of the actual ISI. For example, the
increased cell counts at ISI=2× tISI represent two
different spike trains, each firing at half the actual rate
and offset by half their mean ISI. The ghosts’ cell
counts are the same as that associated with the actual
spike train, because the actual spike train contributes
half of its firings to each of the two ghosts’ cells, which
produces the expected number of firings for the ghosts’
ISI. It is, therefore, equally probable (without any other
knowledge) that the observed spike train has been
generated by the actual spike train or by two spike
trains firing at half the rate of the actual train. ISIs
equal to higher integer multiples of tISI will follow a
similar pattern. Ghosts will also appear at non-integer
multiples of the actual ISI. This is illustrated by the
increased cell counts at ISI=1.5× tISI at three values
of offset representing spike trains firing with two-thirds
of the actual rate. These ghosts appear only half as
bright as the cell associated with the actual ISI–offset
combination, because the spike train contributes only
half of the expected firings for these ghosts’ ISI. Higher
non-integer multiples of the ISI will produce similar
patterns with increasing numbers of ghosts represented
at half of the intensity of the actual ISI–offset
combination.
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Fig. 4. Feature spaces showing the MHT of simulated spike trains before (row A) and after (row B) convolution with the �2G function. Spike
trains have a mean ISI of tISI and an offset of toffset (indicated by ticks on their respective axes) and a COV of the ISI of 0 (A1 and B1), 0.05 (A2

and B2), 0.10 (A3 and B3), and 0.15 (A4 and B4). Without filtering, the distinct pattern seen with COV=0 disperses throughout the feature space
with increasing ISI COV. Filtering the feature space blurs the bright spots along the offset axis (e.g. compare feature spaces at ISI= tISI in A1

and B1), but makes the MHT less sensitive to increasing ISI variability (e.g. compare feature spaces at ISI= tISI in B1 with those in B2, B3, and
B4). To facilitate comparisons among signal-to-noise ratios, the grayscale values were normalized to the highest value in each feature space.

2.3. Post-transformation processing

The model that underlies the MHT describes the
predicted times of occurrence of a MUAP in a spike
train given the train’s mean ISI and offset. However,
the ISIs of real motor units vary among sequential
firings. Depending on the granularity of the feature
space and ISI stability, repetitively firing motor units
might contribute to cells in the feature space near the
one representing the ISI–offset combination that
reflects the actual average firing rate and timing offset.
During repetitive firing of motor units with a stationary
mean ISI, the distribution of ISIs is approximated by a
normal distribution (Clamann, 1969). The ISI variabil-
ity is described by its COV (i.e. the ratio of the ISI
standard deviation (S.D.) to its mean ISI). COV typi-
cally falls between 0.11 and 0.14 for human motor units
(Dorfman et al., 1989), but may be lower in rat soleus
motor units under certain experimental conditions (e.g.
see Section 4). Addition of this variability to spike
trains (as defined in Eq. (1)) results in normally dis-
tributed cell counts around the location representing
the average ISI–offset combination along the offset
axis. This effect is evident in the MHTs of a simulated
spike train firing with a constant ISI shown in Fig.
4(A1)–4(A4). A single cell (and its ghosts) illuminates
the feature space in the absence of variability (Fig.

4(A1) for ISI COV=0). Increasing the ISI variability
broadens the distribution of illuminated cells around
the expected ISI–offset locus (and ghost loci; Fig. 4(A2)
for ISI COV=0.05). Further increases in ISI variability
populate the feature space such that visual discrimina-
tion of the expected ISI–offset locus is difficult (Fig.
4(A3) and 4(A4) for ISI COV=0.10 and 0.15,
respectively).

We addressed this issue of ISI variability by incorpo-
rating a post-processing blurring of the feature space.
After the normalization procedure, we convolved each
cell value with a one-dimensional (1-D) function paral-
lel to the offset axis. This function was the second
derivative of a Gaussian distribution1 (�2G, Eq. (3),
Gonzalez and Woods, 1992) with amplitude normalized
such that �2G(0, �)=1. We applied this function in an
attempt to invert the process that led to the observed
normal distribution of MUAP ISIs (Hjorth, 1991).

�2G(x, �)=
�

1−
x2

�2

�
e−x2/2�2

(3)

For each mean ISI in the feature space, we chose � to
roughly match the expected variation of the motor unit
(for Fig. 4, �(ISI)=0.15×ISI). The application of the

1 Also called the Laplacian of Gaussian (LoG) or the ‘Mexican hat’
function in image processing applications.
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�2G function with changing � ’s does not bias the
results for cells at different ISI levels, because
�+�
−� �2G(x, �)dx=0, regardless of the value of �. Fig.

4(B1)–4(B4) show the effect of this filter on the feature
spaces for a stably firing unit for different degrees of
ISI variability. Blurring is evident around the expected
ISI–offset loci for different degrees of ISI variability
(ISI COV=0, 0.05, 0.10, and 0.15 in Fig. 4(B1), 4(B2),
4(B3), and 4(B4) respectively).

Finally, the convolution procedure is performed on
each cell in the feature space and the size of the
convolution window depends on � (which depends on
ISI). Thus, the computational complexity of this
smoothing procedure is proportional to n ISI

3 .

2.3.1. Determining firing hypotheses
Spike trains with stable ISIs generate local maxima in

the feature space (similar to cluster formation of shape-
based features). The center-of-gravity of areas that
exceed a specified threshold provide hypotheses about
the ISIs and offsets of the underlying spike trains,
which can be used as concurrent temporal information
in subsequent analyses.

3. Application of the MHT to simulated multi-unit
EMG data

Application of the MHT and a simple shape-based
method to discrimination of simulated multi-unit EMG
reveals the essential differences between them and the
benefit of combining these approaches. For the purpose
of these analyses, we simulated multi-unit activity by
superimposing two to three different 1 s long artificial
trains of repetitive MUAP occurrences having different
mean ISIs, COVs of ISI, and offsets. The different
MUAP waveforms used as templates were 8 ms long
segments from averages of 10–20 individual MUAPs
recorded at a 4 kHz sampling rate from soleus muscle
of chronically implanted rats as described in Chen and
Wolpaw (1995).

After synthesizing the multi-unit activity, MUAP
candidates were identified with a simple algorithm.
First, the algorithm identified peaks in the EMG seg-
ments that exceeded an empirically determined
threshold value (which was set so as to identify even the
smallest artificial MUAP). For each peak, a subsequent
procedure removed all but the peak with the highest
amplitude in a 4 ms window around it. The times of
occurrence of the remaining peaks defined the MUAP
candidates.

For our shape-based MUAP classification (i.e. as-
signment) method, we used a simple template-matching
scheme that calculates a shape-based score for any
given time in the trial (i.e. shapescore). This score
describes how closely the MUAP candidate waveform

can be described by the known MUAP template. This
measure is similar to a normalized Euclidean distance
measure (e.g. Stitt et al., 1998) and defined by:

shapescore=1−
�2(error)
�2(signal)

(4)

shapescore=1−
�i=1

n (xi−ei)2− (�i=1
n xi−ei)2/n

�i=1
n xi

2− (�i=1
n xi)2/n

(5)

where n defines the number of samples in a template
(i.e. 32, in this case) and e and x define the waveform of
the template and the observed signal, respectively.
Shapescore is 1, if the observed signal exactly matches
the template and 0, if the variance of the error (i.e. the
difference between the observed signal and the tem-
plate) equals the variance of the signal.

3.1. Feature stability

The temporal and shape-based features described
above exhibit different susceptibilities to variations in
MUAP shape and firing pattern. This is illustrated in
Fig. 5, which shows the results of analyses of simulated
multi-unit data by the template shape-based method
described above (A) and the MHT method (B). The
data consisted of a 1 s long target spike train consisting
of 27 MUAP discharges with a mean ISI of 37.5 ms
and with a COV of ISIs of 0.07. To this target spike
train was added five times as many randomly dis-
tributed occurrences using a different MUAP template.
Different degrees of contamination of the target spike
train by the additional motor unit were simulated by
varying the peak-to-peak amplitude from 0 to 100% of
the amplitude of the repetitively firing unit (plotted on
the axes labeled ‘Amplitude Noise’).

The sensitivity of the two approaches to different
temporal structures was assessed by varying the serial
dependence of the target spike train ISI. We created
ISIs from a serially dependent model (see Eq. (6)) and
from a serially independent model (see Eq. (7)).

ti=ISImean * i+wi+offset (6)

ti= ti−1+ISImean+wi (7)

In these equations, ti and ti−1 are adjacent times of
discharge, ISImean is the average ISI, wi is a Gaussian
variable scaled to produce the required COV, and offset
is the temporal offset of the first discharge (for Eq. (7),
t0=offset).

We then linearly interpolated between ISIs derived
from these two models (e.g. ISIs with a serial depen-
dence of 60% represent the sum of 0.6 times each
interval produced by the serially dependent model and
0.4 times the comparable interval produced by the
serially independent model).
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Fig. 5. Comparison of application of a shape-based classification scheme (left) and of the MHT (right) to simulated trains formed from a target
MUAP shape and from a contaminating MUAP shape (see text for details of MUAP trains and definition of other parameters). Increasing the
magnitude of the contaminating MUAPs (i.e. increased value on Amplitude Noise axis) deteriorated the shape-based feature provided by
shapescore, but did not affect the performance of the MHT (i.e. no change in average cell value at the expected ISI–offset combination). Reducing
the serial dependence of sequential ISIs (i.e. decreased value on Temporal Dependency axis) degraded performance of the MHT, but not that of
the shape-based approach.

Serial dependence (plotted on the axes labeled ‘Tem-
poral Dependency’) varied from 0% (i.e. sequential
ISIs are independent of all other ISIs in the train (i.e.
generated by a renewal process)) to 100% (i.e. sequen-
tial ISIs vary around the mean ISI such that larger
ISIs tend to follow shorter ISIs and vice versa)2.

For each combination of Amplitude Noise and
Temporal Dependency, we created 200 1 s trials. For
each trial, we calculated the average shapescore at the
positions of the repetitively firing unit and the cell
count in the feature space at the expected location (i.e.
mean ISI, mean offset) in the filtered feature space
(using �2G with �(ISI)=0.10×ISI). We then aver-
aged, for each combination of Amplitude Noise and
Temporal Dependency, the shapescore values (Fig.
5(A)) and the cell count values (Fig. 5(B)) and nor-
malized the averaged cell count values to the highest
value.

Fig. 5(A) shows that the average shapescore values
determined by the shape-based method deteriorate
with increased noise, but were not affected by the
temporal alignment of the individual MUAPs. In con-
trast, Fig. 5(B) shows that the average cell values did
not depend on the amplitude of the introduced noise,
but were highly dependent on the temporal relation-
ship of sequential occurrences. This demonstrates that
decreasing serial dependence reduces the applicability
of the concept of a global grid.

3.2. Impro�ed MUAP assignment by addition of
temporal information

To demonstrate the potential benefit of the temporal
information derived from this method, we compared
the performance of the simple shape-based assignment
method described above with and without application
of temporal information calculated from the hypothe-
ses generated by the MHT. In a similar fashion to
before, we created 550 trials of simulated multi-unit
EMG. Each trial contained three superimposed spike
trains, each using a different motor unit template. The
mean ISIs were 22.5, 30, and 35 ms with a COV for
each ISI of 5%. ISIs exhibited serial dependence (i.e.
the temporal dependency=100%, as described in the
previous section). Fig. 6 shows one of these trials.

We then calculated, for each trial and each of the
three templates, the shapescore value at every time
point in the trial. The upper panels in Fig. 7 illustrate
the time course of shapescore of each template for the
trial shown in Fig. 6 and the actual firing times of the
motor unit (as expected, the shapescore values peak at
the actual firing times).

For each trial, we applied the MHT to each MUAP
candidate (see example in Fig. 8). The feature spaces
were filtered by application of the �2G operator
with �(ISI)=0.10×ISI. The center-of-gravity of the
areas in the feature space that exceeded an empiri-
cally-determined threshold (which had the same value
(i.e. 0.40) in each trial) provided firing hypotheses (i.e.
ISI–offset combinations potentially representing motor
units).

A simple algorithm then determined, for each tem-
plate, out of all firing hypotheses the one that most

2 Using trials with different degrees of serial dependence, we nu-
merically evaluated the relationship between our measure and the
serial correlation coefficient r calculated between adjacent intervals.
Our scale of serial dependence from 0 to 100% corresponded to r
values from 0 to −0.5, respectively.
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Fig. 6. Example of simulated 1 s epoch of multiunit activity formed by combining trains of three differently shaped MUAPs (recorded from rat
soleus muscle) with different ISI distributions (mean ISIs=22.5, 30.0, and 35.0 ms, COV=0.05 for all) and offsets (2.5, 10, and 17.5 ms,
respectively). Circles indicate detected motor unit candidates that were subsequently subjected to the MHT. Squares, diamonds and triangles
indicate actual firing times for template I, II and III, respectively (see Fig. 7). Due to superposition, the number of motor unit candidates was
approximately 20% smaller than the total number of motor unit firings in this trial.

likely produced that template’s spike train3. Using its
mean ISI and offset, we calculated the times ti at which
we would expect that unit to have fired. Subsequently,
using these expected firing times ti, we calculated a
weighting function for each time t in the trial that
represented the probability that a firing at that time
would have come from the normal distributions around
the expected firing times created by ISI variability
(illustrated in Fig. 7):

weight(t)= �
n

i=1

e− (�t− ti �/0.25×ISI)2/2 (8)

n defines the number of expected MUAP occurrences in
the trial, t represents any time point in the trial, and ti

stands for the expected firing times derived by the firing
hypothesis.

In order to use this concurrent temporal information,
we then multiplied these weighting functions with their
respective shapescore time courses. We compared assign-
ment performance with and without using the temporal
information.

For each trial, we detected each of the three templates
as follows: if their shapescore value (or shapescore
multiplied by the weighting function) crossed a given
threshold, we then identified the maximum shapescore
value in a window, �2 ms around this point and
continued to search 2 ms after this point. We then varied
the assignment threshold criterion from 0 to 1. In
addition, we calculated the number of correctly identified
motor unit occurrences (i.e. a detected occurrence within
�0.25 ms of an actual firing of the respective template)
and the number of false positives (i.e. a detected firing
not within �0.5 ms of an actual firing of the respective
template). The results in Fig. 9 indicate that, when using

temporal information, correct assignment of motor
unit occurrences was little affected (Fig. 9(A)), but
the number of false positives was markedly suppressed
(Fig. 9(B)).

The low COV in this analysis (0.05) and high degree
of temporal dependency (100%) provides a clear illustra-
tion of the feature space and the application of the MHT.
In clinical studies, COVs of ISIs are usually higher and
their temporal dependencies lower. However, analysis of
the above simulations with a COV of 0.125 and a
temporal dependency of 0% produced results comparable
to those using the ideal values used for illustration. For
example, when we used template 2 and a threshold value
of 0, the temporal variation caused only modest deteri-
oration in the percentage of correctly classified occur-
rences (i.e. 75 and 68% for shape-based detection alone
and with the MHT, respectively). At the same time,
addition of the MHT markedly reduced the number of
false positives (i.e. 44 and 7%, respectively). This demon-
strates that despite a higher COV and no temporal
dependency, the MHT can still be useful.

4. Application of the MHT to rat soleus muscle EMG

We have demonstrated the potential utility of the
MHT on simulated multiunit EMG data. To comple-
ment these simulations, we show an example of how the
MHT could be used to obtain temporal information that
could be used to assist in the assignment of single motor
unit action potential occurrences in whole muscle EMG
without knowing MUAP templates a priori. We recorded
signals (at a 4 kHz sampling rate) from the soleus muscle
of chronically implanted rats (Chen and Wolpaw, 1995)
and stored 1 s long epochs before H-reflex elicitation.

Fig. 10 shows one of these epochs. As with the
simulated data, we first determined the MUAP candi-
dates, i.e. the times of likely MUAP occurrences (see the
times marked with the symbol ‘x’ in Fig. 10). We then
subjected these to the MHT (Fig. 11). The center-of-grav-
ity of the areas exceeding an empirically determined
threshold provided hypotheses about the mean ISI and
offset of the underlying spike train.

3 For each ISI–offset hypothesis (and the specific template), we
first calculated the timecourse of shapescore, multiplied by a weight-
ing function derived from the hypothesis (see Eq. (8)). We then
determined, in each period �ISI/2 around each expected time of
firing, the highest shapescore value. We then summed all of these
values that exceeded an empirically determined threshold to calculate
a score for this hypothesis and we used the hypothesis with the
highest score as the ‘best’ hypothesis for this template.
-
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Fig. 7. Application of temporal information derived from MHT of simulated multiunit activity to shape-based MUAP discrimination. For each
of the three simulated units (I, II, III), the upper panels show shapescore calculated between the simulated data and each of the MUAP templates
(solid lines), the weighting functions resulting from application of the MHT (dotted lines indicating the probability that a discharge at that time
was produced by the spike train predicted by the ISI–offset hypotheses (�=0.25×ISI)), and the actual firing times of each unit (circles). In
addition to the expected peaks of shapescore at the actual firing times, occasionally there are high values of shapescore at times other than at the
actual firings where the firing hypotheses predict a low probability of firing (solid arrows), indicating contamination from other MUAP shapes.
Multiplication of the time courses of shapescore by the weighting functions results in a temporally enhanced correlation score (lower panels) that
attenuates the contributions from the other MUAPs (dashed arrows).

Assuming that a motor unit will fire close to the
firing times predicted by these hypotheses, we used this
information in a shape-based classification procedure.
In a similar fashion to the above, we calculated a
weighting function describing the expected firing proba-
bility. Next, we eliminated all MUAP candidates for
which the weighting function was smaller than a spe-
cified value (i.e. 0.65 in this example). We then removed
all MUAP candidates whose polarity (i.e. the sign of
the signal amplitude at the time of the MUAP candi-
date) differed from the polarity of the majority of the
candidates. Subsequently, we calculated the peak-to-
peak amplitude for each MUAP candidate and re-
moved the 10% of the candidates whose amplitude
differed most from the mean peak-to-peak amplitude.
Finally, we calculated the average peak-to-peak ampli-
tude and the COV associated with the remaining
MUAP candidates. In case the COV of the peak-to-
peak amplitudes was less than a empirically determined
threshold (i.e. 0.25; a loose measure for whether the
shapes around the MUAP candidates were sufficiently
consistent), we marked the remaining motor unit candi-
dates as belonging to one class (see circles in Fig. 10).

In the illustrated trial, the calculated mean ISI of the
motor unit was 33.3 ms and its COV was 0.05. The
correlation coefficient r of the occurrences was −0.46,

which corresponds to a temporal dependency of 68%.
This demonstrates that the MHT can be useful (in
particular on short stretches of data), even if firings do
not exhibit the ideal condition of total serial depen-
dence (see also assessment of trials with 0% serial
dependence in Section 3.2).

Fig. 8. Feature space (with resolution 0.25 ms) derived from the
motor unit candidates shown in Fig. 6. Locations marked with the
symbol ‘x’ identify the ISI–offset combinations of the three simulated
motor units and the locations marked with the symbol ‘+ ’ identify
other theoretically possible firing patterns (i.e. ghosts).
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Fig. 9. Contribution of the MHT to shape-based assignment of the
three MUAP templates used to simulate multiunit activity as illus-
trated in Fig. 7. For each template, the average percent of classified
MUAPs (row A) decreases with increasing assignment threshold
stringency with (solid lines) or without (dashed lines) addition of
temporal information from the MHT (using the method for
combining shape and temporal information illustrated in Fig. 7). The
average number of incorrect classifications (i.e. false positives) ex-
pressed as a percent of the maximum possible number (row B) was
markedly lower using both shape and temporal information (solid
lines) than shape information alone (dashed lines), especially at low
levels of assignment threshold stringency.

Fig. 11. Feature space calculated from the motor unit candidates
shown in Fig. 10 (after post-processing with �=0.10×ISI, feature
space resolution=0.5 ms). The bright area centered around the
intersection of mean ISI=33 ms and offset=16 ms identifies the
firing hypothesis that describes the temporal pattern of the spike train
and that subsequently assists in the identification of the actual
MUAP discharges in Fig. 10.

length increases the signal-to-noise ratio in the feature
space (as illustrated in Fig. 2). On the other hand, serially
independent ISIs render prediction of successive spike
times increasingly inaccurate as the length of time from
the initial discharge increases. Thus, this independence of
firing times necessarily imposes practical limitations on
data segment length that can be used, in that using longer
data segments to improve the signal-to-noise ratio will
also cause hot spots to be increasingly blurred.

ISIs of neuronal spike trains rarely exhibit complete
temporal independence (e.g. Perkel et al., 1967). In
healthy humans, MUAP ISIs exhibit a modest degree of
serial dependence (Andreassen and Rosenfalck, 1978;
Wiegner et al., 1993; Yan et al., 1998). Our preliminary
studies in chronically implanted rats indicate that MUAP
ISI variation exhibits some serial dependence (see Section
4). Even at these low levels of serial dependence, the
MHT can detect MUAP trains (see Fig. 11).

The performance of any classification method relies on
the ability to discriminate features that are extracted
from a signal. In this initial analysis, the MHT appears
to be relatively unaffected by the firings of other motor
units. However, many other factors (e.g. the observed

5. Discussion

5.1. Assumptions and limitations

The MHT readily detects spike trains with constant
ISIs (see Eq. (1), and Fig. 2). However, neuronal spike
trains always exhibit ISI variation. We describe the
magnitude of this variation by the ISI’s COV and its
temporal pattern by the serial dependence of the MUAP
occurrences. For any given COV, the temporal depen-
dence is one of the main determinants of efficacy of spike
train identification by the MHT. Serially dependent ISIs
(e.g. long ISIs followed by short ISIs) have spike times
which are multiples of the mean ISI relative to the time
of the first spike. In this case, increased data segment

Fig. 10. Example of one 1 s epoch of whole muscle EMG recorded from soleus muscle in rats prior to H-reflex elicitation. The motor unit
candidates that were subsequently subjected to the MHT are identified by the symbol ‘x’. The triangles indicate the expected firing times based
on the firing hypothesis derived from the MHT in Fig. 11. Circles mark the individual MUAP discharges identified using these expected firing
times and a shape-based classification procedure (see text).
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time frame, missed MUAP candidates due to superposi-
tion, larger number of MUAP candidates with increasing
EMG levels) could influence temporal discrimination
(i.e. the signal-to-noise ratio in the feature space). The
extent to which these factors decrease this signal-to-noise
ratio remains to be explored.

In summary, the utility of the MHT will be greatest
in situations in which the COV of a spike train is low
and/or the ISIs in the observed spike train exhibit some
degree of serial dependence.

5.2. Ad�antages

Spike detection and identification schemes that use
temporal information to augment MUAP assignment
decisions have been described (e.g. Stashuk and Qu,
1996a,b). However, they all rely on measurements of
individual ISIs and thus cannot aid in situations in which
MUAP shapes produced by multiple motor units are too
similar to be distinguished. As a result, the MHT could
provide additional information that no current method
can provide—an advantage that is particularly impor-
tant in situations in which data is scarce.

Furthermore, even under nominally stable conditions
(e.g. during the pre-stimulus background period of the
H-reflex conditioning task (Chen and Wolpaw, 1995)), it
is unlikely that every motor unit that contributes to the
observed EMG signal will fire at a constant rate or
exhibit the necessary amount of serial dependence. Thus,
the MHT might only deliver information on some of the
motor unit spike trains that underlie the observed EMG
signal. In the worst case, the MHT would not provide
any additional information, but at the same time would
not impair implementation of other approaches.

The MHT is potentially beneficial in MUAP detection
and classification, in part because it relies on assumptions
that are different from those of classical shape-based
methods, which assume MUAP shape stability. Since the
MHT method employs a global rather than a local
approach (i.e. detected ISI–offset combinations rather
than individually classified motor unit discharges), it is
difficult to compare its efficacy in MUAP discrimination
directly to that of a shape-based method. Thus, we
demonstrated that use of temporal information concur-
rent with shape information improves the ability to
identify MUAPs.

Finally, conventional schemes that take advantage of
temporal information require accurate MUAP identifica-
tion that typically only complex multi-pass schemes may
provide. The MHT is easy to implement and has little
associated computational cost. Its incorporation into
conventional schemes might be beneficial in situations in
which the implementation of more complex or computa-
tionally costly schemes are not practical or necessary. In
certain clinical applications in which only firing rate and
firing variability are of importance (and not individual

discharge times), the MHT could even be used without
having to implement any shape-based method.

5.3. Potential impro�ements in implementation of the
MHT

We have used a simple thresholding procedure to
detect firing hypotheses in the feature space. More
sophisticated methods could improve detection perfor-
mance by taking the number of MUAP candidates and
the resolution of the feature space into account to test
whether one particular bin is statistically different than
adjacent bins.

To demonstrate the principle of combining informa-
tion from both the MHT and the shape-based assignment
method, we multiplied the simple weighting function with
the time course of shapescore. More sophisticated meth-
ods might take better advantage of this additional piece
of information. In addition, we used a very simple motor
unit classification procedure to demonstrate the benefit
of the MHT. Modern classification schemes would
undoubtedly result in better performance. Nevertheless,
even these algorithms would likely benefit from addi-
tional temporal information.

The Hough transform has been studied extensively in
the field of image processing. While originally devised to
detect straight lines in pixel images, the concept of the
Hough transform is applicable to a wide variety of
parametric curves (Ballard, 1981; Olson, 1999). In addi-
tion, more sophisticated algorithms optimize the infor-
mation in the feature space (van Veen and Groen, 1981;
Immerkær, 1998). Compared with its counterparts in
image processing, the MHT is in an early stage of
development. Adaptation of the more advanced imple-
mentations of the Hough transform to the MHT may
extend its reach, e.g. from the detection of stable repet-
itive patterns to oscillating or other patterns that can be
described by simple models, or might optimize the
information in the feature space, e.g. by implementing
variable granularity depending on the ISI.

Improved spike assignment is not the only application
for this method. It could provide an estimate of the mean
firing rate of motor units in recordings, in which some
of the discharges have been missed (or in which false
positives contaminate the estimate of firing statistics), or
it might be used to separate a repetitively firing unit from
false positives in a stage subsequent to shape-based
classification. Firing variability could be estimated by
analyzing the distribution of cell counts around a de-
tected firing hypothesis in the feature space. In addition,
the method is not restricted to 2-D. Shape-based features
derived from each MUAP candidate could serve as
additional dimensions in the feature space, thus opening
the possibility for concurrent temporal and shape-based
recognition in a single method. However, the necessity
of searching the entire feature space imposes computa-
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tional limits on the number of dimensions that could be
used in practical applications. No matter how the MHT
might be implemented, additional information will al-
ways prove beneficial and, therefore, this transforma-
tion adds an effective new avenue to pursue the difficult
problem of MUAP detection and classification.
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