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Several scientists have proposed different models for cortical processing of speech.
Classically, the regions participating in language were thought to be modular with a linear
sequence of activations. More recently, modern theoretical models have posited a more
hierarchical and distributed interaction of anatomic areas for the various stages of speech
processing. Traditional imaging techniques can only define the location or time of cortical
activation, which impedes the further evaluation and refinement of these models. In this
study, we take advantage of recordings from the surface of the brain [electrocorticography
(ECoG)], which can accurately detect the location and timing of cortical activations, to
study the time course of ECoG high gamma (HG) modulations during an overt and
covert word repetition task for different cortical areas. For overt word production, our
results show substantial perisylvian cortical activations early in the perceptual phase of
the task that were maintained through word articulation. However, this broad activation
is attenuated during the expressive phase of covert word repetition. Across the different
repetition tasks, the utilization of the different cortical sites within the perisylvian region
varied in the degree of activation dependent on which stimulus was provided (auditory or
visual cue) and whether the word was to be spoken or imagined. Taken together, the data
support current models of speech that have been previously described with functional
imaging. Moreover, this study demonstrates that the broad perisylvian speech network
activates early and maintains suprathreshold activation throughout the word repetition
task that appears to be modulated by the demands of different conditions.
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INTRODUCTION
Understanding the temporal dynamics of speech processing has
been a topic of intense scientific interest for over a century. Speech
processing has been studied using different types of neuroimag-
ing [e.g., using positron emission tomography (PET) or func-
tional magnetic resonance imaging (fMRI)], neurophysiological
functional mapping [e.g., magnetoencephalography (MEG), elec-
trocorticography (ECoG)], lesional models, or behavioral stud-
ies (Price et al., 1996; Fiez and Petersen, 1998; Crone et al.,
2001a; Dronkers et al., 2004; Sinai et al., 2005; Pulvermuller
et al., 2006; Towle et al., 2008). These and other studies have
shown that speech processing involves a widely distributed net-
work of cortical areas that are located predominantly in peri-
sylvian regions (Scott and Johnsrude, 2003; Specht and Reul,
2003). These regions include the superior temporal gyrus/sulcus,
angular gyrus/supramarginal gyrus (i.e., Wernicke’s area), poste-
rior inferior frontal regions (i.e., Broca’s area), and motor and

premotor regions (Fiez and Petersen, 1998; Heim et al., 2002;
Duffau et al., 2003; Billingsley-Marshall et al., 2007; Towle et al.,
2008). How these sites interact to accomplish the multiple stages
of spectral, acoustic, phonological, semantic, and motoric pro-
cessing of human language remains is still studied today.

Several models have been proposed to explain the functional
relevance and the interplay of these regions in accomplishing
speech perception and production. Classically, the regions par-
ticipating in language processing were thought to be modular
in nature, namely, that certain cognitive operations (i.e., audi-
tory, phonological, semantic, and motor preparation/execution)
have specific circumscribed regions and interactions occur in
hierarchical progression (Binder, 2000). Binder et al. proposed a
hierarchical model that projects from the dorsal superior tem-
poral gyrus ventrally to the superior temporal sulcus and the
middle temporal gyrus, and then posteriorly to the angular
gyrus and anteriorly to the temporal pole (Binder et al., 2000).
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This long-standing model has been supported by stroke studies
dating back to the nineteenth century and by many recent brain
imaging studies (Lichtheim, 1885; Price, 2000). More recently,
modern theoretical models of language processing have emerged
that posit a more distributed interaction of anatomic areas for the
various stages of speech processing (Pulvermuller, 2005; Hickok
and Poeppel, 2007). A fundamental difficulty in the assessment
of these models has been the limitations of traditional func-
tional neuroimaging and electrophysiological techniques. These
techniques have either high spatial resolution (e.g., fMRI) or
high temporal resolution (e.g., EEG or MEG) but not both
(Boulton et al., 1990; Srinivasan et al., 1998; Freeman et al., 2003).
Moreover, the cognitive process of speech is primarily a human
phenomenon, thereby limiting practical utility of intracortical
microelectrode recordings, which have proven useful in the study
of other cortical functions in animal models.

A growing number of recent studies have taken advantage
of recordings from the surface of the brain (ECoG) in human
epilepsy patients (Figure 1). In these patients, electrodes are
implanted subdurally on the cortical surface to localize seizure
foci and eloquent cortex, and thus provide a unique opportu-
nity to directly evaluate the cortical physiology of important
functions such as human speech processing. ECoG combines rel-
atively high spatial resolution (5–10 mm inter-electrode distance)
with millisecond temporal resolution. In addition, because ECoG
is recorded beneath the skull, it can detect a range of physio-
logical phenomena, some of which are relatively inconspicuous
on the scalp, in particular in single trials (Boulton et al., 1990;
Srinivasan et al., 1998; Freeman et al., 2003). Of particular note,
variations in the amplitude in high frequencies (i.e., >70 Hz) of
ECoG signals, also known as high gamma (HG) activity, have
consistently been demonstrated to reflect important details of
cortical processing (Crone et al., 1998; Leuthardt et al., 2007; Ray
et al., 2008). Moreover, gamma activity has been closely linked
with single-neuron action potential firing and fMRI bold sig-
nal changes (Foucher et al., 2003; Manning et al., 2009). Recent
studies have begun to utilize ECoG to assess the spatiotempo-
ral characteristics of speech perception and expression (Crone
et al., 1998, 2001a,b; Hart et al., 1998; Ray et al., 2003; Canolty
et al., 2007; Brown et al., 2008; Towle et al., 2008; Chang et al.,
2010; Edwards et al., 2010; Wu et al., 2010). These studies have
shown that HG activity demonstrates robust changes associated
with perception and expression. Summing data across human
subjects has proven quite useful in identifying more generalized

FIGURE 1 | (A) Exemplar electrode array on the surface of the brain.
(B) Electrodes as seen on a lateral skull radiograph.

characteristics about cortical processing. This has been success-
fully implemented in human motor physiology (Miller et al.,
2007). As of yet, however, the population-averaged temporal
evolution of gamma activity has not been derived for a simple
language task.

To better define the interplay of the cortical regions that par-
ticipate in the perception and production of speech, we evaluated
how gamma activity changes while performing a simple overt
and covert word repetition task. To do this, we studied eight
patients with left hemispheric intracranial electrode arrays. Each
patient repeated a word that was presented as either an auditory
or visual cue. Anatomic regions known to be associated with the
processing of language were selected. These included the mid-
dle superior temporal gyrus (mSTG), posterior superior temporal
gyrus (pSTG), posterior middle temporal gyrus (pMTG), angu-
lar gyrus (Wernicke’s area, WA), posterior inferior frontal gyrus
(Broca’s area, BA), primary motor cortex (M1), and premotor
cortex (PM). Changes in HG activity in these areas were defined
and related to the timing of cue presentation and subsequent
word articulation.

In summary, our study reveals the temporal sequence of corti-
cal activations as reflected by classic HG amplitude modulations.
Specifically, our results show that subsequent to the reception of
the cue, perisylvian regions are substantially co-activated during
the perception of language. This occurs regardless of the type of
cue (i.e., auditory or visual). For the overt tasks, all the perisylvian
regions appear to be actively involved throughout the temporal
evolution of perception to expression. While performing a covert
expression, however, dorsal temporal regions and perirolandic
cortex appear to take on a more dominant role. Taken together,
the data supports previous findings of the early and sustained
role that the perisylvian cortex plays in both the perceptual and
expressive phases of speech.

METHODS
SUBJECTS
The subjects in this study were eight patients with intractable
epilepsy who underwent temporary placement of subdural elec-
trode arrays to localize seizure foci prior to surgical resection
(see Figure 1 for an example). They included three men and
five women (see Table 1 for additional information). All gave
informed consent for the study, which was approved by the
Institutional Review Board of the Washington University School
of Medicine and the Human Research Protections Office of
the U.S. Army Medical Research and Materiel Command. Each
patient had an electrode grid (15, 48, or 64 contacts) placed
over fronto-parietal-temporal regions (see Figure 2 for details).
These grids consisted of flat electrodes with an exposed diame-
ter of 2.3 mm and an inter-electrode distance of 1 cm, and were
implanted for approximately 1 week. The electrodes for all sub-
jects were localized over the left hemisphere; four of the subjects
had coverage of the temporal lobe. Grid placement and duration
of ECoG monitoring were based solely on the requirements of
the clinical evaluation without any consideration of this study.
Following placement of the subdural grid, each patient had post-
operative anterior-posterior and lateral radiographs to verify grid
location.
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Table 1 | Clinical profiles.

Patient Age Sex Hand Grid Location Tasks

A 16 F R Left frontal-parietal-temporal Actual/imagined speech

B 44 F L Left frontal-parietal-temporal Actual/imagined speech

C 44 M R Left frontal Actual speech

D 58 F R Left frontal Actual/Imagined speech

E 48 F R Left frontal-parietal-temporal Actual/Imagined speech

F 49 F R Left frontal-parietal-temporal Actual/Imagined speech

G 15 M R Left frontal Actual speech

H 55 M R Left frontal-parietal Actual/Imagined speech

FIGURE 2 | Electrode locations. The brain template on the top highlights the location of the central sulcus and Sylvian fissure, and also outlines the
approximate location of relevant Brodmann areas.

EXPERIMENTAL PARADIGM
During the study, each subject was in a semi-recumbent posi-
tion in a hospital bed about 1 m from a video screen. In separate
experimental runs, ECoG was recorded during four different con-
ditions: word repetition using overt or covert speech in response
to visual or auditory word stimuli (Figure 3). Visual/auditory
stimuli consisted of 36 words that were presented on a video
monitor or through headphones, respectively. These words were
monosyllables with consonant-vowel-consonant (CVC) structure
and were either consonant matched (i.e., contained one of nine
consonant pairs) or vowel matched (i.e., contained one of four
vowels). In each trial, the subject was randomly presented with
one of the words either visually or auditorily. In different runs,
the subject’s task was to overtly or covertly repeat the presented
word. Visual stimuli were displayed on the screen for 4 s, followed
by a break of 0.5 s during which the screen was blank (i.e., 4.5 s
per trial). For the auditory conditions, the total trial duration was
identical, but the duration of the auditory stimuli varied with the
different words (i.e., mean 0.53 s, standard deviation 0.09 s).

DATA COLLECTION
In all experiments, we recorded ECoG from the electrode grid
using the general-purpose BCI2000 software (Schalk et al., 2004)

FIGURE 3 | Experimental paradigm with four conditions. Subjects were
presented with 1 of 36 words using two sensory/input odalities: visual and
auditory stimulus presentation. Subjects were asked to respond using two
output modalities: overt and covert word repetition.

that was connected to five g.USBamp amplifier/digitizer sys-
tems (g.tec, Graz, Austria). Simultaneous clinical monitoring
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was achieved using a connector that split the cables coming
from the patient into one set that was connected to the clin-
ical monitoring system and another set that was connected to
the BCI2000/g.USBamp system. Thus, at no time was clinical
care or clinical data collection affected. All electrodes were ref-
erenced to an inactive electrode that was intracranial, but faced
the skull rather than the brain. In a subset of subjects (sub-
ject B, D, E, F, H), the verbal response was recorded using a
microphone; in the remaining subjects, speech onset was detected
using the g.TRIGbox (g.tec, Graz, Austria). The ECoG signals
and microphone signal were amplified, bandpass filtered (0.15–
500 Hz), digitized at 1200 Hz, and stored by BCI2000. We col-
lected 2–7 experimental runs of ECoG from each patient for
each of the four conditions during one or two sessions. Each run
included 36 trials (140 trials total per condition, on average). All
eight subjects participated in the experiments using overt word
repetition; a subset of six subjects participated in experiments
using covert word repetition. Each dataset was visually inspected
and all artifactual channels were removed prior to analysis.

ANATOMICAL MAPPING
We used lateral skull radiographs to identify the stereotactic
coordinates of each grid electrode with software (Miller et al.,
2007) that duplicated the manual procedure described in (Fox
et al., 1985). We defined cortical areas using Talairach’s Co-
Planar Stereotaxic Atlas of the Human Brain (Talairach and
Tournoux, 1988) and a Talairach transformation (Lancaster et al.,
2000) (http://www.talairach.org). We obtained a 3D cortical brain
model from source code provided on the AFNI SUMA website
(http://afni.nimh.nih.gov/afni/suma). Finally, we projected each
patient’s electrode locations on this 3D brain model using a cus-
tom Matlab program. The standard error for localization with
this type of methodology has been reported to be less than 3 mm
(Miller et al., 2007).

DATA ANALYSIS
We first re-referenced the signal from each electrode using a com-
mon average reference (CAR) montage. To do this, we obtained
the CAR-filtered signal S′

hat channel h.

S′
h = Sh

1
H

H∑

q=1

Sq

H was the total number of channels and Sh was the original
signal sample at a particular time (Marple, 1987; Schalk et al.,
2007).

Every 10 ms, we converted the time-series ECoG signals of
the previous 167 ms into the frequency domain with an autore-
gressive model (Marple, 1987) of order 25. Using this model, we
calculated the spectral amplitudes between 70 and 170 Hz in 2 Hz
bins. With a window size of 167 ms, the temporal precision of the
frequency estimates was ±83 ms. We then averaged these spec-
tral amplitudes within this band, excluding the 116–124 Hz band,
which produced a time course of HG power for each electrode.
To determine the task-related difference in ECoG HG power, we
calculated for each electrode the coefficient of determination (r2)

(Wonnacott and Wonnacott, 1977) between the two distributions
of ECoG HG power associated with a particular task (e.g., overt
word repetition in response to visual presentation) and rest. This
analysis determined, for a particular experimental task, location,
and time point, the statistical difference between task and rest.
(see Figure 4 for examples of the time-frequency distribution of
r2 values for two locations in subject A). Values of r2 indicates how
much of the variance in ECoG HG power can be explained by a
particular task. Thus, as an example, if the amplitude increased in
the HF every time the speech task was performed, the coefficient
of determination would be 1 (r2 = 1). If the amplitude increased
only some of the time that the speech task was performed, the
coefficient of determination (r2) would be reduced but larger
than 0 (Leuthardt et al., 2007; Miller et al., 2007; Pei et al., 2010).

Given these time courses of r2 values at each location, we then
determined the average time course of r2 for different cortical
areas that have been shown to be involved in speech process-
ing. These areas were Premotor area [PM, Brodmann’s Area (BA)
6], primary motor area (M1, BA4), middle superior temporal
gyrus (mSTG, middle portion of BA22), posterior superior tem-
poral gyrus (pSTG, BA41+42), Broca’s Area (BA44+45), Angular
gyrus—Wernicke’s area (WA, BA39+40) and also posterior mid-
dle temporal gyrus (pMTG, posterior part of BA21), and are
shown in Figure 5. To calculate the r2 time course for each area,
we first identified all electrodes in the particular area according to
their Talairach coordinates, and then averaged r2 time courses for
all electrodes in that area. Each region had electrode contributions
from at least four subjects. It is important to note here that the
electrode locations are determined by lateral skull radiographs to
identify the stereotactic coordinates of each grid electrode using
automated software (Miller et al., 2007) which invariably leads
to several millimeters of variance in the anatomic localization.
Thus, there is likely to be some degree of ambiguity of cortical
localization and some overlap in areas once they are aggregated
across subjects. At the same time, the areas that we selected were
much larger than this expected localization error; thus, our results
should provide meaningful temporal trends of cortical activation
for these areas. To determine which r2 values (i.e., which task-
related ECoG activations) were statistically different from rest, we
first randomly reshuffled the labels for task and rest and calculated
the r2 between speech and rest. We then repeated this process
5000 times to generate a distribution of random r2 values. We
then determined the significance level as the r2 value that was at
the 99.7th percentile of that distribution (p = 0.03). Thus, each
of the four conditions resulted in different significance thresholds
that were used to produce Figures 6 and 7.

In addition, we calculated the temporal envelopes of the
auditory stimuli and the subject’s verbal response. To calculate
the temporal envelope of the auditory stimuli, we first squared
the amplitude of the time course of the auditory stimulus for each
word. Then, we applied to each of these squared amplitude time
courses a low pass filter (cut-off frequency 6 Hz, Butterworth IIR
filter of order 3) to extract the temporal envelope of each word
stimulus. Finally, we normalized each temporal envelope by its
maximum and averaged those envelopes across all 36 words. The
resulting average time course of the auditory stimuli indicated
their general onset, offset, and duration. We applied the same
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FIGURE 4 | Examples of representative r2 time-frequency distributions

for overt word repetition in response to auditory stimulation for subject

A. The two time-frequency distributions were calculated for the

corresponding locations indicated by symbols in the brain on the left. Arrows
mark the onset of the subject’s response. Activations are mostly focused on
the gamma band.

FIGURE 5 | The time course for cortical areas that have been shown to

be involved in speech processing were summated across patients. These
areas were Premotor area [PM, Brodmann’s Area (BA) 6], primary motor area
(M1, BA4), middle superior temporal gyrus (mSTG, middle portion of BA22),
posterior superior temporal gyrus (pSTG, BA41+42), Broca’s Area

(BA44+45), Angular gyrus—Wernicke’s area (WA, BA39+40) and also
posterior middle temporal gyrus (pMTG, posterior part of BA21). The number
in parentheses represents the number of electrodes taken from these
regions across patients. The color maps are the approximate regions of these
electrode locations on a stereotactic brain.

procedure to determine the average verbal response from the
microphone recordings, which indicated the onset, offset, and
duration of word production.

RESULTS
ONSET OF CORTICAL ACTIVATION DURING WORD REPETITION TASK
We first characterized the ECoG activations early after pre-
sentation of the stimuli (Figures 6 and 8). The results pre-
sented in these figures show that, with both the auditory and
visual cues and with both overt and covert conditions, sta-
tistically significant ECoG activations occurred in all speech-
associated areas that we interrogated (i.e., all had statistically
significant r2 values during the perceptual phase of the word
repetition task).

TRENDS IN CORTICAL ACTIVATION THROUGH WORD REPETITION TASK
We next defined the activation time courses across the entire
word repetition task to identify trends in cortical activation

throughout the perceptual and expressive phase of the word
repetition task. The perceptual phase of the task was defined
as the first 500 ms subsequent to stimulus presentation, which
encompassed the time of auditory presentation of all cues. This
was also in keeping with the time duration of perceptual activa-
tions defined by previous ECoG and MEG studies that reported
onset and peak activation between 100 and 400 ms, respec-
tively (Rogers et al., 1990; Halgren et al., 2002; Marinkovic
et al., 2003; Canolty et al., 2007). The expressive phase was
defined as 795–1923 ms after stimulus presentation for the visu-
ally cued task and 866–1923 ms after stimulus presentation for
the auditory cued task. Visually cued expressive phase pre-
ceded auditory cued expression by 173 ms. The expressive phases
were derived from the recorded microphone data of the overt
speech tasks. The period of time in which the recorded vol-
ume was greater than 20% the maximum volume was considered
to be speech. The same time periods were also used for the
covert tasks.
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FIGURE 6 | ECoG high gamma r2 time courses as a function of time

relative to auditory or visual stimulation. The dotted line represents
the statistical threshold for significance (p < 0.03). In all four

conditions (auditory/visual cues and overt/covert speech) there is a
widespread activation of all sites early in the perceptual phase of
the task.

For the overt tasks, we found a prolonged cortical activation
of nearly all cortical sites through the perceptual and expres-
sive phase of the task (Figures 7A,B). Distinct between the visual
and auditory cued task, dorsal temporal lobe (mSTG and pSTG)
showed a very large activation early in the perceptual phase of
activation with the auditory cue, while this region activated much
later with the visual cue (i.e., during the expressive phase of the
task). For the covert speech condition (Figures 7C,D), all corti-
cal regions demonstrated activations during the perceptual phase
of the visual or auditory cued task. The expressive portion of the
covert speech task was different from the overt conditions. When
a visual cue was presented, there was a more prominent activation
of dorsal and posterior regions of the temporal lobe and rolandic
cortex (WA, M1, and pMTG) through the expressive phase of
covert articulation. With auditory cues, the pattern was somewhat
different. There was a more prominent temporal activation (WA)
activation early in the expressive phase with a subsequent promi-
nent activation of the rolandic cortex (M1) in the mid-portion of
the expressive phase of the task. The other cortical sites showed a
lower level of activation that were still statistically significant.

VARIABILITY OF ACTIVATION FOR DIFFERENT CORTICAL REGIONS
Across cortical regions, the variability in timing of onset of corti-
cal activation and relative cortical activation was defined across
the four different speech tasks. As mentioned previously, the
majority of mean cortical activation onset times occurred early
within the first 500 ms. Thus, regardless of task, all perisylvian

areas activated during the perceptual phase of the task (Figure 8).
Given the substantial temporal overlap of cortical activation after
onset, we defined the cortical activation as a ratio of total cor-
tical activation at any given time to better define the changing
level of contribution of a given region during the speech task.
Thus, the magnitude of cortical activation (as measured by sta-
tistically significant r2 of HG power changes) for a given region
was defined relative to the other sites over time for each of
the four tasks (Figure 9). Thus, the activation of one region (as
defined by the average statistically significant r2 from all sub-
jects) could be defined as a percentage relative to the total cortical
activation (the sum of all statistically significant r2 values at all
regions across all patients for a given point in time). As an all
or none phenomenon, there is substantial temporal overlap for
cortical activation through all the tasks. When viewed relative to
other activations, however, there is an alteration in contribut-
ing activation over time. There were several notable variations
(Figure 9A). First, mSTG and pSTG (in yellow and pink) have
different levels of contribution to total cortical activation in the
early perceptual phase (0–350 ms after cue) through the audi-
tory and visual cued overt speech tasks. In the auditory condition,
there was a larger representation of cortical activity (approx. 60–
100%) that accounts for the total cortical activation. This was
reduced in the visual condition (Figure 9B) to approximately 30–
40%. Second, in the overt speaking conditions, when speaking
after an auditory cue there was a larger representation of WA
(approx. 50%) and an absence of PM activity when compared
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FIGURE 7 | ECoG high gamma r2 time courses throughout the whole

task period (0 represents the time of stimulus presentation). In the over
speech conditions, the barred solid horizontal line in the upper quadrant of
each figure represents the mean time duration of voice recorded speech.
This time duration of speaking is replicated for the covert speech condition,

as represented by the barred dotted line. The dotted line spanning each
figure represents the statistical threshold for significance (p < 0.03).
In all conditions there is a substantial temporal overlap of cortical
activation throughout the perceptual and expressive phases of the
tasks.

FIGURE 8 | Variability in onset of cortical activation. Timing of statistically
significant cortical activations in terms of onset (earliest time at which site
achieved significance) was averaged across all regions and across all patients.
Height of the bar represents mean time of onset for the respective

regions. Error bars represent standard error. Onset of all interrogated
cortical regions showed activations within the perceptual phase of the
stimulus presentation. The dashed line represents the offset of the auditory
stimulus.

to visual cued overt activations (15% and present, respectively).
Conversely, for visual cued overt speech, there was a larger repre-
sentation of mSTG (50% vs. 35%) when compared to auditory
cued overt speech. Third, when overt and covert speech are
compared there is a larger representation of mSTG, PM, and
WA in the latter half of the imagined speaking as compared to
actual speaking.

DISCUSSION
In this study, we characterized ECoG HG activity changes across
multiple human subjects that performed a simple overt and
covert word repetition task to better define the temporal evolu-
tion of speech-related cortical changes in relevant areas of cortex.
We found that during visually and auditory cued overt word
repetition, there was substantial perisylvian cortical activation
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FIGURE 9 | The magnitude of cortical activation for a given region

relative to the other sites over time for each of the four conditions.

The activation of one region [as defined by the average of statistically
significant r2 (p < 0.03) from all subjects] is defined as percentage relative
to the total cortical activation (the sum of all statistically significant r2 values
at all regions across all patients for a given point in time). The barred solid

horizontal line represents the mean time duration of voice
recorded speech. This time duration of speaking is replicated to the
covert speech condition, as represented by the barred dotted line.
Though there is substantial coactivation of perisylvian cortical regions
during a speech task, the proportion of a given region varies with
the task.

early in the perceptual phase of the task, and this activation was
maintained through the expressive portion of the word articula-
tion. However, This broad activation was attenuated during the
expressive phase of covert word repetition. Across the different
repetition tasks, the utilization of the different cortical sites within
the perisylvian region varied to a more limited degree by modality
of stimuli and type of articulation. The pattern of activation was
dependent on which stimulus was provided (auditory or visual)
and whether the word was to be overtly or covertly spoken.

RELATIONSHIP TO EXISTING TIMING LITERATURE
Generally, the results of this study confirm and supplement pre-
vious studies performed to analyze the temporal evolution of
cortical activity during various word repetition tasks (Canolty
et al., 2007; Dalal et al., 2009; Chang et al., 2010; Edwards et al.,
2010; Steinschneider et al., 2011). Beyond ECoG analysis, the
number of studies on the temporal analysis of speech perception
and expression in humans has utilized MEG, which detects mag-
netic dipoles associated with synaptic transmission in the cortical
sulci (Babiloni et al., 2009; Pulvermuller and Shtyrov, 2009).
From a perceptual standpoint, all sounds have been thought to
activate middle and pSTG at approximately 100 ms after stimulus

(Rogers et al., 1990). When listening to words and sentences, there
is a sustained activation that starts at 200 ms after the stimulus,
reaches a maximum at 400 ms, and is sustained until approximately
600–800 ms post stimulus (Halgren et al., 2002; Marinkovic et al.,
2003). However, using ECoG, Canolty et al showed that pSTG
showed somewhat earlier activation with word specific processing
at 120 ms that subsequently progressed to mid-superior temporal
gyrus at 200 ms post stimulus auditory stimuli (Canolty et al.,
2007). Since this was a specific word to non-word comparison this
was the earliest activation associated with semantic and phono-
logical processing. Our current study demonstrates that onset of
significant activation in temporal regions occurs still earlier within
the first 0–40 ms of stimulus onset, which likely represents the ear-
liest acoustic related activations (Figure 6). Notably, in addition
to temporal areas activating early, so to do other frontal regions
(BA, M1, PM) activate early within the first 200 ms. These areas
remain active throughout the perceptual and expressive phase
of auditory word perception for overt repetition, and become
more attenuated during the expressive phase of covert repetition
(Figure 7). Generally, this same phenomenon is true with visual
reading of words as well, with some notable caveats. The sum-
mated coverage across all patients was largely frontal and temporal.
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Thus, the earliest MEG activations associated with basic visual
feature analysis detected in the occipital lobe at 100 ms and subse-
quent left lateralized activations in the occipital temporal junction
at 150 ms after stimulus (Tarkiainen et al., 1999, 2002) could not
be verified in our study. Reading comprehension has been posited
to occur in the left superior temporal cortex at approximately
200–600 ms (Simos et al., 1997; Helenius et al., 1998; Halgren
et al., 2002; Pylkkanen and Marantz, 2003). In this study, onset
of activation occurred in dorsal temporal lobe (regions labeled
WA, mSTG, pSTG) within the first 200 ms. This activation, as
with auditory stimuli, was not specific to these regions, but was
rather associated with a general activation of all perisylvian areas
(Buckner et al., 2000). Also, similar to the auditory condition,
there was a maintained cortical activation throughout word artic-
ulation, which was reduced to primarily posterior dorsal temporal
lobe (i.e., area labeled Wernicke’s area) and rolandic cortex during
covert word expression. The earlier and broader nature of cortical
findings that seem to be present in both this study and those
found by others (Canolty et al., 2007) likely resides in the signal
substrate being evaluated. Even though signals at high frequencies
have been detected using EEG and MEG (Lenz et al., 2008), and
even though it has been argued that MEG is more sensitive to
high frequencies than EEG (Gruber et al., 2008), the analyses
most commonly performed using EEG or MEG rely on frequency
components below 40 Hz. This is in contrast to the present study,
where we study the temporal progression of activations in the
gamma band. These different frequency ranges represent distinct
physiological phenomena. Rhythms at frequencies below 40 Hz
are thought to represent inter-regional communication in the
brain (e.g., the mu rhythm that can be detected over sensorimo-
tor cortex, which is thought to be produced by thalamocortical
circuits). These low-frequency rhythms tend to have relatively
broad cortical distributions (Pfurtscheller and Aranibar, 1977;
Pfurtscheller, 1989, 1992, 1999). Amplitudes in higher frequencies
(i.e., gamma activity, >40 Hz) are thought to be associated with
local neural activation underneath the electrode (Crone et al.,
2006; Leuthardt et al., 2007; Miller et al., 2007; Ray et al., 2008).
They also tend to have a more focused spatial distribution than
do low-frequency rhythms (Chen and Herrmann, 2001; Miller
et al., 2007). Thus, the differences between the two modalities may
represent the timing differences between intrinsic cortical changes
(seen in ECoG detected gamma changes) versus the modulation
of cortex by deeper structures (which were likely detected by
earlier studies using MEG).

MODALITY AND TASK-DEPENDENT FINDINGS
A number of functional MRI studies (Buckner et al., 2000;
Carpentier et al., 2001; Braze et al., 2011) have defined the depen-
dence of stimulus modality on topographic cortical activation
during speech processing. Similarly, a number of studies have also
compared overt versus covert speech articulation (Palmer et al.,
2001; Shuster and Lemieux, 2005; Christoffels et al., 2007). To
date, only a few studies have compared the temporal relation-
ship of these different regional activations relative to the stimuli
or to the output [e.g., (Pei et al., 2010)]. With regard to stimulus
modality, similar to results presented by studies by Braze et al.
and Carpentier et al., there appears to be a significant degree of

modality independence in the timing profiles of HG activation
between the visual and auditory cue. One notable feature is the
early activation of all regions in the perisylvian network. While
the auditory cue appears to be slightly earlier, all regions were
significantly active within 500 ms. Notably, this included Broca’s
area. This early activation of Broca’s area supports the notion
that modality-independent abstract linguistic representations are
created quite early in perception. Once active all these regions
remained significantly active through the expressive phase of the
task. These same trends held true of covert speech articulations
as well. An important caveat to these similarities is the degree to
which a region was active relative to others (i.e., the difference
between “active—not active” versus level of activation). While
the majority of perisylvian regions were statistically above thresh-
old throughout the task, some regions showed more substantial
and consistent activations than other regions depending on the
stage of cognitive operation. As an example there was a much
higher level of HG amplitude modulation in the superior tem-
poral gyrus early during auditory cue (relative to other regions)
than with the visual cue, which occurred later during the overt
speaking phase. Thus taken together, while there is a substantial
degree of modality independence (visual vs. auditory) and task
independence (overt vs. covert) for whether the perisylvian net-
work is active or not active (i.e., on or off) there is some modality
dependence on the degree to which it is active over time.

CLINICAL RELEVANCE
The relative similarity in the temporal activations, which appear
to be substantially modality independent, could also have impli-
cations in the use of HG changes as a clinical technique for brain
mapping. The use of HG changes has been proposed as a poten-
tial adjunct to current techniques in neurosurgical brain mapping
(Sinai et al., 2005; Crone et al., 2006; Leuthardt et al., 2007;
Wu et al., 2010). The identification of eloquent cortex prior to
resection has been important in reducing the risk of morbid-
ity following surgery (Berger et al., 1989; Burchiel et al., 1989;
Keles et al., 2004). Due to the inter-individual variability in the
anatomic location of language areas, the mapping of these speech
areas is especially critical (Price et al., 1996; Srinivasan et al., 1998;
Pulvermuller, 2005). To date, electrocortical stimulation (ECS) is
considered the current “gold standard” for clinical localization.
However, ECS mapping is inefficient (sample one anatomic site
at time) and can be hampered by the induction of seizures, which
can be clinically dangerous (Blume et al., 2004). Given these con-
straints, an additional approach to defining speech cortex is the
use of ECoG signals that capture the endogenous cortical activa-
tions associated with a particular speech task. These signals can
be acquired without the risk of seizures and can interrogate a
broad region of cortex simultaneously. Several studies to date have
attempted to use this approach to map speech cortex and compare
those findings to the results derived using ECS mapping (Sinai
et al., 2005; Wu et al., 2010). Thus far, the results have been mixed.
Specifically, the sensitivity and specificity of HG changes pre-
dicting a stimulation positive site has varied considerably across
studies. A proposed explanation for this variability has been the
different nature of the experimental paradigms (auditory repeti-
tion vs. visual reading vs. picture naming). The findings in this
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study would argue against that possibility if speech network acti-
vation is highly modality-independent. Another possible expla-
nation is that a single HG band (70–170 Hz) cannot sufficiently
capture the full complexity of cortical activity. As suggested by
Gaona et al. (2011), gamma sub-bands may be necessary to more
fully capture the impact of differing cognitive operations.

RELATION TO CURRENT MODELS OF LANGUAGE PROCESSING
The broadly co-activated behavior of the perisylvian regions that
varies over time could provide evidence to integrate the theories
put forward by the Pulvermuller group and by the Hickock and
Poeppel group (Pulvermuller, 2005; Hickok and Poeppel, 2007).
The early activation of all the perisylvian regions within the early
perceptual phase of cue presentation supports the associative net-
work theory described by Pulvermuller. Pulvermuller asserts that
the semantic lexicon is implemented by an associative network
of activity where distinct neuronal assemblies represent different
word and word classes. All word types, however, share a perisyl-
vian assembly. More specific subclasses integrate regions outside
this core network. Certainly, the early activation of all areas of
the perisylvian network shown in this study would be consistent
with that assertion. At the same time, the variable nature of these
cortical activations over time could also facilitate an integration
with some of the proposed theories put forward by supporters of
a dual stream model of speech processing. In the auditory cued
task, when the ratio of cortical activation is examined, there is
clearly an early temporal cortical activation that is dominant. This
would be consistent with assertions from Hickock and Peoppel
and others that there is an early spectrotemporal analysis that
involves the superior spectrotemporal plane (i.e., STG and supe-
rior temporal sulcus) (Hickok and Poeppel, 2004). However, it
is important to note that, though dominant in early perception,
this area is not exclusively activated. Taken together, some of the
differences proposed by groups such as Pulvermuller and Hickock
and Poeppel may be a matter of threshold. A high threshold for
detecting cortical activations would show only early activations in
STG, whereas a low threshold would show the entire perisylvian
apparatus. Thus, rather than it being one or the other, the model
supported here using cortical electrophysiology is one in which
there is altering cortical prominence of contributing members of
a broadly engaged network. What will be prominent and when
varies to a degree depending on the stimulus and on the linguistic
output.

LIMITATIONS
Though the findings of this study reveal temporal details of corti-
cal activations for distinct cortical areas, which have been difficult

or impossible to acquire with other modalities, there are several
limitations to this work that merit discussion. It is important
to note that the patients recruited from this study are patients
with intractable epilepsy who have been on chronic anti-epileptic
medications. Anti-epileptic medications can alter normal cortical
physiology (Clemens et al., 2006). Averaging across a number of
subjects should aid in reducing any individual abnormality that
could potentially skew the results. In addition to variability in the
cortical physiology due to individual pharmacologic effects, there
may also be inter-subject variability of functional localization
(Ojemann et al., 1989). This subject-specific anatomic variance
could create overlap of timescales that are an artifact of mix-
ing different functional sites. The techniques used in this study
were similar to those employed previous ECoG studies, such as
(Miller et al., 2007), which summated data across a high num-
ber of patients from a similar clinical population for the purpose
of mapping cortical physiology as it related to simple motor
movements. Given that motor localization is subject to the same
inter-subject variability, the results demonstrated localization
and timescales similar to that identified in other functional and
primate models. Thus, despite the limitations described above,
we posit that consolidated information for speech should pro-
vide similar generalizable results. Finally, the cognitive paradigm
employed in this study was a simple word repetition task. This
approach may not strongly engage higher semantic processing.
Even if this study only explicitly tested acoustic and phonologic
processing, this does not change the fundamental finding that
there is a broad cortical activation of cortex with significantly
overlapping time courses to accomplish this task.

CONCLUSION
In this study, we examined the evolving changes of ECoG gamma
power as a marker of focal cortical activation during an overt and
covert word repetition task that was either cued with an auditory
or visual stimulus. We find that there is substantial co-activation of
the entire perisylvian apparatus during the perceptual phase that is
maintained through overt expression and differentially activated
during covert expression. This level of regional activation within
the network varied by stimulus, expression, and time.
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