
Neurology 2001;57:1530–1531Editorial

Taking sides
Corticospinal tract plasticity during development

Jonathan R. Wolpaw, MD; and Jon H. Kaas, PhD

Recent studies in many different species have shown
that peripheral or CNS damage early in life can af-
fect subsequent brain development and lead to pat-
terns of brain organization and function that differ
greatly from normal.1 Impressive progress is occur-
ring in understanding the nature of these reorgani-
zations, and the mechanisms responsible for them
are gradually emerging. At the same time, direct
evidence that early lesions have similar effects in
humans is limited, and the clinical implications of
such effects are largely unknown. In this context, the
study of Eyre et al.2 in this issue of Neurology is an
important contribution.

Eyre et al.2 used transcranial magnetic stimula-
tion (TMS) of motor cortex to evoke responses in
trunk, arm, and hand muscles in normal subjects
from birth to adulthood, in subjects with hemiplegic
cerebral palsy, and in subjects with hemiplegia due
to stroke at least 6 months earlier. Furthermore,
they studied a group of normal neonates within 2
days of birth and then at 3-month intervals until age
2. Their primary goal was to compare contralateral
and ipsilateral muscle responses to stimulation and
thereby compare contralateral and ipsilateral corti-
cospinal tract projections. In normal neonates, con-
tralateral and ipsilateral responses to TMS were
similar in size. Thereafter, ipsilateral responses be-
came steadily smaller and later relative to contralat-
eral responses until adult values were reached by
age 16. In subjects who had hemiplegic strokes as
adults, this normal pattern of contralateral domi-
nance was still evident when the intact hemisphere
was stimulated. In contrast, subjects with hemiple-
gic cerebral palsy retained the infantile pattern:
when the intact hemisphere was stimulated, they
displayed low threshold, large amplitude, and short-
latency responses in ipsilateral as well as contralat-
eral muscles. These results are consistent with
animal studies of the lateralization of corticospinal
tract projections during development3 and provide
information on the rate and extent of this process in
humans that could not be gained from animals.

The authors propose that perinatal damage to one
hemisphere disrupts the normal competition be-
tween contralateral and ipsilateral corticospinal pro-
jections and thus leads to abnormal preservation of
the ipsilateral projections and possibly also to abnor-
mal loss of those contralateral projections that sur-
vived the initial insult. A comparable effect occurs
with disruption of the normal binocular competition
during development in visual cortex (e.g., see refer-
ence 4), and may underlie the gradual development of
amblyopia in children with strabismus. The results
might also reflect growth of preserved ipsilateral cor-
ticospinal projections to contact more spinal cord mo-
toneurons. Such growth after the loss of normal
connections can be prominent, even in the mature
brain.1 This possibility could be addressed in future
animal studies that use anatomic or physiologic
methods to assess the spinal cord terminations of
individual corticospinal tract neurons over the
course of development.

The early years of life are clearly a busy time for
the corticospinal tract. Its activity appears to drive
the plasticity that underlies the predominance of the
contralateral projection and the well-focused spinal
cord reflex patterns evident in normal adults. The
data reported in Eyre et al.2 complement recent in-
sights into the role of the corticospinal tract in shap-
ing spinal cord motor function during development
and even later in life.5 Several research groups, in-
cluding Eyre et al., have found that perinatal hemi-
spheric damage in humans is associated with
abnormal preservation of infantile stretch reflex pat-
terns6-10: the short-latency excitation of both agonist
and antagonist muscles by muscle stretch that is
normally seen only in the infant persists into adult-
hood. A similar preservation of infantile flexion with-
drawal reflex patterns occurs in rats subjected to
perinatal spinal cord transection.11 That normal re-
flex development depends on the corticospinal tract
specifically is also suggested by animal and human
data indicating its importance in operant condition-
ing of spinal reflexes. Humans, monkeys, and rats
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can gradually increase or decrease the amplitude of
the spinal stretch reflex (i.e., the tendon jerk) or its
electrical analog, the H-reflex, without change in mo-
toneuron background tone when they are rewarded
for during so.12 This ability appears to be abolished
by lesions of the corticospinal tract or sensorimotor
cortex.13,14 Throughout life, comparable modifications
in spinal reflex function are associated with and con-
tribute to the gradual acquisition of complex motor
skills.5,12

The study of Eyre et al.2 has implications for the
design of new rehabilitation strategies aimed at re-
ducing the effects of perinatal hemispheric damage.
For example, as the authors suggest, techniques that
increase the competitive advantage of surviving con-
tralateral projections from the damaged hemisphere
might reduce or prevent the gradual development of
hemiplegia that often occurs.15 In addition, methods
that provide stereotyped patterns of activity in re-
maining corticospinal tract projections or peripheral
afferents might promote development of more appro-
priate spinal cord reflex patterns and thereby im-
prove motor function.5,10
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