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Abstract: 

Objective: Real-time monitoring of the brain is potentially valuable for  
performance monitoring, communication, training or rehabilitation. In 
natural  
situations, the brain performs a complex mix of various sensory, motor, or 
cognitive functions. Thus, real-time brain monitoring would be most 
valuable if (a) it could decode information from multiple brain systems 
simultaneously, and (b) this decoding of each brain system were robust to 
variations in the activity of other (unrelated) brain systems. Previous 
studies showed that it is possible to decode some information from di 

fferent brain systems in retrospect and/or in isolation. In our study, we set 
out to determine whether it is possible to simultaneously decode important 
information about a user from diff 
erent brain systems in real time, and to evaluate the impact of concurrent 
activity in diff 
erent brain systems on decoding performance.  
Approach: We study these questions using electrocorticographic (ECoG) 
signals  
recorded in humans. We first document procedures for generating stable 
decoding  

�models given little training data, and then report their use for onl ine and 

for realtime decoding from 12 �subjects (6 for onl ine parameter 
optimization, 6 for online experimentation). The subjects engage in tasks 
that involve movement intention, movement execution and auditory 
functions, separately, and then simultaneously.  
Main results: Our real-time results demonstrate that our system can 
identify  
intention and movement periods in single trials with an accuracy of 80.4% 
and 86.8%, respectively (where 50% would be expected by chance). 
Simultaneously, the decoding of the power envelope of an auditory 
stimulus resulted in an average correlation coefficient of 0.37 between the 
actual and decoded power envelope. These decoders were trained 
separately and executed simultaneously in real time.  
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Significance: This study yielded the first demonstration that it is possible to 
decode simultaneously the functional activity of multiple independent brain 
systems. Our comparison of univariate and multivariate decoding 
strategies, and our analysis of the influence of their decoding parameters, 
provides benchmarks and guidelines for future research on this topic. 
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Abstract.

Objective Real-time monitoring of the brain is potentially valuable for

performance monitoring, communication, training or rehabilitation. In natural

situations, the brain performs a complex mix of various sensory, motor, or cognitive

functions. Thus, real-time brain monitoring would be most valuable if (a) it could

decode information from multiple brain systems simultaneously, and (b) this decoding

of each brain system were robust to variations in the activity of other (unrelated)

brain systems. Previous studies showed that it is possible to decode some information

from different brain systems in retrospect and/or in isolation. In our study, we set out

to determine whether it is possible to simultaneously decode important information

about a user from different brain systems in real time, and to evaluate the impact of

concurrent activity in different brain systems on decoding performance.

Approach We study these questions using electrocorticographic (ECoG) signals

recorded in humans. We first document procedures for generating stable decoding

models given little training data, and then report their use for offline and for real-

time decoding from 12 subjects (6 for offline parameter optimization, 6 for online

experimentation). The subjects engage in tasks that involve movement intention,

movement execution and auditory functions, separately, and then simultaneously.

Main results Our real-time results demonstrate that our system can identify

intention and movement periods in single trials with an accuracy of 80.4% and 86.8%,

respectively (where 50% would be expected by chance). Simultaneously, the decoding

of the power envelope of an auditory stimulus resulted in an average correlation

coefficient of 0.37 between the actual and decoded power envelope. These decoders

were trained separately and executed simultaneously in real time.

Significance This study yielded the first demonstration that it is possible to decode

simultaneously the functional activity of multiple independent brain systems. Our

comparison of univariate and multivariate decoding strategies, and our analysis of the

influence of their decoding parameters, provides benchmarks and guidelines for future
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Simultaneous Real-Time Monitoring of Multiple Cortical Systems 2

research on this topic.

Page 3 of 32 CONFIDENTIAL - FOR REVIEW ONLY  JNE-100098.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Simultaneous Real-Time Monitoring of Multiple Cortical Systems 3

1. Introduction

Researchers in the field of neural engineering envision that real-time decoding of

brain activity can be used for performance monitoring, functional restoration and/or

rehabilitation [1, 2, 3, 4, 5, 6, 7, 8, 9]. One critical and typically ignored issue of

such brain-based applications is that real-world tasks usually directly or indirectly

involve multiple sensory, motor and/or cognitive brain processes. Thus, decoding

information from the brain may need to access information from different brain systems

and needs to be robust to variations in other (unrelated) brain processes. Previous

(mostly offline) studies have shown that it is possible to relate specific functional

parameters to brain signal features for isolated brain functions. These demonstrations

usually involved the motor or auditory systems, and were accomplished using non-

invasive electroencephalography (EEG) [10, 11, 3], invasive electrocorticography (ECoG)

[12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28], or invasive single-

neuron recordings [29, 30, 31, 32, 33, 34]. However, it remains unclear whether the

relationships between different functional parameters and brain signals are conserved

during real-world tasks, which tend to be complex and multi-modal and often occur

in varied and unpredictable contexts. We aim to determine whether it is possible to

decode multiple brain systems when they are engaged simultaneously. In doing so, we

also set out to assess the effect of various decoding parameters on decoding, and the

robustness of each task to the activity of the other brain processes. If they could be

further validated in other contexts, these procedures would have important implications

for the practical utility of brain-based systems for monitoring, functional restoration

or rehabilitation. In the present study, we simultaneously extract from ECoG signals,

in real time, parameters relating to motor preparation, motor execution, and auditory

processing. Thus, we provide the first demonstration of simultaneous multiple-system

decoding, as well as the first evidence that the decoding of an individual brain system

can be stable even when other brain processes are engaged.

In our study, we use ECoG signals from subdural grids implanted on the surface

of the brain. In contrast to metabolic methods such as functional magnetic resonance

imaging (fMRI), ECoG has high temporal resolution (< 1 msec). In contrast to single-

unit recordings, ECoG signals provide detailed information about brain function across

large areas of the brain, and also appear to have distinct advantages in signal robustness

[35]. In contrast to non-invasive EEG signals, ECoG has much greater signal-to-noise

ratio [20], minimal artifacts, higher spatial resolution (< 1 cm), broader bandwidth (0–

500 Hz) and higher amplitude (50–100 µV for ECoG in contrast to 10–20 µV for EEG).

ECoG signals in humans are usually acquired from people with epilepsy who undergo

invasive pre-surgical monitoring for localization of epileptic foci. Recent offline studies

have shown that ECoG amplitudes in certain frequency bands carry substantial task-

related information, such as motor execution and planning, auditory processing and

visual-spatial attention [36, 37, 17, 23, 38, 16, 22, 18, 39, 27]. Most of this information

is captured in the high gamma range (around 70–110 Hz), suggesting that high gamma
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Simultaneous Real-Time Monitoring of Multiple Cortical Systems 4

activity provides reliable information about neural activity of local cortical populations.

While these properties of ECoG are attractive, the present clinical circumstances of data

collection add several situation-based challenges and limitations, in particular for real-

time research studies. Efficient and effective ECoG-based research requires robust and

general protocols [40]. Data acquisition and implementation must be carried out within

a short period of 2–3 days, constrained by post-surgery recovery, clinical monitoring

and mapping procedures, visitors, epileptic seizures, and variations in the subject’s

health, alertness and motivation. Thus, and probably not unlike eventual real-world

application of such technologies, we must work within restricted time and space to

set up and adapt data acquisition and processing systems. These systems must be

portable, interruptible, compatible with the clinical environment required for a post-

surgical patient, and resistant to the signal interference generated by medical equipment

in the patient’s room.

These requirements are even more severe for the multi-modal real-time decoding

application discussed here. The processing pipelines for offline analysis and for real-time

decoding should be identical, so that results from offline analysis can be transferred

seamlessly to the real-time setting. In practice, this means that both real-time and

offline pipelines must work within the constraints imposed by both the real-time nature

of the application and the clinical setting of ECoG measurement. This means that (i)

there is limited time for pre-processing, artifact detection and removal, and adaptation

of the many decoder parameters to the characteristics of the subject and of the

environment (this is a particular problem if the decoder is not robust to changes in these

characteristics from session to session, requiring time-consuming repetition of parameter

optimization); (ii) the total amount of data is limited, and within this, calibration data

must strictly precede test data, and the amount of calibration data must be minimized

to maximize the amount of test data for validation of decoder performance; (iii) signal

processing and decoding algorithms, as well as visualization routines, must be simple

enough, and efficiently implemented, to run in real-time on the available computing

hardware; (iv) the hardware components must be assembled into a self-contained, mobile

system that can be moved around a crowded hospital environment and removed quickly

in an emergency; and (v) the software must allow measurement to be interrupted without

loss of data, resumed quickly, and repeated efficiently.

We worked through these challenges and constraints for conducting the four phases

of our study. These phases included: method optimization, generalization testing,

calibration, and real-time testing. For the first two phases, we used ECoG data

collected during motor preparation, motor movements, and auditory processing from

an initial group of 6 subjects. These first two phases resulted in optimized procedures

for data collection, artifact rejection, signal pre-processing, and classifier training. We

then applied these optimized procedures to 6 new subjects. In 5 of these subjects,

we realized real-time experiments that simultaneously decoded aspects of movement

planning, movement execution and auditory processing.
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Simultaneous Real-Time Monitoring of Multiple Cortical Systems 5

2. Methods and Materials

All subjects were epilepsy patients that were undergoing invasive ECoG monitoring

(see Section 2.1 for details). Our study contained four phases. Phases I and II involved

purely offline (i.e. retrospective) analyses of data from the first six subjects. Phases

III–IV were each performed as part of the real-time study with six different subjects.

An overview of each of these phases is given in the following paragraphs:

Phase I (offline optimization): We first retrospectively investigated the effect of

various decoding approaches and parameter settings using the data from the first

measurement session performed by subjects 1–6. ECoG data were recorded as described

in Section 2.3, together with stimulus timing information, while the subjects performed

the experimental tasks detailed in Section 2.2 in separate runs. We aimed to acquire

at least 300 trials of an 8-target center-out joystick task, and two runs, each 3–5

minutes in length, of a music listening task. In addition, Brodmann-area assignments

(see Section 2.4) and functional maps (Section 2.5) were obtained for each subject.

These data formed a basis for offline exploration, by cross-validation, of the decoding

parameters and strategies for optimal real-time performance for each of these tasks.

This is described in Section 2.6. Three decoders were optimized: one for the intention

to move (motor planning in the joystick task), one for movement (motor execution in the

joystick task), and one for auditory processing (from the listening task). Optimization

results are presented in Sections 3.1.

Phase II (generalization): For 4 of the first 6 subjects, we had the opportunity to

repeat the data collection session on a subsequent day. For these datasets, the optimal

decoders from phase I were used to assess how well our system could generalize and

transfer between sessions that were widely separated in time.

Phase III (calibration and decoding evaluation on separate tasks): For each of

the subjects 7–12, we acquired calibration data as well as Brodmann-area assignments

and functional mapping information, as described above for phase I. As for subjects 1–6,

the different tasks were recorded in separate runs. Decoders for intention, movement

and auditory processing were then configured separately based on these data, using

the parameter settings that had been found to be optimal in Phase I. Once the data

had been recorded, this process of configuration lasted no more than a few minutes. A

preview of the decoders’ performance was estimated by re-training them on only the first

80% of the data, and evaluating them on the unseen final 20%. Real-time performance

was also subsequently captured for each of these separate tasks.

Phase IV (simultaneous multi-modal decoding): For each of the subjects 7, 8, 9,

10 and 12, we acquired data during a subsequent multimodal real-time session. Since

there was no coverage of motor or premotor cortex in subject 11, we assessed only

auditory processing in this subject. The other subjects performed the center-out joystick

task in the presence of background music. Thus, for the first time, decoders trained

on separate tasks could be assessed during multi-modal cortical processing. During
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Simultaneous Real-Time Monitoring of Multiple Cortical Systems 6

Table 1. Clinical profiles of the subjects who participated in the study

Subject Age Sex Handedness Performance IQ Epilepsy Classification Num. of Electrodes

1 29 F R 136 Left temporal 96

2 56 M R 87 Left temporal 101

3 25 M R not known Left frontal 96

4 25 M R 114 Right frontal 100

5 26 M R 100 Right temporal 111

6 45 M R 95 Left temporal 58

7 49 F L 99 Left temporal 69

8 52 M L 91 Left parietal 64

9 29 F R 95 Left temporal 120

10 45 F L 84 Left temporal 61

11 60 M R 75 Left parieto-occipital 59

12 26 F R not known Left temporal 128

this session, the experimenter’s control screen allowed visualization of the functional

activations from the three decoders (intention, movement and auditory processing) in

real time. Decoder outputs were displayed in real time in the form of bar gauges, together

with scrolling graphs that captured the last 10 seconds’ history of the time-varying

signals. To deal with drifts in signal offset as a function of time, the gauges continuously

rescaled themselves such that the vertical axis contained everything between the 1st and

99th percentiles of the values output over the preceding 10 seconds. Elements of the

real-time visualization screen are shown in Figure 2. The real-time sessions were also

captured as videos, with subjects’ consent. The video recorded the screen view as

presented to the subject, synchronized in time with the experimenter’s control screen

view. Decoding performance is given in Section 3.5. Movie S1 in the supplementary

material shows an excerpt from the video recording of subject 12.

2.1. Human Subjects

The ECoG data in this study were collected at the Epilepsy Monitoring Unit at Albany

Medical Center (AMC) from twelve subjects who were candidates for resection surgery to

treat drug-resistant epilepsy. They underwent invasive evaluation for surgical planning,

where an array of electrodes was temporarily placed on the surface of the brain for the

purposes of localizing the seizure focus and delineating eloquent cortex. As described

in [40], clinical brain signal monitoring and review was not compromised at any time as

we used a connector that split the cables coming from the patient’s implanted electrode

array into one set that was connected to the clinical monitoring system and another

that acquired data for research purposes. All data were collected with approval by the

Institutional Review Board of AMC, following subjects’ informed consent and contingent

on their clinical state, and willingness at the time of measurement. A brief clinical profile

of the subjects is given in Table 1, and the spatial arrangement of their electrodes is

shown in Figure 2.
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Simultaneous Real-Time Monitoring of Multiple Cortical Systems 7

Decoded Intention Vs Rest

Decoded Movement Vs Rest

Decoded Auditory Processing 

Music RMS 
sec

(a) (b)

(i)(c)

(d)

(e)

(f )

(g)

(h)

Figure 1. This figure shows the interface for visualizing decoder outputs in real time.

Panel (a) shows the real-time viewer for the raw ECoG signals; (b) shows the video feed

of the subject performing the task; (c) and (d) show the decoder outputs (in blue) for

the intention and movement decoders, respectively, with the respective critical periods

marked in red (arrows have been added to emphasize the critical periods’ onset times);

(e) shows the decoder output (in blue) together with the sound RMS recorded by

the microphone (in red); (f) and (g) show the cortical model for this subject and the

electrodes that showed significant task-related high-gamma activation in the intention

and movement periods respectively; (h) shows the decoded sound RMS and microphone

output RMS as bar-gauge visualizations that fluctuate in real time; (i) shows a view of

the application screen during the intention period of the center out joystick-task. The

decoder traces (c), (d) and (h) scrolled continuously from right to left, with the most

recent values plotted at the right-hand edge.

Figure 2. For each of the subjects 1–12, subdural ECoG electrode locations are

shown as red dots on a rendering of the subject’s three-dimensional surface model of

the cortex. The brain model and electrode locations were derived from co-registration

of pre-implantation MRI and post-implantation CT.
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Simultaneous Real-Time Monitoring of Multiple Cortical Systems 8

2.2. Stimulus and Task Design

The cortical functions that we probed in the current study were intention (i.e. motor

planning in a joystick task), movement (i.e. motor execution in a center-out joystick

task) and auditory processing (i.e. listening to music). This selection was based

on recent studies that demonstrated, in retrospective analyses, the relationship with

parameters of these functions with brain signals [37, 36, 23, 24, 31, 38, 18, 19, 21, 22].

Recordings also included a rest condition.

2.2.1. Center-out joystick task We examined intention and movement with a standard

center-out joystick task. The subject was equipped with a joystick and an LCD monitor

placed at eye level at a viewing distance of 55–60 cm. The monitor had a built in

eye-tracking device that was calibrated to the subject’s eyes at the start of every new

session.

The task consisted of discrete trials that lasted up to 6 seconds each. These trials

were performed in runs of 30 trials, after which the subject could take a short break. In

each session, we collected at least 10 runs, for a total of at least 300 trials. A fixation

cross was displayed at the center of the screen, at all times, during a run, and the subject

was asked to maintain fixation on the cross. The time course of a typical trial is shown

in Figure 2.2.2(a). Each trial began with the presentation of a colored square for one

second at the target location—this location was chosen randomly and independently on

each trial from one of eight positions located equidistant from the center, at 0, 45, 90,

135, 180, 225, 270, and 315 degrees. This one-second period was considered the motor

planning or intention period, after which a small spherical cursor was presented at

the center of the screen. The presentation of the cursor was the cue for the movement

period to begin: while maintaining central fixation, the subject had to use the joystick

to move the spherical cursor until it hit the square target. When the cursor hit the

target, it turned green to indicate a hit. A maximum of three seconds was allowed for

this movement, after which there was a one-second rest period, with only the fixation

cross visible. The trial was aborted if, at any time, the subject’s gaze shifted away from

the fixation cross by more than 20% of the screen height for more than 500 msec.

2.2.2. Listening task The task used for decoding auditory processing involved listening

to 3–5 minutes of music—either The Wall by Pink Floyd, or All Right Now by Fire and

Ice. The music was binaurally presented to each subject using standard speakers (50

Hz - 20 kHz audio bandwidth). The sound volume was adjusted to a comfortable level

for each subject. Each piece of music was followed by two minutes of rest, during which

the subject was asked to relax with eyes open, and avoid movement or speech. The

typical timeline is shown in Figure 2.2.2(b). The task did not involve any visual or

motor engagement.
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Simultaneous Real-Time Monitoring of Multiple Cortical Systems 9

    1 sec 1 - 3 sec     1 sec    1 sec

              Rest          Directional Cue Appears: Plan Motion                 Cue Appears to Start Movement                                       Feedback                         Rest
     Instruct: Relax               ‘WAIT till ball appears’                        Move ball with joystick to hit the box                        ‘Hit’ = Green; ‘Miss’ = ‘red’          Relax

(a)

(b)

Figure 3. Panel (a) shows the time course of a typical trial in the center-out joystick

task that we used to investigate intention-to-move and movement. The subject fixated

on the central cross throughout the trial. The 1-second intention period began with a

directional visual cue (red square) presented on the screen at the target location. The

1- to 3-second movement period began when a cursor appeared in the center of the

screen. This cued the subject to begin joystick movement to guide the cursor to the

target. If the target was hit, it turned green. Afterwards, there was a 1-second rest

period before the next trial began. The rest period also began if the cursor did not hit

the target within a 3-second period. Panel (b) shows the time course of the listening

task used to investigate auditory processing: the subject listened to 3–5 minutes of

popular music, then rested quietly for 2 min.

2.3. Data acquisition

To implant the ECoG grids, one or two subdural 8 × 8 grids of platinum-iridium

electrodes were placed subdurally on the surface of the brain, together with one or

more strips that consisted of 4–8 electrodes configured in a single row. The electrodes

were of one of two types: those supplied by Ad-Tech (Ad-Tech Medical Instrument

Corporation, Racine, WI, USA) had a 2.3 mm exposed recording surface and an inter-

electrode distance of 1 cm; those supplied by PMT (PMT Corporation, Chanhassen,

MN, USA) had a 3 mm exposed surface and an inter-electrode distance of 6 mm. The

grids were placed solely as required for clinical evaluation, without any consideration of

the research. They were typically implanted for a period of 4–7 days.

Signals from these ECoG electrodes were fed simultaneously to the research and the

clinical systems via splitter boxes (Ad-Tech), with separate ground connections for the

two systems. The research system was connected only during research measurements,

and collected ECoG signals at 1200 Hz sampling rate using eight synchronized

FDA-approved 16-channel g.USBamp amplifier/digitizer units (g.tec, Graz, Austria).

Electrodes that were distant from the expected seizure focus, and expected to be inactive

or least eloquent with regard to the investigated functions, were selected as the reference

and ground electrodes. Data collection, stimulus presentation, and synchronization
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Simultaneous Real-Time Monitoring of Multiple Cortical Systems 10

of data, stimuli, and joystick/eye movements were accomplished using the BCI2000

software platform [41, 42].

To monitor and enforce fixation, we recorded subjects’ eye gaze using a Tobii T60

eye-tracking monitor (Tobii Tech., Stockholm, Sweden) that was positioned at eye level

55–60 cm in front of the subject and was calibrated for each subject at the start of each

experimental session.

We recorded the music that was played during the real-time sessions using a

dynamic (moving-coil) microphone (frequency response of 50 Hz – 15 kHz). The

microphone was electrically isolated and had a unidirectional (cardioid) pickup that

minimized unwanted background noise. The recorded sound was fed back into the

BCI2000 software pipeline, in real time, parallel to the ECoG data acquisition, to

visualize the auditory decoding performance for that piece of music.

2.4. Electrode localization

To localize the electrodes, we collected different types of imaging for each subject: (a)

pre-implantation magnetic resonance images (MRI) (T1-weighted coronal SPGR slices,

1 mm width, imaged using a GE 1.5T scanner); (b) intra-operative photographs of the

exposed cortical surface before and after grid placement; (c) post-implantation computer

tomography (CT) scans (1 mm slice width, skin to skin); and (d) post-implantation

lateral and frontal X-Ray images.

We localized the electrode grids by first extracting the three-dimensional anatomical

information from the subject-specific pre-implantation MRI images. We then performed

a landmark- and volume-based co-registration with the post-implantation CT images

using CURRY software (Compumedics, Charlotte, NC, USA). This allowed the

projection of grid electrodes onto the modeled cortical surface, including those that

were hidden from view during the surgery. For subject 5, post-operative CT images were

not available. We localized the grid for this subject with pre-implantation MRI and the

post-implantation X-Ray images using the method described in [36]. Electrode locations

were verified visually, using the intra-operative grid implantation photographs, based

on vascular landmarks. The cortical model and the electrode coordinates were then

exported in MATLAB-readable formats for subsequent processing and visualization.

The electrode coordinates were also transformed to the Talairach coordinate system

(based on the Anterior Commissure as the origin) and an approximate Brodmann-area

assignment that was determined for each electrode using the Talairach Daemon [43, 44].

The resulting approximate locations were used for identifying neuroanatomical cortical

structures relevant for the functions under study. This helped to screen for electrodes

with (possible) dominant artifactual activations (i.e. electrodes that had significantly

high activations during the task, but were in areas far removed from the cognitive process

being assessed).

Page 11 of 32 CONFIDENTIAL - FOR REVIEW ONLY  JNE-100098.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Simultaneous Real-Time Monitoring of Multiple Cortical Systems 11

2.5. Functional mapping

For each subject, we established a functional map of receptive language and hand/oral

motor function using the SIGFRIED mapping procedure [23]. SIGFRIED compared,

at each electrode, the statistical distributions of gamma activation between the resting

and activity conditions. The results provided probabilistic maps of significant gamma

activation during the functional tasks.

These ECoG- or stimulation-based mapping results allowed us to constrain the

choice of electrodes suggested by the subsequent calibration procedures to those

locations that were most neuro-anatomically relevant to the task.

2.6. Decoding methods

The common decoding pipeline used in the above phases consisted of preprocess-

ing/feature extraction, followed by either univariate or multivariate decoding.

Preprocessing and feature extraction:

(i) The signals were digitally filtered using an IIR notch filter centered on 60 Hz to

remove power-line noise.

(ii) We first excluded channels from the analysis if they were still heavily affected by

electrical artifacts such as noise due to lack of electrode contact, non-physiological

artifacts such as from monitoring devices or movements, or physiological artifacts

such as from paroxysmal activity or seizures.

(iii) The signals were either referenced to the single ECoG electrode that had originally

been chosen as a measurement reference, or re-referenced to the common average

of all channels (CAR). We evaluated the impact of these two referencing methods

during the optimizations of Phase I, and used CAR in subsequent phases.

(iv) The signal was windowed using a rectangular window sliding in steps of 50 msec.

For our decoding of intention or movement, one such window was extracted for each

trial, centered 500 msec after the start of the relevant period of the trial, for each of

the three periods of interest (intention, movement and rest). During optimization,

window lengths of 150, 250, 350, 450, 550 and 650 msec were compared; we selected

650 msec for subsequent phases of the study. For our decoding of the temporal

envelope of sound RMS, we compared the use of window lengths of 150 msec -

650 msec windows as well, where 650 msec, with a constant lag of 200 msec, was

selected as an optimal setting for the study. The lower range of window lengths

to be tested was selected based on the commonly used window lengths in similar

ECoG studies [13, 23]. Our choice for the higher range of the window length was

somewhat more arbitrary, but reflected the trade-off between inclusion of more

data for decoding and the requirement for rapid updates and feedback in a real-

time system.
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Simultaneous Real-Time Monitoring of Multiple Cortical Systems 12

(v) The amplitude spectrum was then estimated for each channel and each time-window

using an auto-regressive model optimized via Burg’s Maximum-Entropy Method

(MEM)[45]. We compared model orders of 10, 25, 50 and 100, and used a model

order of 50 for all subsequent real-time experiments. Spectral amplitudes were

estimated using the resulting model and summated over the range 70–100 Hz. The

result was a single estimate of high-gamma activation per channel, per time-window.

A growing number of recent studies are suggesting that activity in the gamma band

reflects a broadband phenomenon rather than a narrowband oscillation [36, 37]. In

our study, we chose the particular frequency band (70-110 Hz), because it avoids

the 60 Hz and 120 Hz frequencies that may be affected by line noise. Also, 70 Hz is

far beyond the highest frequency (about 30 Hz) at which low-frequency oscillations

can be observed; and 110 Hz is much lower than the noise floor of the amplifier

system (about 200-250 Hz).

(vi) The high-gamma amplitudes were then represented on either a linear or a log scale.

After initial evaluations, we chose the log scale for representing the ECoG features

in subsequent analyses.

Multivariate Decoding: The decoding component mapped extracted features to

estimates of engagement in the relevant neurocognitive function as compared to resting

state. The final output signal was computed by combining the high-gamma activation

features across channels using a weighted linear summation.

For the music listening task, multiple linear regression was used to regress the root-

mean-square (RMS) of the music RMS (computed from the music file in sliding windows

of the same length as the window used for ECoG high-gamma amplitude estimates)

against the ECoG high-gamma estimates.

For the joystick task, detectors for the intention state and the movement state were

built by considering the two corresponding binary classification problems, intention vs.

rest and movement vs. rest. For completeness, we also show results for the intention

vs. movement problem. Linear weights for these binary classification problems were

obtained with the stepwise (SWLDA) multilinear regression method, which determined

the weights of the linear function so as to minimize the squared error between the output

estimates and labels of the classes (-1 and +1).

Univariate decoding: Previous studies [37, 35] showed that some functions can be

tightly spatially localized on the ECoG grid. We found that our functional mapping

results from the SIGFRIED system [23] often corroborated this observation. On the

assumption that the single most functionally relevant spatial location is unlikely to

change as a function of time at the spatial scale at which we record, it seemed plausible

that the selection of a single electrode might provide good performance while generalizing

well across sessions and contexts, and minimizing the risk of overlap between decoders

intended to reflect different brain functions.
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Simultaneous Real-Time Monitoring of Multiple Cortical Systems 13

To test this hypothesis, we compared the multivariate decoder against a univariate

decoder, in both our optimization (Phases I–II) and where possible in our real-time

test (Phases III–IV). The univariate decoder was based on manual selection of a single

electrode location, as selected by the researcher who integrated the following multiple

sources of information:

(i) topographical maps of the coefficient of determination (r2) that were calculated,

for each electrode, between band power of the ECoG signal and the state of task-

engagement (see Section 2.7);

(ii) anatomical structures covered by the electrodes, as obtained from various grid

localization methods, such as intra-operative photographs (Figure 2.6(a,b)), pre-

operative and post-operative CT and MRI imaging, X-ray and MRI imaging (Figure

2.6(c,d)), and surgical notes (Figure 2.6(f)) (described in Section 2.4);

(iii) topographical maps of Brodmann areas that were derived by rendering the patient-

specific 3D cortical anatomy with electrodes in the Talairach coordinate space

(Figure 2.6(e)) (described in Section 2.4);

(iv) functional activity maps obtained from SIGFRIED (Figure 2.6(g,h)) or electrical

cortical stimulation (see Section 2.5);

(v) areas masked/activated by epileptiform activity as defined by clinicians.

2.7. Decoding assessment

We assessed decoding performance in the following ways:

• Assessment of relevance of individual features: to assess the extent to which ECoG

activity at one or more locations contributed to solving a prediction problem, we

used the coefficient of determination (r2). This metric reflects the fraction of

the variance in the predictor’s output that is explained by the differences in the

target labels. For binary classification problems, the labels were arbitrary (-1 and

+1), whereas for our listening task, the labels were the RMS values of the music

envelope, computed from the music file using sliding windows of the same length

as the windows used for feature extraction from the ECoG. When we assessed the

significance of an r2 value, we used Bonferroni-correction to account for multiple

comparisons.

• Assessment of predictor performance in the music listening task: this was quantified

by computing the Spearman correlation coefficient ρ between the predictor output

and the running RMS values of the music RMS.

• Assessment of trial-based classifier performance: one measure of intention and

movement prediction performance is classification accuracy (CA) of a binary

classifier. To compute CA, we extracted just one discrete exemplar of each class

(intention, movement and rest) from each trial of the center-out joystick task. CA

is given by the proportion of these exemplars that the classifier assigns to the
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Figure 4. This figure summarizes some of the ancillary sources of information

used by the authors to make an informed choice of functionally relevant electrodes

when employing the univariate decoding approach. Panel (a) shows an intra-

operative photograph taken before grid placement; panel (b) shows an intra-operative

photograph with grid placement; panel (c) shows grid positions from a post-

implantation CT; panel (d) shows anatomical information from a pre-operative MRI;

panel (e) shows a 3D cortical model rendered from a pre-operative MRI and a post-

implantation CT, from which approximate Brodmann-area assignments are made by

the Talairach daemon; panel (f) shows surgical sketches and notes; panel (g) shows the

SIGFRIED mapping for a complex hand motor task, and (h) shows the SIGFRIED

mapping for a listening task.

correct class in a binary subproblem (intention vs. rest, movement vs. rest, or

intention vs. movement). It is estimated by training the classifier on one subset of

the exemplars and testing it on another non-overlapping subset—either repeatedly

by cross-validation, or via a single training/test fold, as described in section 2.6.

• Assessment of intention and movement predictors in real time: in a realistic brain-

monitoring application, classifiers for each brain state must be trained without

complete prior knowledge of the classes against which their output must distinguish

itself. For example, if we want to build a monitoring system that includes a gauge

labelled ”intention to move the hand,” then this gauge should ideally distinguish

intention to move the hand from all other possible states (i.e. from rest, and from

actual movement of the hand, but also from the intention to move other body parts

and from the performance of an arbitrary range of other mental tasks). We also

assume that the outputs of a monitoring system would not be assessed at single

discrete pre-defined time-points (as assumed in an assessment based on CA) but

as continuous traces (or at least, traces that are updated in small (e.g. 50 msec)
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Simultaneous Real-Time Monitoring of Multiple Cortical Systems 15

increments).

Therefore, we wished to ask: given a classifier trained to distinguish a certain brain

state (say, intention) from the resting state, how well does it distinguish all the time

windows of the test set that could be considered to reflect that state (intention),

from all other time windows (non-intention)? To quantify this, we labelled each

time-window as intention if the majority of the window’s samples occurred during

the intention period, and as movement if the majority of the window’s samples

occurred during a movement period. We judged the detector for a brain state

to have predicted that state when its output exceeded the 95th percentile of its

previous activity, computed over a 10-second sliding window (the same length of

time that our visualization window displayed at any one time). We then computed

sensitivity and specificity of these detectors for intention vs. non-intention windows,

and for movement vs. non-movement windows:

sensitivity = true positives / (true positives + false negatives)

specificity = true negatives / (true negatives + false positives)

In the optimizations of Phase I, where we sought to find the optimal feature

extraction parameters, the split into training and test subsets was performed repeatedly

in a 10-fold cross-validation procedure: the data were divided into 10 parts, each tenth

took a turn at playing the role of the test set for a classifier trained on the remaining 9

tenths, and the resulting CAs on these 10 test sets were averaged. We ensured that the

trials were temporally contiguous within each test fold—that is, we performed blockwise

cross-validation—to avoid potential inflation of the CA estimates due to non-stationary

effects in the data [46].

Cross-validation in 10 independent folds was only possible for automatic classifiers,

i.e. for our automated multivariate procedures. Our univariate classifiers involved human

judgment, which could not be guaranteed to be independent on 10 folds. Therefore, for

comparison of univariate and multivariate methods during Phase I, we used an offline

single-fold training and test procedure for both predictor types, whereby the first 80%

of the data (counting chronologically) were used for training and the subsequent 20%

were used for testing. This schedule was used both for classifier performance and for

assessment of music listening prediction. During phase III, the single-fold method was

also used to provide a preview of decoder performance based on the calibration data.

In assessing generalization from phase I to phase II, and from phase III to phase

IV, one whole session was used for training and the subsequent complete session was

used for testing.

3. Results

The results of this study are presented below. They address the following questions:

(i) What is the best combination of parameters settings for decoding intention and

movement states in the joystick task, and how sensitive is the decoder to variation
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Simultaneous Real-Time Monitoring of Multiple Cortical Systems 16

from this setting? Similarly, what is the best combination of parameter settings for

decoding auditory processing?

(ii) How well can we expect the decoders to generalize to a second session? Furthermore,

will decoders trained on a trial-based system, with brain state classes considered

separately against the rest state, perform well in a continuous real-time setting

where they must distinguish their preferred state from both rest and from other

non-preferred non-rest states?

(iii) Which decoding approach, the automated multivariate method or the expert-guided

univariate method, provides better decoding performance?

(iv) How many training trials are required to achieve good multivariate decoding

performance?

(v) How well will our decoders generalize to a second real-time session in which the

tasks are performed simultaneously? Will they perform well according to a real-

time (continuous rather than trial-based (see Section 2.7)) criterion?

3.1. Parameter optimization and sensitivity

Our first question concerned the optimal parameter setting for intention and movement

decoding, and the sensitivity of the decoder to parameter variation. As described

in Section 2.6, we evaluated the impact of several types of processing: referencing

strategy (CAR/no CAR), window length (150, 250, 350, 450, 550 or 650 msec), AR

model order (10, 25, 50 or 100), and gamma transformation (log/linear). We addressed

these questions using the automated multivariate decoding approach and repeating the

10-fold cross-validation procedure for every possible combination of parameters. The

classification accuracies were averaged across the first six subjects. They indicated the

following optimal settings:

Subproblem CAR Log Band Power AR Model Order Window Length (msec)

Intention vs. Rest Yes No 50 650

Movement vs. Rest Yes Yes 10 650

Intention vs. Movement Yes Yes 10 650

Figure 5 shows the sensitivity of the decoders to the variation in these settings. The

optimization results indicated that: first, the use of a log bandpower scale improved

classification accuracy in movement vs. rest and movement vs. intention, but not in

intention vs. rest, albeit all of these effects were very small. Second, the use of

CAR spatial filter improved the classification accuracies in all subproblems by about 5

percentage points. Third, a lower AR model order of 10 was preferable for movement vs.

rest and movement vs. intention, while a higher model order of 25 or 50 was preferable

for intention vs. rest. We chose to boost the performance of the lower performer of

our two detectors by selecting the model order of 50. Fourth, longer window lengths

improved classification accuracy in all subproblems, best performance being obtained

with a length of 650 msec. Based on these results, we settled on parameter setting for

all subproblems included the use of log band power, from CAR-rereferenced data, with

an AR model order of 50 and a window length of 650 msec.
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Figure 5. This figure shows cross-validated classification accuracies (%) averaged

across subjects 1–6 with error bars indicating ±1 standard error, for solving three

binary classification subproblems with a multivariate classifier. Chance performance

would be 50%. From left to right within each group of bars, the subproblems are

movement vs. rest (blue), intention vs. rest (green), and movement vs. intention (red).

To illustrate the sensitivity of the decoder to the preprocessing parameters, each of the

panels shows the effect of varying one of the parameters away from the global optimal

combination.

We also addressed similar issues of parameter optimality and sensitivity for the

listening task. For technical reasons, the same set of pre-processing parameters had to

be used for all decoders simultaneously. We were satisfied that our CAR, log and model-

order settings chosen in the joystick-task optimization represented a good general way

of extracting high-gamma features. Therefore, this question boiled down to verifying

whether our chosen window-length, in combination with these parameters, was also

optimal for the listening decoder. An additional parameter for the listening task is

the temporal lag (between sound delivery and brain response) at which the listening

decoder should be trained and the results assessed. To address this, we fixed the CAR,

log and model order settings at the optimal values determined for the joystick task, and

evaluated the six different window lengths in combination with temporal offsets from -2

to +2 sec in steps of 20 msec. The correlation between neural response and music stimuli

at varying lags and window lengths is shown in Figure 6(a) for a univariate decoder.

The correlation was observed to be highest (rho = 0.34) for the longest window length

of 650 msec and peaked at a lag of approx. 200 msec when averaged across subjects
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(50 msec of which can be accounted for by the software’s latency in producing stimuli).
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Figure 6. (a) Correlation coefficients of univariate auditory features and music RMS,

across subjects 1–6, at leads and lags of 0 to 2 seconds and window lengths 150–

650 msec (b) Correlation coefficients for subjects 1–6 (each represented by a different

symbol shape) and all window lengths, at a constant lag of 200 msec, estimated by a

multivariate and a univariate regression. Color represents the window length used for

the analysis, corresponding to the colors in (a)

3.2. Session-to-session generalization

We then wished to assess the ability of the decoders to generalize to a second day. This

is an important issue, because changes in arousal or other brain states on a timescale of

hours or days may be substantial. Classifiers trained on the first day’s session were tested

on second-day data, which were available (still from tasks performed separately) for 4 of

the original 6 subjects. This performance was compared against the performance from

a single-fold offline analysis of the day-1 data. The results for intention and movement

decoding are shown in Figure 8 (b), where each symbol represents a different combination

of subject and subproblem. Symbol shape denotes the subproblem as indicated in the

legend. There is a drop in performance of 6.8 percentage points (on average across all

subjects and subproblems) when transferring a trained multivariate classifier from one

day to the next. For the univariate decoder, this average drop is larger (11.4 percentage

points). The paired t-test between the multivariate decoding accuracies from day 1 and

day 2 result in a p-value > 0.05, both for motor intention and motor execution. This

shows the robustness of a multivariate decoder for day-to-day transfer. However, the

paired t-test between the univariate decoding accuracies from day 1 and day 2 result in a

p-value < 0.05 for motor intention and p-value > 0.05 for motor execution. This shows

that atleast for the motor intention processes, the univariate decoder is less robust for

day-to-day generalization.
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Simultaneous Real-Time Monitoring of Multiple Cortical Systems 19

We also wished to confirm our hypothesis that individual decoders that were

trained on separate tasks would be able to deliver reliable outputs, separately as

well as simultaneously. The continuous decoding performance was quantified in terms

of decoder sensitivity and specificity for both multivariate and univariate analysis.

Sensitivity and specificity measurement on the continuous decoding quantifies the ability

of the decoder to detect or reject the intention (or movement) states not only in contrast

to the marked rest states, but also in contrast to the other ongoing states (inter-trial,

movement (or intention) and feedback) in an analysis where one data point was a single

time-window rather than a whole trial. These have been presented in Figure 7 (left

panel). Across subjects, the multivariate and univariate decoding were found to be

equally sensitive for intention and movement decoding. However, multivariate decoding

was found to show relatively higher specificity for intention decoding, while univariate

decoding showed higher specificity for movement decoding. The r2 maps for all the

subproblems are also shown in the right panel of Figure 7. The running correlation

coefficient between decoder output and music RMS was calculated using a 20-second

sliding buffer to reflect the variation in auditory system decoding accuracy as a function

of time during the song. It is shown in the panel (e) of Figure 7.

3.3. Multivariate vs. univariate decoding

Our next question required a comparison of the automated multivariate and expert-

guided univariate decoding methods described in Section 2.6. The comparison was

performed using a single-fold analysis of the data from subjects 1–6.

For the listening task, the results are shown in Figure 6(b). The colors denote

window size in the same way as indicated in the adjacent panel (a). Each symbol shape

denotes a different subject. We see a clear and consistent advantage for the univariate

method over our chosen multivariate decoding approach—hence we show results of the

univariate approach in panel (a), and use the univariate approach throughout the rest

of the study for the purpose of auditory decoding.

The results for intention and movement decoding are shown in Figure 8 (a and

b). Across all 6 subjects, all 3 subproblems, and both days, our multivariate decoding

approach classified the data with an average of 81.5% accuracy, whereas our univariate

approach was 75.8% accurate. Note that the univariate approach could also achieve very

high performance levels, depending on the subject—but the variability across subjects

was larger (see Figure 8(a)). The multivariate classifier also produced more consistent

results when generalizing from one day to the other, as we saw above in Section 3.2.

3.4. Amount of required training data

Our next question centered on the impact of the amount of calibration data on decoding

performance. The performance of a predictor can generally be expected to improve as

the amount of training data increases, although these improvements should diminish

Page 20 of 32CONFIDENTIAL - FOR REVIEW ONLY  JNE-100098.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Simultaneous Real-Time Monitoring of Multiple Cortical Systems 20

1                                   2         3    4    5           6          

1                                   2         3    4    5           6          

1                                   2         3    4    5           6          

        m        u         m        u

IR                 MR

   
S

e
n

si
ti

v
it

y(
%

)

S
p

e
ci

!
ci

ty
 (

%
)

         m       u        m       u

IR                 MR

C
o

rr
 C

o
e

f

(a)                                                          (b)                                                                   (c)    

90         

70         

90         

50         

10         

0.2         

0.4         

0         10  Sec        

Figure 7. The r
2 maps for intention, movement and auditory processing are shown

for subjects 1–6. Top row shows the topographies for Intention, second row shows

topographies for movement and third row shows topographies for auditory processing.

The electrode selected for univariate auditory analysis is marked with a green circle.

Lower panel (a) and (b) show the sensitivity and specificity for the simulated real-time

decoding across subjects 1–6, for both multivariate (m) and univariate (u), intention vs.

rest (IR) and movement vs. rest (MR). Lower panel (c) shows the running correlation

coefficient for auditory vs. music RMS, across 1–6 subjects, using a 20 sec window at

a time.

with larger data sizes. We investigated this issue by computing the trial classification

accuracies (CA, as defined in Section 2.7 above) in single-fold assessments where the size

of the training fold was either 20, 80, 140, 200, 260 or 320 trials. The results, averaged

across subjects for each subproblem, are shown in Figure 9. They display the expected

increasing trend, which seems to level off at around 140 trials—slightly less than half

the data we gathered.

3.5. Real-time simultaneous multimodal decoding

In subjects 7–12, we examined the real-time performance of the system. Here we

quantified how well our decoders that were trained on data from separate tasks

(motor intention, motor execution, auditory) generalize to a second real-time session

in which the tasks are performed simultaneously. Furthermore, we wanted to determine

whether decoders that were trained on data from discrete trials, with brain state classes

considered separately against the rest state, performed well in a continuous real-time
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Figure 8. (a) Multivariate vs. univariate decoding classification accuracy for day 1

and day 2 test data of subjects 1–6. Each symbol represents a subject and each

symbol shape represents a decoding subproblem as described in the legend. The

filled shapes represent results of day 1; the unfilled shapes represent day 2. (b) The

multivariate and univariate classification is shown for day 1 vs. day 2. Filled shapes

represent multivariate results and the unfilled shapes represent the univariate results.

(c) Multivariate vs. univariate decoding performance shown by correlation coefficients

of auditory features and music RMS for subjects 1–6 (excluding subject 4).
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Figure 9. The effect of the amount of the training data on decoding performance

is shown for the 3 motor-based decoding subproblems: (a) Intention vs. Rest (b)

Movement vs. Rest (c) Movement vs. Intention.

setting where they must distinguish their preferred state from both rest and from other

(non-preferred/non-rest) states?

Based on the optimization outcomes from Phase I and II, we used the multivariate

decoder for intention and movement decoding and a univariate decoder for auditory

decoding. Where possible, we also performed a second real-time run with the univariate

decoder. This was possible for subjects 9, 10 and 12. Subject 11 lacked coverage of
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motor and pre-motor areas. For the remaining two subjects (7 and 8) a second run was

not possible due to time constraints, so we re-performed the analysis retrospectively—

however, the order of transfer from training to test was always strictly causal and no

re-optimization of the decoder was allowed.

An example of the real-time decoding performance can be seen in Supplementary

Movie (S1). The movie was captured (with the patient’s consent) using the Camtasia

software application, which captured live video footage of the patient performing the

task and also captured the computer screen the contained real-time visualizations for

the patient and for the investigator.

The task-related r2s were estimated for all the electrode channels of the training

data. The results are presented in Figure 10. The overall classification accuracy for these

subjects is shown in panel (a). Again, we found that multivariate decoding provided

higher performance for motor decoding (median classification accuracy across subjects

was 80.4% for intention decoding and 86.8% for movement decoding). Panel (b) shows

univariate auditory decoding performance for these subjects using the non-parametric

Spearman’s correlation that was calculated between gamma features and music RMS.

These results demonstrate that it is possible to accurately decode movement intention,

movement, and auditory processing concurrently and in real time.
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Figure 10. (a) Multivariate and univariate classification accuracy (CA) is shown for

motor decoding for subjects 7–12 as tested on data from day 1. Each symbol represents

a decoding subproblem. (b) The correlation coefficient (r) for auditory decoding vs.

music RMS from day 1 is shown for subjects 7–12. Across all subject, the average r

value was 0.3. (c, d, e) are the r
2 maps for intention, movement and auditory tasks,

for subjects 7–12. Subject 11 did not have motor coverage.

Figure 11 presents a quantitative analysis of the trial-based classification

performance for subjects 7–12 during calibration (Phase III) and real-time testing

(Phase IV). The figure is comparable to figure 8, which showed results in the same

format for subjects 1–6 (Phases I and II). The difference between these analyses is that

only subjects 7–12 performed the two tasks simultaneously in their second session. As

in Section 3.3, we find that multivariate decoding (average accuracy 76.5%) resulted

in higher performance than univariate decoding (70.4%) of intention and execution of
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movement.

In common with our Phase I–II results, we observe a drop in performance when we

force our decoders to generalize from one day to the next. However, this time the drop in

performance is larger for the multi-variate decoder (13.9 percentage points) than for the

univariate decoder (5.4 percentage points). This is the reverse of the pattern we found

before, in Phases I–II. We can interpret this by considering that we are now demanding

that our decoder generalize between data sets that are more heterogeneous than before.

Before, the decoder was both trained and tested on distributions of high-gamma features

measured from the joystick task performed in isolation. Now, the decoders are still

being trained on data measured during the joystick task alone, but tested on data

measured with a concurrent listening task. Training and test set distributions are

therefore different. As we pointed out in Section 2.6, our univariate decoder uses only

one electrode, and hence only captures information from a highly localized cortical

region. It will therefore suffer little interference from the activity of brain areas that

are functionally unrelated to its primary task. By contrast, a multivariate decoder is

free to use information from the whole grid, even from brain areas that are functionally

unrelated to its primary task, and it may do so if this serves to suppress noise. For

example, under constant quiet conditions, a multivariate decoder trained to identify

motor intention might incorporate information from auditory cortex electrodes: it may

be that auditory-cortex activity provides a good baseline against which to measure

fluctuations in premotor cortex activity. This may generalize well, but only as long as

the conditions remain quiet.

An example of the real-time decoding for subject 12 is shown in Figure 12. It

presents the motor and auditory processing real-time decoding as estimated on separate

tasks as well as during simultaneous tasks, predicted by the univariate approach. Panel

(a) and (b) show the univariate decoding on decoders that were trained separately and

tested real-time separately on each of the intention-movement and listening tasks. Panel

(c) shows the univariate decoding obtained when the intention-movement was performed

simultaneously with the listening task, on the same day. The time segments during

which intention to move was being expected, has been indicated by semi-transparent

blue back-panels in (a) and (c). While the time time segments during which movement

execution was being expected have been indicated by semi-transparent red back-panels

in (a) and (c).

Finally, sensitivity and specificity was performed with the Phase-IV simultaneous

decoding data. The univariate analysis was performed in parallel as a backup alternative.

The overall classification and the sensitivity and specificity outcomes are shown in Figure

13 for subjects 7–12. This result shows the ability of the decoders to not only detect

a change in state aptly but also the ability to reject rest and other changes from that

state. This was the first indication that the decoding features apparently are quite unique

for detection of intention, movement. For example, even though the training data for

intention vs. rest did not include movement periods, the real-time decoding based on
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Figure 11. Simultaneous decoding performance and generalization results for subjects

7–12: (a) Multivariate vs. univariate intention of movement and movement execution

decoding classification accuracy for data from the calibration day and for data from

the subsequent day on which simultaneous decoding took place. Each symbol shape

represents a different subproblem as indicated in the legend. The filled shapes

represent results of day 1; the unfilled shapes represent day 2. For each day and each

subproblem, multiple symbols represent multiple subjects. (b) The same results as in

(a) are displayed here in a different manner to highlight the difference in performance

between the calibration day vs. the simultaneous decoding day. Filled shapes represent

multivariate results and the unfilled shapes represent the univariate results. (c) The

auditory decoding performance, measured by correlation coefficient of the decoded

signal vs. the music RMS, is shown for calibration day when the listening task was

performed separately, compared to simultaneous day when the listening task was run

simultaneously with the intention-movement task. Note: subject 11 did not have motor

coverage and subject 10 did not perform the 2 tasks simultaneously in real-time in any

one session.

the intention vs. rest decoder was able to contrast intention and movement sufficiently

well.

4. Discussion

In this study, we set out to develop, implement and test algorithms and procedures that

allow us to decode from concurrently performed tasks, within the structure of a common

hardware and software framework. Previous studies [47, 22, 37, 12, 23, 16, 38, 35]

have demonstrated retrospectively that individual brain processes, such as movement,

movement planning or auditory processing can be reliably decoded from ECoG signals.

However, it was not clear to what extent these decoding models could be applied in real

time or generalize over time. It was also unclear whether they are independent enough

to be transferred to more unpredictable multi-modal decoding environments. The use

of high-gamma power modulation for such decoding has been found especially useful

and so we concentrated only on this feature in the current study. The modulation in

high-gamma power correlates with the firing activity of large neuronal populations. At

a smaller scale, the firing of individual neurons has been found to be a good predictor
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    5 sec

    5 sec

    5 sec

Intend                   Move                    Listen                 MusicRMS

 (d) Auditory Decoding from Simultaneous Intention−−Movement−−Listening Task Session

(b) Auditory Decoding from Separate Listening Task Session 

(a) Intention−Movement Decoding from Separate Intention−Movement Task Session 

    5 sec

(c) Intention−Movement Decoding from Simultaneous Intention−−Movement−−Listening Task Session 

Figure 12. This figure shows an example of real-time separate as well as real-time

simultaneous decoding for subject 12 as captured with the univariate approach. The

decoded neural output and the expected output are shown for intention-movement

task in (a) and (c). The decoded neural output for listening task is shown in (b) and

(d). The semi-transparent blue back-panels in (a) and (c) denote the segments during

which intention to move was being expected and the red back-panels in (a) and (c)

denote time segments when movement execution was being expected. The decoding

results in (a) was obtained when the intention-movement task was executed separately.

Decoding in (b) was obtained when the listening task was run separately. Sub-figure

(c) shows the real-time intention and movement decoding when the task of intention-

movement and listening to must were run simultaneously. Sub-figure (d) shows the

auditory decoding obtained during that time.

of movement execution, movement planning and movement kinematics [29, 30, 48, 49].

So far, however, it has been difficult to use such systems long-term without frequent re-

calibration [31, 49]. ECoG high-gamma features, on the other hand, strike a good

balance between invasiveness, decoding quality and stability [4, 35]. As recording

technology continues to miniaturize and implantation techniques continue to improve,

the barriers to long-term implantation of ECoG grids can be expected to decrease.

In the last few years we have seen many advances in the development of ECoG

electrodes towards a smaller-scale, higher-density, more-flexible, more-durable, wireless

ideal [50, 51, 52, 53, 54, 55, 56, 57, 58]. With continuing improvements, it is plausible

that long-term implantation of ECoG systems may become a realistic option for

monitoring, functional restoration or possibly even treatment of a wide variety of brain

disorders.

Our results demonstrate that the ECoG gamma features allow single-trial real-time
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Figure 13. Online continuous decoding results: Upper panels: Multivariate vs.

univariate classification accuracy (CA) for intention and movement decoding. Each

symbol represents a subject. Lower panels: sensitivity vs. specificity is shown for

multivariate as well as univariate approaches.

decoding of movement planning, movement execution and auditory processing with a

high sensitivity and specificity. The decoders for each of these states are separable,

in the sense that they can be optimized as separate models, yet still perform well

when transferred to a multi-modal problem setting: during optimization, each class is

distinguished only against rest, and auditory data and motor planning/execution data

are gathered in separate sessions; by contrast, in testing, motor planning (for example)

is compared against motor execution or against rest, and while the auditory system is

concurrently active. The results are encouraging as they demonstrate the possibility

of real-time simultaneous monitoring of multiple brain systems based on a modular

combination of simpler single-task training protocols.

The quantitative results of our optimization procedures provide insight into the

sensitivity of such systems to certain pre-processing parameters. In particular, the use

of a common-average reference improved results substantially across practically all of

our analyses relative to data that were referenced to only one reference electrode. Also,

temporal smoothing played a key role in improving the results: both our subjective

judgments of traces of the kind plotted in figure 12 and the quantitative results shown

in figures 5 and 6 indicate that longer temporal windows improve decoding performance.

Naturally there is a trade-off between performance and responsiveness in such systems:

the longer the window-length, the more accurate the results may be but the less rapidly
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the real-time system can respond to temporal dynamics of the brain’s state. In addition,

it can be seen that the increase in performance is smaller for window lengths longer

than 350 msec as compared to the larger increase in performance when we increased

the window length from 150 msec to 350 msec. Thus, the optimal setting should rely

in part by suggestions from statistical analysis but also be the demands of a particular

application. Our results also suggest that the amount of training data could have been

reduced to around half (to 150 trials, or 15 minutes not counting interruptions) without

an appreciable impact on the quality of intention or movement decoding.

We would like to point out that in its current form this study does not tell us how

general our results are across various brain processes or data acquisition setups. Even

though we observed similarity in the relationship between decoding performance and

parameter selection across our 3 tasks, it is possible that these were suitable only for

the particular covert and overt tasks under study (motor intention, motor execution and

auditory processing). These may benefit from fine-tuning to the other brain processes

being studied and the signal-to-noise ratio of data acquired under different settings.

In Results Sections 3.3 and 3.5, we observed that the multivariate approach

generally performs better than the univariate approach in decoding intention and

movement. The multivariate decoder generalized better than the univariate decoder

to a second day when the task remained the same. However, it suffered a larger drop in

performance than the univariate approach when generalizing to a later session involving

a concurrent listening task. We explained this in terms of the multivariate classifier’s

ability to use signals from brain areas that are functionally unrelated to its primary task

(for example, a decoder for intention-to-move might include information from auditory

cortex). This strategy may be effective when the unrelated brain area (the auditory

cortex in this example) displays consistent patterns of activity, and thereby provides

a useful baseline against which to measure the activity of more directly relevant brain

areas (premotor cortex). However, the strategy may become counterproductive as soon

as the unrelated brain area becomes simultaneously involved in an unforeseen task (for

example, listening to music). If the multivariate decoder performs better than the

univariate decoder to begin with, but loses more during generalization to more complex

measurement conditions, can we make a final decision as to which is preferable for

a multi-system brain monitoring application? One approach would be to assess the

decoders’ respective performance levels on just the simultaneous decoding session: if we

do this we find that their performance is very similar (70% accuracy for multivariate,

68.5% for univariate, averaged across subjects and subproblems). However, we must

remember that these results were obtained with only one known form of competing

information processing (listening to music) beside the primary joystick task. If we

were building a brain monitoring system, we would want it to perform well even when

the brain had to process yet another kind of information (for example, monitoring

the subject’s intention to move while background music is playing and the subject is

experiencing pain). In the translation of our decoders from a controlled experimental

study to a more realistic brain-monitoring application, it seems likely that a univariate
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approach might be more suitable in the context of a larger number of unforeseen

interfering brain processes.

It is worth noting that the multivariate method may be more attractive in practical

situations: multivariate prediction is a semi-automated method, while the univariate

method as employed here is an approach that at least in part depends on subjective

judgments. As the process depends on a very large number of variables (e.g., location

of the grid, location of the epileptic focus, brain system modality, results from other

functional mapping, or other characteristics of the subject, see Section 2.6), it has been

difficult, and will likely remain difficult, to formalize the process by which the different

sources were used in the decision process.

Even when we want to decode rich information sources distributed over complex

brain networks, a highly localized approach such as our univariate decoding strategy

may still yield good results: Wessberg et al. [34] observed in non-human primates that

motor control signals from single-neuron electrodes appeared concurrently in multiple

areas of frontal and parietal cortex, and that any one of these areas could individually

generate a one-dimensional hand trajectory in real time.

This further evidence for narrow spatial localization of function in ECoG suggests

that, despite our promising results, the technology for such brain monitoring applications

is still evolving. We see large variations in performance between subjects, which may in

part be due to the chance nature of the positioning of ECoG electrodes, spaced coarsely

1 cm apart, which may therefore miss or only partially cover relevant highly-localized

functional areas. We hypothesize that higher-density ECoG recordings—such as those

of Wang et al. [59]—might prove superior in multi-modal decoding performance.

Our study highlighted challenges and areas of improvement for developing real-time

decoding systems with ECoG signals. It should be noted that ECoG research is currently

primarily feasible only in patients with epilepsy who are candidates for surgical resection

and undergo invasive ECoG monitoring. This means that the extent of grid coverage and

placement is determined by the clinical needs of the patient rather than the needs of our

research. Hence, grid coverage is variable across subjects and often does not cover all the

areas of interest for a particular study. Moreover, during the experimentation period,

the patients are recovering from a brain surgery, are undergoing withdrawal of their anti-

epileptic medications and, consequently, are more susceptible to seizures. These factors

affect the physical and cognitive condition and level of cooperation of each subject. In

addition, there are variations in the grid laterality, hand dominance, age, location of

epileptic focus, across the subjects. Finally, some of the patients may have some degree

of functional or structural reorganization based on the etiology of their epilepsy. Overall,

these factors can make human ECoG experiments less controlled than non-invasive

neuroscientific studies in healthy human subjects or invasive studies in animals. At the

same time, in these respects, our present study is similar to the many other ECoG-based

studies that have been described in the literature [37, 17, 23, 16, 22, 18, 39]. Despite

the issues described above, the results presented in our present and other ECoG studies

are usually consistent with expectations based on the general human neuroanatomy or
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on results from other imaging modalities.

To mitigate some of the limitations described above, and to acquire data and test

a system under such conditions, one needs a computationally inexpensive, portable,

robust, and semi-supervised system, with few free parameters. The system should be

able to be configured rapidly for each individual subject—perhaps even set up at multiple

times of the day—while minimizing inconvenience to the subject and interruptions in

their medical treatment. Developing and integrating automated artifact removal, such

as for epileptiform spikes, seizures, and other invariant features, may improve the overall

real-time signal processing pipeline.

Further research questions that would drive the development of better multi-

modal brain-monitoring systems will have to include investigation of how decoding

models estimated from synchronous (cue-based) paradigms can best be transferred to

asynchronous (non-cue-based) real-time decoding. The ability to transfer decoding

models in this way would be very useful for neural engineering applications: a

better understanding of the overlap and sharing of structural and functional networks

would facilitate development of brain-computer interface technology for the practical

replacement of damaged brain functions.

In our study, we describe encouraging progress towards simultaneous real-time

decoding of multiple brain systems. The methods and results produced in this study

demonstrate for the first time that movement intention and execution can be decoded in

real time simultaneously with the decoding of auditory processing. This demonstration

advances the understanding of real-time decoding for future performance monitoring

and augmentation systems with relevance to a broad range of medical and non-medical

applications.
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[28] J Kubánek, P Brunner, A Gunduz, D Poeppel, and G Schalk. The tracking of speech envelope in

the human cortex. PloS one, 8(1):e53398, 2013.

[29] B R Townsend, E Subasi, and H Scherberger. Grasp movement decoding from premotor and

parietal cortex. Journal of Neuroscience, 31(40):14386–98, 2011.

[30] WWu, M J Black, D Mumford, Y Gao, E Bienenstock, and J P Donoghue. Modeling and decoding

motor cortical activity using a switching kalman filter. IEEE Transactions on Biomedical

Engineering, 51(6):933–42, 2004.

[31] W Wu and N G Hatsopoulos. Real-time decoding of nonstationary neural activity in motor cortex.

IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(3):213–22, 2008.

[32] J M Carmena, M Lebedev, R E Crist, J E O’Doherty, D M Santucci, D F Dimitrov, P G Patil,

C S Henriquez, and M L Nicolelis. Learning to control a brain-machine interface for reaching

and grasping by primates. PLoS Biology, 1(2):193–208, 2003.

[33] N Hatsopoulos, J Joshi, and J G O’Leary. Decoding continuous and discrete motor behaviors

using motor and premotor cortical ensembles. Journal of Neurophysiology, 92(2):1165–74, 2004.

[34] J Wessberg, C R Stambaugh, J D Kralik, P D Beck, M Laubach, J K Chapin, J Kim, S J Biggs,

M Srinivasan, and M Nicolelis. Real-time prediction of hand trajectory by ensembles of cortical

neurons in primates. Nature, 408(6810):361–5, 2000.

[35] Z C Chao, Y Nagasaka, and N Fujii. Long-term asynchronous decoding of arm motion using

electrocorticographic signals in monkeys. Frontiers in Neuroengineering, 3:1–4, 2010.

[36] K J Miller, Den Nijs, Shenoy M., Miller P., J W, R P Rao, and J G Ojemann. Real-time functional

brain mapping using electrocorticography. Neuroimage, 37:504–507, 2007.

[37] K J Miller, E C Leuthardt, G Schalk, R P N Rao, N R Anderson, D W Moran, J W Miller, and

J G Ojemann. Spectral changes in cortical surface potentials during motor movement. The

Journal of Neuroscience, 27(9):2424–32, 2007.

[38] N E Crone, A Sinai, and A Korzeniewska. High-frequency gamma oscillations and human brain

mapping with electrocorticography. Progress in Brain Research, 159:275–295, 2006.

[39] A Sinai, N E Crone, H M Wied, P J Franaszczuk, D Miglioretti, and D Boatman-Reich.

Intracranial mapping of auditory perception: event-related responses and electrocortical

stimulation. Clinical Neurophysiology, 120(1):140–9, 2009.

[40] N J Hill, D Gupta, P Brunner, A Gunduz, M A Adamo, A Ritaccio, and G Schalk. Recording

human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional

cortical mapping. Journal of Visualized Experiments, (64):1–5, 2012.

[41] G Schalk, D J McFarland, T Hinterberger, N Birbaumer, and J R Wolpaw. BCI2000: a general-

purpose brain-computer interface (BCI) system. IEEE Transactions on Biomedical Engineering,

51(6):1034–43, 2004.

[42] G Schalk and J Mellinger. A Practical Guide to Brain-Computer Interfacing with BCI2000.

Springer, London, UK, 1st edition, 2010.

[43] J L Lancaster, L H Rainey, J L Summerlin, C S Freitas, P T Fox, A C Evans, A W Toga, and

J C M. Automated labeling of the human brain : A preliminary report on the development and

evaluation of a forward-transform method. Human Brain Mapping, (5):238–242, 1997.

[44] J L Lancaster, M G Woldorff, L M Parsons, M Liotti, C S Freitas, L Rainey, P V Kochunov,

D Nickerson, S A Mikiten, and P T Fox. Automated talairach atlas labels for functional brain

Page 32 of 32CONFIDENTIAL - FOR REVIEW ONLY  JNE-100098.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Simultaneous Real-Time Monitoring of Multiple Cortical Systems 32

mapping. Human Brain Mapping, 10(3):120 –131, 2000.

[45] J P Burg. Maximum entropy spectral analysis. In 37th Meet. Soc. Exploration Geophysicists,

Oklahoma, 1967.

[46] S Lemm, B Blankertz, T Dickhaus, and K-R Müller. Introduction to machine learning for brain

imaging. NeuroImage, 56(2):387–99, 2011.

[47] P Shenoy, K J Miller, J G Ojemann, and R P N Rao. Generalized features for electrocorticographic

BCIs. IEEE Transactions on Biomedical Engineering, 55(1):273–80, 2008.

[48] M Velliste, S Perel, M C Spalding, A S Whitford, and A B Schwartz. Cortical control of a

prosthetic arm for self-feeding. Nature, 453(7198):1098–101, 2008.

[49] L R Hochberg, D Bacher, B Jarosiewicz, N Y Masse, J D Simeral, J Vogel, S Haddadin, J Liu, S S

Cash, P van der Smagt, and J P Donoghue. Reach and grasp by people with tetraplegia using

a neurally controlled robotic arm. Nature, 485(7398):372–5, 2012.

[50] J Viventi, D-H Kim, L Vigeland, E S Frechette, J Blanco, Y-S Kim, A E Avrin, V R

Tiruvadi, S-W Hwang, A C Vanleer, D F Wulsin, K Davis, C E Gelber, L Palmer, J Van

der Spiegel, J Wu, J Xiao, Y Huang, D Contreras, J Rogers, and B Litt. Flexible, foldable,

actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nature

Neuroscience, 14(12):1599–605, 2011.

[51] J Viventi, Dae-H Kim, J D Moss, Y-S Kim, J Blanco, N Annetta, A Hicks, J Xiao, Y Huang,

D J Callans, J Rogers, and B Litt. A conformal, bio-interfaced class of silicon electronics for

mapping cardiac electrophysiology. Science Translational Medicine, 2(24), 2010.

[52] C Henle, M Raab, J G Cordeiro, S Doostkam, T Stieglitz, and J Rickert. First long term in

vivo study on subdurally implanted micro-ECoG electrodes , manufactured with a novel laser

technology. Biomedical Microdevices, 13(1):59–68, 2011.

[53] D Borton, M Yin, J Aceros, and A Nurmikko. An implantable wireless neural interface for

recording cortical circuit dynamics in moving primates. Journal of Neural Engineering, 10(2),

2013.

[54] G S. Anderson and R R. Harrison. Wireless integrated circuit for the acquisition of

electrocorticogram signals. Proceedings of 2010 IEEE International Symposium on Circuits

and Systems, pages 2952–2955, 2010.

[55] C Chestek, V Gilja, P Nuyujukian, R J Kier, F Solzbacher, S I Ryu, R R Harrison, and K V

Shenoy. HermesC: low-power wireless neural recording system for freely moving primates. IEEE

Transactions on Neural Systems and Rehabilitation Engineering, 17(4):330–8, 2009.

[56] D Fan, D Rich, T Holtzman, P Ruther, J W Dalley, A Lopez, M Rossi, J W Barter, D Salas-Meza,

S Herwik, T Holzhammer, J Morizio, and H H Yin. A wireless multi-channel recording system

for freely behaving mice and rats. PloS One, 6(7), 2011.
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