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Simulating the Effects of Common and Specific
Abilities on Test Performance: An Evaluation

of Factor Analysis
Dennis J. McFarlanda

Purpose: Factor analysis is a useful technique to aid in
organizing multivariate data characterizing speech, language,
and auditory abilities. However, knowledge of the limitations
of factor analysis is essential for proper interpretation of
results. The present study used simulated test scores to
illustrate some characteristics of factor analysis.
Method: Linear models were used to simulate test scores
that were determined by multiple latent variables. These
simulated test scores were evaluated with principal
components analysis and, in certain cases, structural equation
modeling. In addition, a subset of simulated individuals
characterized by poor test performance was examined.
Results: The number of factors recovered and their identity
do not necessarily correspond to the structure of the latent
variables that generated the test scores. The first principal

component may represent variance from multiple uncorrelated
sources. Practices such as correction or control for general
cognitive ability may produce misleading results.
Conclusions: Inferences from the results of factor analysis
should be primarily about the structure of test batteries
rather than the structure of human mental abilities.
Researchers and clinicians should consider multiple sources
of evidence to evaluate hypotheses about the processes
generating test results.
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Box and Draper (1987, p. 424) once observed, “Essentially,
all models are wrong, but some are useful.”

Researchers in audiology, speech, and language
have frequently used factor analysis to organize
data from multiple measures of individual abil-

ities. For example, Watson and colleagues (2003) created
factor scores to evaluate effects of sensory, cognitive, and
linguistic factors on academic performance. Semel, Wiig,
and Secord (2003) used factor analysis to provide support
for the validity of the Clinical Evaluation of Language
Fundamentals, Fourth Edition (CELF–4), an instrument
widely used to test language abilities. Domitz and Schow
(2000) reported results of a principal components analysis
that produced a four factor solution that they describe as
closely linked to aspects of auditory processing disorders
as defined by the American Speech-Language-Hearing

Association (1996). Results of factor analysis were an im-
portant aspect of each of these investigations.

A variety of methods are used in factor analysis,
such as principal components analysis, principal factors
analysis, and structural equation modeling. Both principal
components and structural equation modeling are used to
summarize covariance matrices. Often these covariance
matrices are normalized to be correlation matrices. Con-
sider the correlation matrix produced by 12 tests, which
will produce 66 unique correlations. Principal components
and structural equation modeling provide a means of sum-
marizing the complex series of relationships between these
variables. These methods are often referred to as explora-
tory and confirmatory factor analysis. Actually these two
methods differ not so much as in why they are used but
rather because principal components analysis is a linear
transformation, and structural equation modeling is a form
of statistical modeling, as described below.

Principal components analysis is an approach to fac-
tor analysis that performs a linear transformation on a
set of variables to produce a new set of orthogonal (i.e.,
uncorrelated) components. The first principal component
accounts for the maximum amount of the covariance in the
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covariance matrix that is possible by linear transformation.
The second principal component accounts for the max-
imum amount of the covariance remaining in the residual
matrix. Each additional component is extracted in a simi-
lar manner from the current residual until as many factors
are extracted as there are variables that produced the co-
variance matrix. This process is reversible prior to the
elimination of “minor” factors. When minor factors are
eliminated by some criterion, the original covariance is
now described in a more compact manner. The analyst
may then interpret each component on the basis of its
loadings on the original variables.

In structural equation modeling, the analyst specifies
one or more models that might potentially account for the
observed covariance matrix. As a rule, this specification
includes identification of the latent factors that produce a
given observed score, whereas the actual weighting of this
influence is estimated by some optimization algorithm. Be-
cause this process requires that there are more degrees of
freedom in the data than in the model, the model is over-
determined and can be evaluated by statistical tests of how
well it accounts for the data. Structural equation modeling
is useful for evaluating alternative models because these
are specified by the analyst and the procedure generates fit
indices that can be compared.

There are limitations to the interpretation of the
results of factor analysis. The interpretation of any single
factor solution is problematic given factor indeterminacy
(MacCalum, Wegener, Uchino, & Fabrigar, 1993). Factor
indeterminacy refers to the fact that many alternative mod-
els may account equally for the observed data. In addition,
a recent simulation study by the author (McFarland, 2012)
showed that, under certain conditions, factor analysis may
not be able to separate orthogonal latent sources of indi-
vidual differences that were the basis of test scores.

Simulations of test batteries can provide useful in-
sights into the nature of analysis procedures. For example,
simulations have been used to compare methods to deter-
mine the number of factors to extract (Ruscio & Roche,
2012; Zwick & Velicer, 1986) and are commonly used with
structural equation modeling to evaluate fit indices (Bentler,
1990; Sterba & Pek, 2012). However, prior simulations
of factor analysis have generally been restricted to models
with simple structure (de Winter & Dodou, 2012; Velicer &
Fava, 1998). Simple structure refers to the case where only
a single latent factor loads on any given observed variable.
This is true when each test measures only one underlying
factor; it is a common way to interpret test performance.
Thurstone (1940) proposed simple structure as a solution
to the factor indeterminacy problem and considered it to
be a reasonable assumption. However, we have previously
argued that tests of cognitive abilities can potentially be
determined by multiple factors (Cacace & McFarland, 2005;
McFarland & Cacace, 1995).

In the present simulation study, I was concerned with
how the results of principal components analysis relate to
the underlying structure of simulated data. Simulated data
can be created with simple linear models. A linear model

of test performance was first proposed by Hart and Spearman
(1912). In its simplest form, individual variation in test per-
formance t can be expressed as

t ¼ cþ u; (1)

where c represents a component common to the collection
of tests in question and u represents the test-unique compo-
nent. Hart and Spearman viewed this common component
to be g, or general intelligence. More recent linear models
of test performance distinguish between common compo-
nents and specific components. Here, individual variation
in test performance can be expressed as

t ¼ cþ sþ u; (2)

where the term s represents a broad source of variation
associated with a subset of the collection of tests in ques-
tion (i.e., specific abilities). A currently popular model of
abilities (Carroll, 1993) holds that individual performance
on tests of cognitive ability are a result of a single common
factor and individual differences in broad factors such as
auditory processing, visual processing, working memory,
and speed of information processing. Although models
of test performance often assume that the data can be ac-
counted for by a single common factor and one specific
factor as in equation 2, for any given test, more complex
models are possible, as for example, where individual vari-
ation in test performance can be expressed as

t ¼ c1 þ c2 þ s1 þ s2 þ u; (3)

where c1 and c2 represent two uncorrelated sources of indi-
vidual differences in test performance common to all tests
under consideration. Likewise s1 and s2 represent two un-
correlated sources of individual differences common to
subsets of the tests in question (note that s1 and s2 may not
necessarily co-occur on the same subset of tests).

In the present simulation study, I will explore the ex-
tent to which principal components analysis recovers the
uncorrelated sources of variation that were used to gener-
ate hypothetical test performance. Several models, includ-
ing common and specific level factors, will be considered.
The results show that principal components analysis does
not always recover as many uncorrelated factors as were
used to simulate the data and that uncorrelated specific
factors tend to be associated as a “contrast” in a single fac-
tor. Indeed, factor membership is determined by the corre-
lation between test loadings across the latent traits rather
than the structure of individual differences. Like any study
using simulations, these results are limited by the scope of
the models examined. However, these results do show that
factor analysis needs to be supplemented with theory and
the results of research using other methods. The implica-
tions of these results for the interpretation of results in
speech, language, and auditory research will be discussed.
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Method
All simulations were done in SAS with a C++ pro-

gram used to organize the data. The basic model for the
kth score on the ith test was

tik ¼
X

wij :ajk
� �þ ejk; (4)

where ajk is the magnitude of the jth ability for the kth ob-
servation, and ejk is a random test-specific term. The value
of wij is the weight given ajk on the ith test. The value of
ajk was unique to each individual within a test battery simu-
lation and was drawn from the SAS normal distribution
function. The value of ajk represents the ability of an indi-
vidual on some hypothetical trait (e.g., an individual’s gen-
eral intelligence or auditory processing ability), whereas
the value of wij describes the role of these abilities in deter-
mining test performance (e.g., to what extent a test mea-
sures general intelligence or auditory processing).

Several simulations of single test batteries were con-
ducted with values of wij set to 1 for common effects and
2 for specific effects in order to illustrate some basic effects
in simple models. Next, simulations of models produced
with different values of wij for each the of multiple test bat-
tery simulations were done in order to extend the general-
ity of findings. Each value of wij was unique to a single test
battery simulation and was drawn from the SAS uniform
distribution function. Use of a uniform distribution ensures
that all abilities function in a similar manner within a given
test battery simulation (i.e., if a given ability has positive
effects on one test, it would be expected to have positive
effects on other tests). This is a boundary condition for all
of the simulations conducted in the present study and was
more extensively investigated by McFarland (2012).

Each simulation involved generating scores for 1,000
subjects on each of the hypothetical tests. These simulations
were done with SAS (SAS, 2010). The resulting data were
then analyzed with the SAS FACTOR procedure and in
some cases also with the SAS CALIS procedure.

Results
The first simulated example is of two test scores gen-

erated by one common latent variable and test-specific
error. This can be represented as

t1k ¼ w11 : a1k þ e1k (5)

and

t2k ¼ w12 :a2k þ e2k; (6)

where t1k represents the score for the kth individual on
test 1, and t2k represents the score for this same individual
on the second test. The values of each w in this case are 1,
and the values of each a and e are drawn from a normal
distribution with a M of 0 and a variance of 1. The results
of a principal components analysis of a simulation of 1,000

cases using Equations 5 and 6 are presented in Table 1.
The results show that this simple case produces a factor
that is defined by the sum of the two tests with an eigenvalue
of 1.50 and a factor that is defined by the difference between
the two tests with an eigenvalue of 0.50. The correlation
between these two simulated tests was 0.50. It can be shown
analytically that two correlated variables always produce a
principal components solution consisting of the sum and
the difference between the two variables (Harris, 1985). The
sum will have the larger eigenvalue for a positively corre-
lated pair, and the difference will have the larger eigenvalue
for a negatively correlated pair. However, cases with more
variables do not have this deterministic form.

This two-variable case illustrates the fact that princi-
pal components analysis is a reversible linear transforma-
tion. This linear transformation can be considered a rotation
of the axis onto which the data are projected, as illustrated
in Figure 1. We could recover the original data by simply
computing half the sum and difference of the new factor
scores. However, principal components analysis is commonly
used as a data-reduction technique. Although criteria for
omitting components have been discussed extensively
(Zwick & Velicer, 1986), a common rule of thumb is to
eliminate factors with an eigenvalue less than 1. In the case
of the results shown in Table 1, this would mean eliminat-
ing factor 2 (i.e., the difference). With the elimination of
factor 2, the transformation is no longer reversible.

Consider the case in which the two variables in our
first example represent the height and weight of individ-
uals. These two variables are positively correlated, and
their sum would be the major factor in a principal compo-
nents analysis. The difference would represent the extent
to which weight is not accounted for by height (and vice
versa). This example illustrates another important aspect
of principal components analysis. The transformation does
not necessarily identify clinically significant relationships.
For example, if one were interested in obesity, then the ex-
cess in weight not predicted by an individual’s height would
be of interest. This would best be captured by the second
factor in our first example, a factor that was discarded by
the eigenvalue less than 1 rule.

The next simulated example is of two test scores gen-
erated by two common latent variables and test-specific
error. This can be represented as

t1k ¼ w11 : a1k þ w21 : a2k þ e1k (7)

and

t2k ¼ w12 : a1k þ w22 : a2k þ e2k: (8)

Table 1. Simulation of two tests with a common factor.

Variable Factor 1 Factor 2

Test 1 .8672 .4979
Test 2 .8672 –.4979
Eigenvalue 1.5041 0.4959
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This notation is similar to the first example with the excep-
tion that a second latent variable has been added. The
results of a principal components analysis of a simulation
of 1,000 scores using equations 6 and 7 are presented in
Table 2. Note that the results are very similar to the first
case and that only one factor would be retained by the
eigenvalue greater than 1 rule. The results of this second
example were obtained with data simulated with two com-
mon factors associated with individual differences in per-
formance rather than just one as in the first case. The fact
that the results are nearly identical illustrates the potential
ambiguity in the results of factor analysis. If the results
reflected the structure of abilities in individuals, then we
would expect to have extracted two factors of roughly
equal size representing a1 and a2 in equations 7 and 8. In-
stead, a single factor was produced that reflects the fact
that a1 and a2 have identical loadings on the two tests.
Thus, the results reflect the relationship between the tests
(i.e., they measure the same thing) rather than the nature
of the underlying abilities (i.e., they are each composed
of two independent sources of variance).

The next example represents a simulation of 12
test scores generated from two common latent variables
and two specific latent variables. Although these simu-
lated latent variables are abstract and need not represent

anything specific, one could think of them as representing
common abilities, such as speed of information processing
and freedom from distraction, and specific effects, such
as auditory and visual processing abilities, or alternatively,
receptive and expressive language abilities. For each of
the 12 tests, the loadings on these latent variables as well
as the loadings on the four factors extracted by principal
components analysis are shown in Table 3. Note that the
general effects have weights of 1 and the specific effects have
weights of 2 so that their contributions are equivalent. The

Figure 1. Illustration of axis rotation with the data from the two correlated variable example. The panel on the left shows the original simulated
data (only the first 50 points). The panel on the right shows these same data transformed by the factor weights shown in Table 1. Note that
the data are rotated so that they are no longer correlated on the new rotated axis. Also note that the variance along the axis of the first factor
is greater than that along the axis of the second factor. This would not be the case for factor scores, which would be normalized by their
respective eigenvalues.

Table 2. Two tests with two independent common factors.

Variable Factor 1 Factor 2

Test 1 .8128 .5825
Test 2 .8128 –.5825
Eigenvalue 1.3214 0.6786

Table 3. Twelve tests simulated with two common factors and two
independent specific factors.

Variable C1 C2 S1 S2 Factor 1 Factor 2 Factor 3 Factor 4

Test 1 1 1 2 0 .6619 –.4676 –.2540 .1462
Test 2 1 1 2 0 .6643 –.4967 .1034 –.1840
Test 3 1 1 2 0 .6719 –.4549 .0416 .0929
Test 4 1 1 2 0 .6911 –.4450 –.1183 –.1199
Test 5 1 1 2 0 .6527 –.4946 .0159 .1977
Test 6 1 1 2 0 .6576 –.4777 .2102 –.1315
Test 7 1 1 0 2 .6555 .4834 –.0446 .1363
Test 8 1 1 0 2 .6375 .4880 –.3520 .0725
Test 9 1 1 0 2 .6466 .4752 –.2512 –.3806
Test 10 1 1 0 2 .6543 .4806 .1442 .3576
Test 11 1 1 0 2 .6446 .4908 .1442 –.1871
Test 12 1 1 0 2 .6461 .5006 .2843 .0010
Eigenvalue 5.1822 2.7632 0.4750 0.4661

Note. C1 and C2 are common latent variables with loadings on
all tests (shown in the second and third columns). S1 and S2 are
specific latent variables with loadings on subsets of tests (shown
in columns 4 and 5). Loadings on the four factors and their
eigenvalues obtained from principal components analysis are shown
in columns 6–9.
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last row of Table 3 shows the eigenvalues for these four fac-
tors. Applying the eigenvalue less than 1 rule would give a
solution that represents these four latent variables in terms
of two factors, the first being a single common factor and
the second a “contrast” between the two specific factors.
These same two factors would be retained if these eigenva-
lues were used to make a scree plot (Cattell, 1966; i.e., a
plot used to select the point at which the rate of change in
the eigenvalues becomes less steep). Table 4 shows the re-
sults of a varimax rotation. The varimax operation involves
rotation of the principal components so as to maximize the
variance of the weights of each factor (Harris, 1985), an op-
eration that is thought to aid interpretation of the factors.
As can be seen in Table 4, the first two varimax factors bet-
ter represent the specific latent variables at the expense of
the representation of the general latent variables. The last
two factors do not correspond to any of the latent variables
that generated the data. Allowing the factors to correlate
using the obvarimax option in SAS produced factor load-
ings that were less coherent (data not shown).

The first two factors shown in Table 3 were next
used to generate factor scores that were then correlated
with the latent common and specific abilities used to gener-
ate the test scores. This provides a means of visualizing
how the latent variables used to generate the simulated test
scores relate to the extracted factors. The resulting corre-
lations between the two extracted factors and the latent
variables that generated the test scores are presented in
Table 5. As can be seen in Table 5, all four of the genera-
tive latent variables correlated positively to an approxi-
mately equal extent with the first factor. The first factor
thus represents a composite of all of the latent variables.
This is to be expected since the criterion for determining
the weights of the first principal component is to account
for the maximum amount of variance in the pattern of test

correlations. Only the specific latent variables correlated
with the second factor, and this correlation was in opposite
directions for the two. The second factor thus represents a
“contrast” between the two specific latent variables. Once
again, the results illustrate that the results of the principal
components analysis reflect the relation between the tests
rather than the structure of the abilities that the tests mea-
sure. In this case, all of the tests measure both of the com-
mon factors, so they all load on the first component. Tests
that measure the first specific latent variable never measure
the second specific latent variable so these two groups of
tests load on the second latent variable with opposite signs.

Table 5 shows that Factor 1 and Factor 2 both cor-
relate with the specific latent variables, although Factor 2
correlates somewhat higher. However, in studies of human
participants, the underlying latent variables are never actu-
ally known. Rather, they are estimated from test scores.
To simulate the process of identifying individuals with
poor performance on a specific factor, the average of the
first six simulated tests was computed, as these all have
loadings on the first specific latent variable. Then a group
was formed that had scores at least two standard devia-
tions below the mean (n = 63). The first 63 simulated scores
not meeting this criterion were selected as a control group.
To give this abstract experiment some context, these groups
could be thought of as representing individuals with poor
performance on auditory processing tasks and correspond-
ing controls. Multiple regressions were then run with
Factor 1 and Factor 2 used to predict group membership.
Considered in isolation, Factor 1 had an r2 value of .59,
whereas Factor 2 had an r2 value of .28. In a hierarchical
model, Factor 2 had an r2 value of .13 when it was
corrected for Factor 1 scores (i.e., the variance unique to
Factor 2). This process was also repeated using a cutoff of
one standard deviation, producing groups of 179 simulated
individuals. For this one standard deviation case, Factor 1
had an r2 value of .47, whereas Factor 2 had an r2 value
of .27. In a hierarchical model, Factor 2 had an r2 value
of .20 when it was corrected for Factor 1 scores. Although
all of these correlations are significant, the conclusion from
this analysis would be that the individuals selected for on
the basis of these tests differ mainly in terms of the general
factor.

Table 6 shows fit statistics for several models evalu-
ated with the simulated 12 test data using structural equa-
tion modeling (sometimes referred to as confirmatory
factor analysis). The models considered are the null model,
a model with two common and two specific factors (the

Table 4. Twelve tests simulated with two common factors and
two independent specific factors.

Variable C1 C2 S1 S2 Factor 1 Factor 2 Factor 3 Factor 4

Test 1 1 1 2 0 .7971 .1030 .0757 .3016
Test 2 1 1 2 0 .8232 .0825 .1211 –.1826
Test 3 1 1 2 0 .8004 .1559 –.0508 .0339
Test 4 1 1 2 0 .8030 .1129 .2128 .0339
Test 5 1 1 2 0 .8144 .1297 –.1271 .1167
Test 6 1 1 2 0 .8075 .1175 .0201 –.2363
Test 7 1 1 0 2 .1351 .7968 .1116 .1356
Test 8 1 1 0 2 .1130 .7280 .3374 .3423
Test 9 1 1 0 2 .1271 .6611 .6313 –.0107
Test 10 1 1 0 2 .1411 .8629 –.1710 .1180
Test 11 1 1 0 2 .1258 .7896 .1719 –.3217
Test 12 1 1 0 2 .1202 .8207 .0635 –.1584
Eigenvalue 4.0113 3.7285 0.6725 0.4742

Note. C1 and C2 are common latent variables with loadings on
all tests (shown in the second and third columns). S1 and S2 are
specific latent variables with loadings on subsets of tests (shown in
columns 4 and 5). Loadings on the four factors and their eigenvalues
obtained from varimax rotation of the principal components analysis
presented in Table 3 are shown in columns 6–9.

Table 5. Correlations between extracted factors and the generative
variables.

Factor C1 C2 S1 S2

1 .4817* .4741* .5060* .4647*
2 –.0195 –.0147 –.6429* .6755*

*p < .0001.
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true generative model), a model with two common factors,
a model with two specific factors, a model with two spe-
cific factors and a second order (i.e., hierarchical) common
factor, and an oblique model with two specific factors.
All specific factors corresponded to those used to generate
the data. The hierarchical and oblique models are commonly
used in modeling the correlations between tests of abilities.
The null model includes only test-unique variance (some-
times referred to as error) and does not include any common
or specific factors. The null model thus models only the
variance of the tests and none of the covariance between
tests. It serves as a basis for estimating goodness of fit.

Table 6 shows that the true generative model ac-
counts for the most variance, as indicated by the lowest
residual chi-square value. The two common factors
model is a close second and actually is considered a better
fit on the basis of Akaike’s information criterion (Akaike,
1974). The Akaike information criterion takes into ac-
count goodness of fit via the log likelihood while penaliz-
ing for more complex models. Thus, because the two
common factors model has fewer degrees of freedom (i.e.,
the residual df in Table 6 is larger) it is penalized less. The
two common factors model has a pattern of weights very
much like those produced by the principal components anal-
ysis shown in Table 3 with all tests having similar positive
weights on the first factor and the second factor being a
contrast between the two specific latent generative variables.
Apart from the chi-square values, the two oblique common
factor model has the best overall fit statistics. Only the null
model and the two specific factors model have chi-square
values significantly different from chance. Furthermore,
all of the models (with the exception of the null) would be
considered excellent fits by conventional criteria.

The results of the analysis of the simulated two com-
mon and two specific latent variable data thus show that
principal components analysis does not necessarily uncover
the true pattern of factor loadings nor does structural
equation modeling necessarily provide an unambiguous
basis for discriminating between several potential models.
However, it could be that this example with equal weights
for all latent variables is a special case. In order to estab-
lish the generality of these results, the next example con-
sidered 50 simulations where the weights determining the
loading of abilities on tests were drawn from the SAS uni-
form distribution. This distribution produces values on the

uniform distribution ranging from 0 to 1 (weights for spe-
cific factors were multiplied by 2). A unique random value
was assigned to the weight of each latent variable that was
constant throughout a given simulation but was unique
for each of the 50 simulations.

For every one of the 50 simulations, the SAS princi-
pal components procedure recovered two factors by the
eigenvalue greater than 1 criterion. Table 7 shows the aver-
age correlations of the latent factors with the factor scores.
In some cases, the sign of the weights for the second com-
ponent were reversed, so the common and specific weights
were reordered in these cases so as to always present the
positive value first. As can be seen in Table 6, these simu-
lations produced a result very similar in nature to the ex-
ample with equal weights for each latent variable. The
results indicate that in this general case, principal compo-
nents analysis does not recover the correct number of fac-
tors nor does it identify the proper factor loadings.

Discussion
As previously reported (McFarland, 2012), principal

components analysis does not always recover the number
of factors that correspond to the number of unique sources
of individual differences. The pattern of results is related
to the way the latent variables project onto the test scores
rather than to the structure of individual differences. The
results of principal components analysis should correspond
to the structure of abilities if simple structure is a reason-
able model of test performance (i.e., each test measures
only a single aspect of an individual’s abilities). However,
this is not the case if a multivariate model of individual test
performance is appropriate, as in the examples presented
in the present study.

Concerns about the interpretation of the results of
factor analysis are by no means new. For example, Eysenck

Table 6. Fit statistics for structural models of twelve tests simulated with two common factors and two specific factors.

Model c2 df p AGFI RMSEA Akaike

NULL model 6405.6366 66 <.0001 .2105 .3101 6,273.6366
Two common and two specific 26.7236 30 <.6377 .9884 .0000 –33.2764
Two common 40.1923 42 <.5506 .9875 .0000 –43.8077
Two specific 143.8296 54 <.0001 .9672 .0408 35.8296
Two specific hierarchical 46.6796 50 <.6074 .9878 .0000 –53.3204
Two specific correlated 46.6796 53 <.7967 .9885 .0000 –59.3204

Note. AGFI = adjusted goodness-of-fit index; RMSEA = root-mean-square error of approximation; Akaike = Akaike information criterion
(Akaike, 1974).

Table 7. Average (n = 50 simulations) correlations between factor
scores and generative latent variables.

Factor C1 C2 S1 S2

1 .4687 .4864 .4774 .4644
2 .0036 –.0151 .6355 –.6369
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(1952) cautioned against viewing the results of factor anal-
ysis as absolute. Rather, he suggested that factor analysis
might provide hypotheses that require further testing. Like-
wise, Overall (1964) provided several examples demon-
strating problems with applying simple structure given that
scores were generated by more complex models. Both
Eysenck and Overall viewed factor analysis as a useful tool
provided that researchers understood the limitations of this
method.

It should be noted that the present results were ob-
tained with models that had multiple latent variables deter-
mining simulated test performance. Furthermore, these
latent variables had consistent effects across tests (i.e., lar-
ger latent variable values produced larger test scores). Prior
simulation studies of factor recovery have produced more
favorable results using simple models (e.g., Velicer & Fava,
1998; Ximénez, 2007). Velicer and Fava (1998) described
these simple models as orthogonal patterns (i.e., only
one factor with nonzero loadings per simulated test). They
rationalized their restriction to simple structure by (a) sug-
gesting that “most researchers try to achieve nearly orthog-
onal patterns whenever possible” (p. 235), (b) asserting that
investigation of complex patterns would require an extremely
large study, and (c) admitting that they could not generate
a reasonable hypothesis about how complex patterns
would affect results. The present study deals with only a
limited number of examples. However, these examples do
show how the results of factor analysis can be limited if the
processes generating the data are complex.

In addition to examining more complex structures,
one of the innovations of the present study was the com-
putation of factor scores that could be correlated with the
original latent variables that generated the test scores. In
this way, the contribution of the generative latent variables
to the extracted factors could be determined. The results
showed that principal components may consist of multiple
independent sources of individual variation. In addition, it
allowed analysis of a subset of simulated subjects selected
on the basis of poor test scores. The results showed that
correcting for general abilities could produce misleading
results.

It is important to remember that the criterion for op-
timizing the weights of the first principal component is to
maximize the amount of covariance accounted for, rather
than to detect the “true” structure of individual differences.
The subsequent components are then extracted from the
residual using the same criteria. With the simulations in
the present study, we know the nature of the models gener-
ating the data. But with test data collected in actual human
subjects this is not the case. There may not be any math-
ematical procedure that automatically extracts the true
underlying dimensions of test performance. In fact, the as-
sumption that there is in fact a “true” model may be a fic-
tion (Chatfield, 1995). Rather, the concern should be on
accuracy and the ability of our models to generalize to a
wide variety of different circumstances (Foster, 2000).

The results show that principal components analysis
produces factors that group tests together that measure

similar traits or abilities. As shown in the present study
and elsewhere (McFarland, 2012), this does not mean that
these components necessarily reflect a single trait or ability.
It is entirely possible that a given component reflects the
influence of several independent abilities that determine
performance on the tests that have large loadings on that
component. Although it is a common practice to assume
that each test measures only one trait or ability, this is by
no means a universally held proposition (McFarland &
Cacace, 1995).

On the basis of results obtained with factor analysis,
Canivez and Watkins (2010) suggested that test batteries
such as the Wechsler Adult Intelligence Scales—Fourth
Edition (Wechsler, 2008) should be interpreted primarily at
the level of general intelligence. This view holds that there
is a single factor that accounts for most of the variation in
human mental abilities. Given this point of view, it would
seem reasonable to correct for or control for IQ when eval-
uating test battery performance as a predictor of target
disorders. For example, the potential role of general cogni-
tive abilities in diagnosis of disorders such as specific lan-
guage impairment (SLI) is a common concern (e.g., Vugs,
Cuperus, Hendriks, & Verhoeven, 2013). Nonverbal IQ is
generally considered to be an exclusionary criterion for
SLI (e.g., Karasinski & Weismer, 2010; Mainela-Arnold,
Evans, & Coady, 2010). However, both the tests designed
to identify specific deficits, such as SLI, and measures of
general cognitive ability may be influenced by multiple in-
dependent factors. Individuals with specific deficits (e.g.,
SLI) may have difficulties associated with only one or a
few of these. Isolating the specific factor(s) responsible for
these difficulties may be very important for diagnosis and
treatment. Yet this may be precluded by an approach that
corrects and/or controls for general cognitive ability.

As shown in Tables 5 and 7 of the present study,
principal components analysis can be a greedy algorithm,
extracting variance from multiple uncorrelated sources.
In these examples, the first principal component correlated
almost equally with each of the four uncorrelated abilities
that were used to generate the simulated test scores. If, for
example, the specific abilities represent verbal and nonver-
bal skills, then controlling or correcting for the general
component would eliminate a substantial amount of the in-
fluence of these specific abilities.

A fundamental issue here is whether test perform-
ance is best conceptualized as being determined by a single
underlying latent variable or whether performance is deter-
mined by multiple influences. Experimental studies have
shown that test performance can often be determined by
multiple effects. For example, on the basis of dual-task in-
terference, McFarland and Cacace (1997) showed that non-
verbal auditory and visual patterns were influenced both
by general factors and modality-specific factors. Milberg,
Hebben, and Kaplan (2009) described a number of distinct
processes that might limit performance on single subtests of
the Wechsler Adult Intelligence Scales—Revised (Wechsler,
1981). This view is supported by examination of the impact
of different patterns of brain pathology on test performance.
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Conti-Ramsden, St. Clair, Pickles, and Durkin (2012)
described different patterns of development of verbal and
nonverbal skills in individuals with SLI. These examples
illustrate that various experimental designs may allow for
clarification of problems not easily resolved by factor anal-
ysis alone. Studies involving contrasts between well-defined
characteristics of stimuli (e.g., auditory and visual) or re-
sponses (e.g., verbal and nonverbal) are more likely to meet
this goal than studies concerned with abstract psychological
constructs that are more difficult to characterize with spe-
cific test items (McFarland & Cacace, 2012).

We will next consider examples of how the present
results might apply to understanding cases where factor
analysis has been used in the speech, language, and hear-
ing literature. As noted earlier, Watson et al. (2003) used
factor analysis to organize data on the effects of sensory,
cognitive, and linguistic factors on academic performance.
They concluded that their speech processing factor ac-
counted for less than 1% of the variance in reading achieve-
ment, a finding widely sited by others (e.g., Ferguson,
Hall, Riley, & Moore, 2011; Kamhi, 2011). This 1% value
was based on a multiple regression analysis predicting
reading achievement scores from each of the four factors
obtained by principal component analysis followed by
varimax rotation. The resulting speech-processing factor
had largest loadings on the subscales of the SCAN–3
for Children: Tests for Auditory Processing Disorders
(SCAN–3:C; Keith, 2009). Table 4 from Watson et al.
indicates that the correlation between the SCAN–3:C com-
posite score and reading achievement was 0.34, which
would account for 11% of the variance. Thus, the latent
factor defined in part by the scales of the SCAN–3:C test
was a much poorer predictor than the actual SCAN–3:C
test scores. Whether the factor score or the raw SCAN–3:
C scores are most appropriate is difficult to determine by
factor analysis alone. For example, it is possible that the
SCAN–3:C scales are contaminated by variance due to
supramodal processes (McFarland & Cacace, 1995). Alter-
natively, as the results of the present study demonstrate,
one cannot assume that the principal components analysis
necessary corresponds to the true structure of human abil-
ities. Unfortunately, Watson and colleagues did not pro-
vide the actual correlations between the test scores that
they included in their principal components analysis. These
correlations represent the actual data. The factor analysis
presented by Watson et al. represents one of many possible
interpretations.

The CELF–4 is one of the most frequently used test
batteries for the diagnosis of SLI (Betz, Eickhoff, & Sullivan,
2013). The test manual describes the results of factor analysis
as support for the validity of this test (Semel et al., 2003).
The authors describe the results of previous exploratory
analyses of the CELF–3 as providing evidence for an over-
all skill they call general language ability. They assert that
receptive and expressive domains also exist that cannot be
separated from each other. As the results of the present
study show, this inseparability may be due to the method of
analysis rather than the nature of human language abilities.

The CELF–4 manual (Semel et al., 2003) describes hier-
archical structural models associated with each of several
age ranges. There are five factors used to model seven
tests in separate models for each age group at 8 years old,
9 years old, and 13–21 years old. There are five factors
used to model six tests for the 10- to 12-year-old group.
The factors for each of these four models are arranged in a
three-level hierarchy. However, no information is provided
as to whether these separate models provide a better fit
than simpler models. This is particularly striking given that
there are so many factors used to model so few tests. Be-
cause correlation matrices for each of these age groups are
not provided in the test manual, evaluation of alternative
models is not so easily investigated. These issues are of
importance because factor analysis provides part of the
evidence for the validity of this commonly used test of lan-
guage abilities (Semel et al., 2003).

In the previous two examples, a single model was
evaluated by investigators. The results of Watson et al.
(2003) have been widely cited as evidence for the role of
auditory factors in school performance, and the results of
Semel et al. (2003) provide evidence for the validity of a
commonly used test of language skills. Our next example
considers the factor analyses reported on a battery of tests
of auditory processing skills. Domitz and Schow (2000)
reported that results of a principal components analysis
followed by an oblique rotation produced a four-factor
solution closely linked to aspects of auditory processing
defined by the American Speech-Language-Hearing Asso-
ciation (1996). Schow et al. (2000) applied structural equa-
tion modeling to these same data and concluded that the
results reinforced the four-factor model with some revision.
Because Domitz and Schow published their correlation
matrices, McFarland and Cacace (2002) were able to eval-
uate alternative models of these data. McFarland and
Cacace found essentially identical fit indices for the Schow
et al. model and a model consisting of a single general fac-
tor and four test-specific factors. These test-specific effects
were the result of including scores for both left and right
ears on the same behavioral test. This example illustrates
how there are multiple interpretations of the data that are
equivalent in terms of fit indices. They also illustrate the
importance of publishing the correlation matrices, which
are the actual data, in addition to the results of a factor
analysis, which is one of many possible interpretations.

The present study does not prove that factor analysis
cannot identify useful models. It only points out certain
possibilities. Studies using simulations are limited by the
scope of the models examined. However, the present study
does show that factor analysis needs to be supplemented
with theory and the results of research using other meth-
ods. Methods such as principal components analysis are
useful for identifying possible ways in which to organize
multivariate data. The resulting organization is based on
the relationship between tests rather than the structure of
human abilities. Structural equation modeling is useful for
comparing the fit of alternative models. As is also the case
for fitting the psychometric function, several models may be
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indistinguishable on the basis of fit indices alone (Treutwein
& Strasburger, 1999). These methods should not be applied
in a “cookbook” fashion and given an absolute interpreta-
tion. Rather, they should be used creatively and considered
as one part of the total evidence for the utility of the con-
structs they suggest. The most useful model of human abil-
ities should be consistent with many sources of evidence
with the ultimate criterion being clinical utility.
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