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F
rom the 1980s movie Firefox to the more recent Avatar, 
popular science fiction has speculated about the possi-
bility of a person’s thoughts being read directly from his 
or her brain. Such brain–computer interfaces (BCIs) [1] 
might allow people who are paralyzed to communicate 
with and control their environment, and there might 

also be applications in military situations wherever silent 
user-to-user communication is desirable [2]. Previous stud-
ies have shown that BCI systems can use brain signals related 
to  movements and movement imagery [3] or 
attention-based character selection [4]. Al-
though these systems have successfully dem-
onstrated the possibility to control devices us-
ing brain function, directly inferring which 
word a person intends to communicate has 
been elusive. A BCI using imagined speech 
might provide such a practical, intuitive device. Toward this 
goal, our studies to date addressed two scientific questions: 1) 
Can brain signals accurately characterize different aspects of 
speech? 2) Is it possible to predict spoken or imagined words 
or their components using brain signals?

In these investigations, we have been using electrocorti-
cographic (ECoG) signals that are directly recorded from the 
surface of the brain. Since the 1950s, ECoG has been used as 
the gold standard for localization of epileptic seizures 
before surgical resection [5]. ECoG provides a 
powerful tool for measuring electrical corre-
lates of human brain function in high spatial 
and temporal details [6] and is attracting 
an increasing amount of attention from 
researchers investigating speech, motor, 
and other cognitive process-

es. In particular, changes of ECoG activity in the high gamma 
(HG) frequency band have been found to be a very specific, 
spatially precise correlate of the performance of such tasks [7], 
[8]. HG functional mapping results are generally concordant 
with those identified using electrical cortical stimulation [9], 
[10] or metabolic imaging [11], [12].

This article summarizes the results of our collaborative ef-
forts to date. These efforts are described in detail in [13] and 
[14] and are summarized here. In these studies, we evaluat-

ed nine subjects temporarily implanted with 
electrode grids for epilepsy monitoring. We 
presented words to them either visually or 
acoustically. Auditory words were presented 
once at the beginning of each 4-s trial. Visual 
words were displayed on the screen for the 
complete duration of a trial. Subjects were 

asked to either speak aloud (i.e., overtly) or imagine speaking 
(i.e., covertly) each word. Thus, there were four experimen-
tal conditions: visual/actual, audio/actual, visual/imagined, 
and audio/imagined. Thirty-six words were used with four 
possible vowel sounds (/f /, /æ/, /i:/, or /u:/) and nine con-
sonant pairs (/b_t/, /c_n/, /h_d/, /l_d/, /m_n/, /p_p/, /r_d/, 
/s_t/, or /t_n/).

Can Brain Signals Accurately 
Characterize Different Aspects of Speech?

To answer this question, we calculated the 
statistical difference in ECoG HG (70–170 

Hz) amplitude between tasks and rest for 
each electrode, time point, and particu-
lar experimental condition. This is ex-
pressed as a coefficient 
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of determination, otherwise known as an r2 value [15], from 
zero to one. In Figure 1, r2 is projected onto a three-dimensional 
(3-D) template brain model across all eight subjects who had a 
grid on the left hemisphere, to derive the spatial distributions 
of task-related cortical activations. For comparison, we show 
the averaged temporal envelopes of the auditory stimulus and 
 microphone signals.

We can see that the auditory stimulus induces 
strong cortical activations that spread across tem-
poral, parietal, and frontal lobes. In contrast, the 
primary cortical responses to the visual stimuli 
are not detected (as subjects did not have cover-
age of occipital cortex). Together with the tempo-
ral envelopes of the microphone signals following 
visual (blue) and auditory (red) stimuli, the pat-
terns of cortical activations are qualitatively simi-
lar between the visual/actual and audio/actual 
conditions. Compared with actual speech, the 
imagined conditions resulted in weaker activations and with two 
foci: the superior temporal gyrus (STG) and Wernicke’s area. Fig-
ure 2 shows the averaged time courses of r2 across all electrodes 
and subjects. The auditory stimulus produces a peak neural re-
sponse at 100 ms for actual and imagined tasks. Similarly, the 
subjects’ verbal outputs (captured by the microphones) produce 
the neural responses at corresponding times. These results dem-
onstrate that ECoG HG activities are well coupled, in spatially 

distinct functional areas, to the temporal evolution of the stimuli 
and subjects’ responses.

Is It Possible to Predict Spoken or Imagined 
Words or Their Components Using Brain Signals?
To answer this question, we determined whether we could de-
code, from ECoG signals, the vowels and consonants of spoken 

or imagined words. Recent studies have begun 
to elucidate the relationship of brain activity 
with different aspects of language function. For 
example, functional magnetic resonance imag-
ing measurements have been shown to contain 
information about different individual vowels 
that subjects listened to [16], electroencepha-
lography (EEG) signals have been found to con-
tain information about the rhythm of syllables 
[17] and individual vowels [18], and ECoG 
was used to decode several spoken words [19]. 

However, no previous study had shown evidence of decoding 
vowels and consonants in actual (overt) as well as imagined 
(covert) speech.

In our study, we evaluated data from actual speech in eight 
subjects and from imagined speech in six subjects following 
visual stimuli. From each electrode location, we used ECoG 
signals between 500 and 2,500 ms after visual stimulus onset 
and extracted spectral amplitudes from those signals within the 
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FIGURE 1 (a) Spatiotemporal dynamics of ECoG HG activity superimposed across all subjects and characterized by the color-coded r2 
(a value between zero and one) during the four conditions. (b) Normalized and averaged temporal envelopes of the auditory stimuli 
(green) and microphone signals reflecting the subjects’ verbal responses following visual (blue) or auditory (red) presentation of the 
word on the same time scale as (a). (Reprinted from [13], with permission from Elsevier.) 
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8–12, 18–30, and 70–170-Hz 
frequency bands, as well as 
a time-domain feature called 
the local motor potential (LMP) 
[20]. In each trial, a Naive 
Bayes classifier was used to 
determine which of the four 
vowels and which of the four 
consonant pairs were present 
in the spoken or imagined 
word. (Each classification at-
tempt was a four-way choice 
between the correct conso-
nant pair and three others 
drawn from the overall pool 
of nine. All possible four-way 
choices were tested for a given 
word.) Figure 3(a) shows the 
decoding performance, which 
was estimated using tenfold 
cross-validation and averaged 
across subjects from the best 
single location. The average 
accuracies for decoding vow-
els and consonants in both spoken and imagined words were 
significantly above the level expected by chance (25%). Par-
ticular conditions exceeded 55%. Figure 3(b) shows a cortical 
discriminative mapping, i.e., a map of those locations that are 
most predictive of the particular vowel/consonant. The colors 
correspond to classification  accuracy expressed as a z score, i.e., 
as a number of standard  deviations above chance, as derived 
using a randomization test for a four-class problem. This reflects 
the significance of classification accuracy relative to chance level 
(see [14] for details). We found that information for decoding 
vowels or consonants in actual speech tasks is richest in primary 
motor cortex, premotor cortex, Broca’s area, and posterior STG. 
For imagined speech, discriminative information was localized 
over two small foci in the temporal and frontal regions (see de-
tails in [14]).

Conclusions and Future Directions
Taken together with previous studies, our work shows that 
it is possible to use brain signals to predict the vowels and 
consonants in spoken or imagined words. Furthermore, this 
decoding is possible based on single utterances rather than 
requiring brain signals to be averaged over hundreds of task 
repetitions, as in more traditional brain imaging. This is an 
encouraging sign that it may be feasible in the near future to 
decode complete words in real time, thereby allowing users 
to silently communicate without the need for muscle move-
ments. It further underscores the potential usefulness of ECoG 
as a basis for neural engineering applications, both within 
clinical contexts (e.g., as a speech prosthesis for paralyzed 
users) and outside (e.g., as a silent communication method 
in military and security applications). To build a practical 
brain-based communication system using silent speech, some 
questions remain unanswered. For example, can we train 
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FIGURE 2 (a) Averaged time courses of ECoG HG activity across all electrodes and subjects. 
(b) Normalized and averaged temporal envelopes of auditory stimuli and microphone signals 
following visual and auditory stimuli. (Reprinted from [13], with permission from Elsevier.)

FIGURE 3 (a) Classification performance in which red lines cor-
respond to the median value of accuracy across subjects, the 
edges of the box are the 25th and 75th percentiles, and the 
whiskers extend to a maximum/minimum. The chance level is 
25%. (b) Cortical discriminative mapping for decoding vowels 
and consonants during actual/imagined speech tasks (color bar 
denotes z score, indicating how many standard deviations the 
classification accuracy is above chance level). (Reprinted from 
[14], with permission from IOP Publishing.)
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our system on the neural correlates of spoken 
words and transfer the classifier directly to 
imagined words? To what extent can decoding 
performance be improved by using brain sig-
nals from multiple electrodes simultaneously 
and adapting to the differences in spatial activ-
ity patterns? Are the brain signal patterns that 
discriminate words or their components con-
sistently structured (i.e., across subjects) across 
particular perceptual or expressive categories? 
Will this categorization allow us to extend the 
system to a larger number of vowel and consonant categories? 
Finally, to achieve a large-scale deployable communication 
system, the extension of our methods and findings to nonin-
vasive methods such as EEG requires investigation.
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