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F
rom the 1980s movie Firefox to the more recent Avatar, 

popular science fiction has speculated about the possi-

bility of a person’s thoughts being read directly from his 

or her brain. Such brain–computer interfaces (BCIs) [1] 

might allow people who are paralyzed to communicate 

with and control their environment, and there might 

also be applications in military situations wherever silent 

user-to-user communication is desirable [2]. Previous stud-

ies have shown that BCI systems can use brain signals related 

to  movements and movement imagery [3] or 

attention-based character selection [4]. Al-

though these systems have successfully dem-

onstrated the possibility to control devices us-

ing brain function, directly inferring which 

word a person intends to communicate has 

been elusive. A BCI using imagined speech 

might provide such a practical, intuitive device. Toward this 

goal, our studies to date addressed two scientific questions: 1) 

Can brain signals accurately characterize different aspects of 

speech? 2) Is it possible to predict spoken or imagined words 

or their components using brain signals?

In these investigations, we have been using electrocorti-

cographic (ECoG) signals that are directly recorded from the 

surface of the brain. Since the 1950s, ECoG has been used as 

the gold standard for localization of epileptic seizures 

before surgical resection [5]. ECoG provides a 

powerful tool for measuring electrical corre-

lates of human brain function in high spatial 

and temporal details [6] and is attracting 

an increasing amount of attention from 

researchers investigating speech, motor, 

and other cognitive process-

es. In particular, changes of ECoG activity in the high gamma 

(HG) frequency band have been found to be a very specific, 

spatially precise correlate of the performance of such tasks [7], 

[8]. HG functional mapping results are generally concordant 

with those identified using electrical cortical stimulation [9], 

[10] or metabolic imaging [11], [12].

This article summarizes the results of our collaborative ef-

forts to date. These efforts are described in detail in [13] and 

[14] and are summarized here. In these studies, we evaluat-

ed nine subjects temporarily implanted with 

electrode grids for epilepsy monitoring. We 

presented words to them either visually or 

acoustically. Auditory words were presented 

once at the beginning of each 4-s trial. Visual 

words were displayed on the screen for the 

complete duration of a trial. Subjects were 

asked to either speak aloud (i.e., overtly) or imagine speaking 

(i.e., covertly) each word. Thus, there were four experimen-

tal conditions: visual/actual, audio/actual, visual/imagined, 

and audio/imagined. Thirty-six words were used with four 

possible vowel sounds (/f/, /æ/, /i:/, or /u:/) and nine con-

sonant pairs (/b_t/, /c_n/, /h_d/, /l_d/, /m_n/, /p_p/, /r_d/, 

/s_t/, or /t_n/).

Can Brain Signals Accurately 

Characterize Different Aspects of Speech?

To answer this question, we calculated the 

statistical difference in ECoG HG (70–170 

Hz) amplitude between tasks and rest for 

each electrode, time point, and particu-

lar experimental condition. This is ex-

pressed as a coefficient 
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of determination, otherwise known as an r2 value [15], from 

zero to one. In Figure 1, r2 is projected onto a three-dimensional 

(3-D) template brain model across all eight subjects who had a 

grid on the left hemisphere, to derive the spatial distributions 

of task-related cortical activations. For comparison, we show 

the averaged temporal envelopes of the auditory stimulus and 

 microphone signals.

We can see that the auditory stimulus induces 

strong cortical activations that spread across tem-

poral, parietal, and frontal lobes. In contrast, the 

primary cortical responses to the visual stimuli 

are not detected (as subjects did not have cover-

age of occipital cortex). Together with the tempo-

ral envelopes of the microphone signals following 

visual (blue) and auditory (red) stimuli, the pat-

terns of cortical activations are qualitatively simi-

lar between the visual/actual and audio/actual 

conditions. Compared with actual speech, the 

imagined conditions resulted in weaker activations and with two 

foci: the superior temporal gyrus (STG) and Wernicke’s area. Fig-

ure 2 shows the averaged time courses of r2 across all electrodes 

and subjects. The auditory stimulus produces a peak neural re-

sponse at 100 ms for actual and imagined tasks. Similarly, the 

subjects’ verbal outputs (captured by the microphones) produce 

the neural responses at corresponding times. These results dem-

onstrate that ECoG HG activities are well coupled, in spatially 

distinct functional areas, to the temporal evolution of the stimuli 

and subjects’ responses.

Is It Possible to Predict Spoken or Imagined 

Words or Their Components Using Brain Signals?

To answer this question, we determined whether we could de-

code, from ECoG signals, the vowels and consonants of spoken 

or imagined words. Recent studies have begun 

to elucidate the relationship of brain activity 

with different aspects of language function. For 

example, functional magnetic resonance imag-

ing measurements have been shown to contain 

information about different individual vowels 

that subjects listened to [16], electroencepha-

lography (EEG) signals have been found to con-

tain information about the rhythm of syllables 

[17] and individual vowels [18], and ECoG 

was used to decode several spoken words [19]. 

However, no previous study had shown evidence of decoding 

vowels and consonants in actual (overt) as well as imagined 

(covert) speech.

In our study, we evaluated data from actual speech in eight 

subjects and from imagined speech in six subjects following 

visual stimuli. From each electrode location, we used ECoG 

signals between 500 and 2,500 ms after visual stimulus onset 

and extracted spectral amplitudes from those signals within the 
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FIGURE 1 (a) Spatiotemporal dynamics of ECoG HG activity superimposed across all subjects and characterized by the color-coded r2 
(a value between zero and one) during the four conditions. (b) Normalized and averaged temporal envelopes of the auditory stimuli 
(green) and microphone signals reflecting the subjects’ verbal responses following visual (blue) or auditory (red) presentation of the 
word on the same time scale as (a). (Reprinted from [13], with permission from Elsevier.) 
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8–12, 18–30, and 70–170-Hz 

frequency bands, as well as 

a time-domain feature called 

the local motor potential (LMP) 

[20]. In each trial, a Naive 

Bayes classifier was used to 

determine which of the four 

vowels and which of the four 

consonant pairs were present 

in the spoken or imagined 

word. (Each classification at-

tempt was a four-way choice 

between the correct conso-

nant pair and three others 

drawn from the overall pool 

of nine. All possible four-way 

choices were tested for a given 

word.) Figure 3(a) shows the 

decoding performance, which 

was estimated using tenfold 

cross-validation and averaged 

across subjects from the best 

single location. The average 

accuracies for decoding vow-

els and consonants in both spoken and imagined words were 

significantly above the level expected by chance (25%). Par-

ticular conditions exceeded 55%. Figure 3(b) shows a cortical 

discriminative mapping, i.e., a map of those locations that are 

most predictive of the particular vowel/consonant. The colors 

correspond to classification  accuracy expressed as a z score, i.e., 

as a number of standard  deviations above chance, as derived 

using a randomization test for a four-class problem. This reflects 

the significance of classification accuracy relative to chance level 

(see [14] for details). We found that information for decoding 

vowels or consonants in actual speech tasks is richest in primary 

motor cortex, premotor cortex, Broca’s area, and posterior STG. 

For imagined speech, discriminative information was localized 

over two small foci in the temporal and frontal regions (see de-

tails in [14]).

Conclusions and Future Directions

Taken together with previous studies, our work shows that 

it is possible to use brain signals to predict the vowels and 

consonants in spoken or imagined words. Furthermore, this 

decoding is possible based on single utterances rather than 

requiring brain signals to be averaged over hundreds of task 

repetitions, as in more traditional brain imaging. This is an 

encouraging sign that it may be feasible in the near future to 

decode complete words in real time, thereby allowing users 

to silently communicate without the need for muscle move-

ments. It further underscores the potential usefulness of ECoG 

as a basis for neural engineering applications, both within 

clinical contexts (e.g., as a speech prosthesis for paralyzed 

users) and outside (e.g., as a silent communication method 

in military and security applications). To build a practical 

brain-based communication system using silent speech, some 

questions remain unanswered. For example, can we train 
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FIGURE 2 (a) Averaged time courses of ECoG HG activity across all electrodes and subjects. 
(b) Normalized and averaged temporal envelopes of auditory stimuli and microphone signals 
following visual and auditory stimuli. (Reprinted from [13], with permission from Elsevier.)

FIGURE 3 (a) Classification performance in which red lines cor-
respond to the median value of accuracy across subjects, the 
edges of the box are the 25th and 75th percentiles, and the 
whiskers extend to a maximum/minimum. The chance level is 
25%. (b) Cortical discriminative mapping for decoding vowels 
and consonants during actual/imagined speech tasks (color bar 
denotes z score, indicating how many standard deviations the 
classification accuracy is above chance level). (Reprinted from 
[14], with permission from IOP Publishing.)
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our system on the neural correlates of spoken 

words and transfer the classifier directly to 

imagined words? To what extent can decoding 

performance be improved by using brain sig-

nals from multiple electrodes simultaneously 

and adapting to the differences in spatial activ-

ity patterns? Are the brain signal patterns that 

discriminate words or their components con-

sistently structured (i.e., across subjects) across 

particular perceptual or expressive categories? 

Will this categorization allow us to extend the 

system to a larger number of vowel and consonant categories? 

Finally, to achieve a large-scale deployable communication 

system, the extension of our methods and findings to nonin-

vasive methods such as EEG requires investigation.

Acknowledgments

This work was supported by grants from the U.S. Army Research 

Office [W911NF-07-1-0415 (GS), W911NF-08-1-0216 (GS)] and 

the National Institutes of Health (NIH)/National Institute of 

 Biomedical Imaging and Bioengineering (NIBIB) [EB006356 

(GS) and EB000856 (JRW and GS)]. 

Xiaomei Pei (peixiaomei@gmail.com), Jeremy Hill (jezhill@
gmail.com), and Gerwin Schalk (schalk@wadsworth.org) are with 

Brain–Computer Interface R&D Program, Wadsworth Center, Albany, 

New York. 

References

[1] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and 

T. M. Vaughan, “Brain-computer interfaces for communication 

and control,” Clin. Neurophysiol., vol. 113, pp. 767–791, June 2002. 

[2] I. S. Kotchetkov, B. Y. Hwang, G. Appelboom, C. P. Kellner, and 

E. S. Connolly, Jr., “Brain-computer interfaces: Military, neuro-

surgical, and ethical perspective,” Neurosurg. Focus, vol. 28, p. E25, 

May 2010. 

[3] J. R. Wolpaw and D. J. McFarland, “Control of a two-dimensional 

movement signal by a noninvasive brain-computer interface in 

humans,” Proc. Nat. Acad. Sci. USA, vol. 101, pp. 17849–17854, 

Dec. 2004.

[4] E. W. Sellers and E. Donchin, “A P300-based brain-computer in-

terface: Initial tests by ALS patients,” Clin. Neurophysiol., vol. 117, 

no. 3, pp. 538–548, 2006. 

[5] W. Penfield and T. Rasmussen, The Cerebral Cortex of Man. Oxford, 

England: Macmillan, 1950. 

[6] E. C. Leuthardt, G. Schalk, J. R. Wolpaw, J. G. Ojemann, and 

D. W. Moran, “A brain-computer interface using electrocortico-

graphic signals in humans,” J. Neural Eng., vol. 1, pp. 63–71, June 

2004. 

[7] K. J. Miller, G. Schalk, E. E. Fetz, M. den Nijs, J. G. Ojemann, 

and R. P. Rao, “Cortical activity during motor execution, motor 

imagery, and imagery-based online feedback,” Proc. Nat. Acad. Sci. 

USA, vol. 107, pp. 4430–4435, Mar. 2010. 

[8] N. E. Crone, A. Sinai, and A. Korzeniewska, 

“High-frequency gamma oscillations and human 

brain mapping with electrocorticography,” Prog. 

Brain Res., vol. 159, pp. 275–295, Oct. 2006. 

[9] P. Brunner, A. L. Ritaccio, T. M. Lynch, J. F. Em-

rich, J. A. Wilson, J. C. Williams, E. J. Aarnoutse, 

N. F. Ramsey, E. C. Leuthardt, H. Bischof, and G. 

Schalk, “A practical procedure for real-time func-

tional mapping of eloquent cortex using electro-

corticographic signals in humans,” Epilepsy Be-

hav., vol. 15, pp. 278–286, July 2009. 

[10] E. C. Leuthardt, K. Miller, N. R. Anderson, G. Schalk, J. Dowl-

ing, J. Miller, D. W. Moran, and J. G. Ojemann, “Electrocortico-

graphic frequency alteration mapping: A clinical technique for 

mapping the motor cortex,” Neurosurgery, vol. 60, pp. 260–270; 

discussion pp. 270–271, Apr. 2007. 

[11] J. P. Lachaux, P. Fonlupt, P. Kahane, L. Minotti, D. Hoffmann, 

O. Bertrand, and M. Baciu, “Relationship between task-related 

gamma oscillations and BOLD signal: New insights from com-

bined fMRI and intracranial EEG,” Hum. Brain Mapp., vol. 28, pp. 

1368–1375, Dec. 2007. 

[12] J. Niessing, B. Ebisch, K. E. Schmidt, M. Niessing, W. Singer, and 

R. A. Galuske, “Hemodynamic signals correlate tightly with syn-

chronized gamma oscillations,” Science, vol. 309, pp. 948–951, 

Aug. 2005. 

[13] X. Pei, E. C. Leuthardt, C. M. Gaona, P. Brunner, J. R. Wolpaw, 

and G. Schalk, “Spatiotemporal dynamics of electrocorticograph-

ic high gamma activity during overt and covert word repetition,” 

Neuroimage, vol. 54, pp. 2960–2972, Feb. 2011. 

[14] X. Pei, “Decoding vowels and consonants in spoken and imag-

ined words using electrocorticographic signals in humans,” J. 

Neural Eng., vol. 8, no. 4, p. 046028, 2011. 

[15] T. H. Wonnacott and R. Wonnacott, Introductory Statistics. New 

York: Wiley, 1977. 

[16] E. Formisano, F. De Martino, M. Bonte, and R. Goebel, ‘Who’ 

is saying ‘what’? Brain-based decoding of human voice and 

speech,” Science, vol. 322, pp. 970–973, Nov. 2008. 

[17] S. Deng, R. Srinivasan, T. Lappas, and M. D’Zmura, “EEG clas-

sification of imagined syllable rhythm using Hilbert spectrum 

methods,” J. Neural Eng., vol. 7, p. 046006, June 2010. 

[18] C. S. DaSalla, H. Kambara, M. Sato, and Y. Koike, “Single-trial 

classification of vowel speech imagery using common spatial pat-

terns,” Neural Netw., vol. 22, pp. 1334–1339, Nov. 2009. 

[19] S. Kellis, K. Miller, K. Thomson, R. Brown, P. House, and B. Gre-

ger, “Decoding spoken words using local field potentials recorded 

from the cortical surface,” J. Neural Eng., vol. 7, p. 056007, Oct. 

2010. 

[20] G. Schalk, J. Kubánek, K. J. Miller, N. R. Anderson, E. C. Leu-

thardt, J. G. Ojemann, D. Limbrick, D. Moran, L. A. Gerhardt, 

and J. R. Wolpaw, “Decoding two-dimensional movement trajec-

tories using electrocorticographic signals in humans,” J. Neural 

Eng., vol. 4, pp. 264–275, Sept. 2007. 

 

For imagined speech, 
discriminative 

information was 
localized over two 

small foci in 
the temporal and 
frontal regions.


