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Abstract—This paper addresses the problem of identifying
signals of interest from discrete-time sequences contaminated
by erroneous segments, which we define as the part of time
series whose dynamic patterns are inconsistent with that of the
signals. Assuming the signals of interest consist of consecutive
samples with arbitrary starting point, duration and following
a stationary dynamic pattern, we propose a robust algorithm
combining Random Sample Consensus (RANSAC) and Hidden
Markov Model (HMM) to automatically identify the start and
end of signals of interest from time series. To evaluate the
identification quality, we perform a classification task, where
the identified signals are used to train a classifier. A majority
vote strategy is adopted to handle error contaminated testing
sequences. Compared with manual selection approach and other
unsupervised learning methods, the proposed method shows
improvement in classification accuracy on both synthetic and
real Electrocorticographic (ECoG) data.

I. INTRODUCTION

Time series data provide important information for the
analysis of system dynamics. However, time series data are
often contaminated with irrelevant part introduced during
experiment process. Therefore the exact location and duration
of the signals of interest in time series are often unknown.
For instance, in brain computer interface application, brain
signals in response to exterior stimulus are recorded. However,
both onset and elapsed time of the response are difficult
to determine exactly due to the interference of other neural
activities which may be happening before and after the ones
of interest. In order to analyze the underlying dynamic pattern,
it is crucial to identify the signals of interest first, which we
consider as signal identification problem.

The signal identification problem is closely related to the
change-point detection or time series segmentation problem
whose goal is to segment time series into disjoint statistically
consistent parts. Time series segmentation has been studied in
a variety of disciplines including speech signal segmentation
[1], action recognition from videos [2], stock data mining
[3] and climate change detection [4]. A typical approach to
obtain segmentation is to minimize a specific cost function
which gives optimal start and end points for each segment
(See [5] for a review). More recently, Liu et al. [6] proposed
to detect change-point based on a non-parametric divergence
estimation between time series segments. Chen and Zhang [7]
constructed a similarity graph among time series, based on
which the change-point is determined.

Another approach is based on explicit modeling on the
dynamics of time series. For instances, Takeuchi and Ya-
manishi [8] detected changing point and outliers in network
security analysis using autoregressive model. Citi et al. [9]
modeled electrocardiogram signals as a point process in order
to detect abnormal heartbeats. Oh et al. [10] proposed a
switching linear dynamic system for segmenting bee dance
data. Lee and Kim [11] modeled time series using two HMMs
to identify existence and uniqueness of the pattern among
different classes.

The third approach treats signal identification as an unsu-
pervised learning problem. Zhou et al. [2] proposed aligned
cluster analysis based on kernel k-means for motion sequence
segmentation. Tierney et al. [12] extended subspace clustering
methods to segment sequential data with temporal smoothness
constraints. However, the dynamic pattern is not modeled in
these approaches.

Existing works often assume the availability of ground truth
segmentation, based on which a statistical model or template
can be developed to characterize the dynamic patterns. In
contrast, we are faced with the case where the ground truth
segmentation is not available. In addition, we do not assume
any prior knowledge on the dynamic pattern of signals of
interest except for consistency of signals belonging to the
same class and the temporal continuity of the signals. Our goal
is to identify signals of interest from discrete-time sequence
containing irrelevant or erroneous segments. Our contribution
lies in the following aspects:

• We propose a framework that can robustly identify the
signals of interest from time series, which helps analysis
of the corresponding dynamic pattern.

• A novel identification method called likelihood sum is
proposed based on HMM learned from data. We analyze
the identification quality with respect to the computa-
tional cost based on RANSAC framework.

• We support the proposed framework with empirical evi-
dence obtained on both synthetic and human brain ECoG
data by performing a classification task.

The rest of this paper is organized as follows. In section 2,
we define the problem and the used assumptions. We describe
our approach in details in section 3. The experiments on
synthetic data and ECoG data are discussed in section 4 and
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5 respectively, followed by conclusion and future work.

II. PROBLEM STATEMENT

Consider discrete-time sequence X = {Xt}, t = 0, ..., L−
1, where length L > 0 containing signals of interest
{Xa, ..., Xa+N−1} with a and N be the onset time and
duration of signals respectively. The remaining samples are
called erroneous segments. We assume within each sequence,
the signals of interest, which possess some stationary dynamic
pattern, consist of consecutive samples in discrete-time with a
duration N ≥ 0.5L.

Define subsequence be a subset of X which contains
consecutive samples in discrete-time. A subsequence is called
signal subsequence if it only contains samples belonging to
signals of interest and otherwise called erroneous subsequence.
Fig. 1 is an illustration of different parts in a sequence. Given
a set of sequences {X}K , we are trying to identify signals of
interest for each sequence, i.e. find starting point and length
of the signals of interest.

··· ··· ··· ··· 

Signals of interest 

Signal subsequence 

Erroneous segment 

𝑋0 𝑋𝑎 𝑋𝐿−1 𝑋𝑎−1 𝑋𝑎+𝑀−1 𝑋𝑎+𝑁−1 

Erroneous segment 

𝑋𝑎+𝑁 

Fig. 1. Illustration of different parts of discrete-time sequence of
length L. Each small rectangle represents a discrete-time sample.
The length N signals of interest {Xa, ..., Xa+N−1} is shaded. The
two unshaded segments {X0, ..., Xa−1} and {Xa+N , ..., XL−1} are
erroneous segments. The subsequence in green bounding box is an
example of length M signal subsequence.

III. METHODS

We provide a brief overview of RANSAC method and
HMM, where our method is build on. Then we describe in
details about the proposed signal identification method.

A. Random Sample Consensus (RANSAC)

RANSAC is a robust algorithm for parameters estimation
of a mathematical model from a set of data points which
contains a minority portion of outliers [13]. In an iterative
process, RANSAC randomly selects a sufficiently large subset
of data points to estimate the model parameters. The quality
of estimation is evaluated using all the remaining data points
by some quantitative metric, where the ones that agree with
the learned model form a consensus set. The consensus set
is expected to be of larger size if the learning subset contains
more inliers. By repeating this process multiple times, we may
select a subset containing only inliers, which can produce the
largest consensus set.

Given the total number of data points and proportion of
outliers, we can compute the number of random selections
required such that at least one selection does not contain any
outliers up to a pre-specified probability value. Finally, the
parameters are re-estimated by the identified inliers, which
include all the data points in the largest consensus set as well
as the corresponding data points used to train the model. In
this work, we tailor RANSAC method for time series data and

use HMM as the underlying model for the data. The process
of generating consensus set naturally provides us a way of
identifying signals of interest, which are considered as inliers
in our case.

B. Hidden Markov Model (HMM)

HMM is a popular generative model that characterizes the
dynamic pattern of time series [14]. The sequential obser-
vations are modeled by a series of random variables, each
of which is associated with a latent discrete state variable.
The dynamic behavior of the sequence is characterized by the
status change between neighboring state variables. The joint
distribution of hidden state X = {X1, ...XT } and observation
Y = {Y1, ...YT } can be factorized as follows.

P (X,Y) = P (X1)

T∏
t=2

P (Xt|Xt−1)

T∏
t=1

P (Yt|Xt) (1)

Therefore, the model can be parametrized by three conditional
probability distributions, namely prior distribution P (X1) for
initial state variable, transition distribution P (Xt|Xt−1) for
neighboring pair of state variables and emission distribution
P (Yt|Xt) for each observation and its associated state vari-
able. Given time series, we can estimate the parameters of
the three distributions using EM algorithm. For inference, we
compute likelihood P (Y) using forward-backward algorithm
[15]. In this work, we use multivariate Gaussian distribution
for emission distribution. The number of hidden state is
selected through a cross-validation process on training data.

C. Our method

Our method essentially consists of three components. First,
iteratively select random subsequences of time series data fol-
lowing the framework of RANSAC method. At each iteration,
HMM is learned using selected data. Second, evaluate the
learned HMMs using all the subsequences and choose the
best one, which is then used to identify the signals of interest.
Third, evaluate the quality of identified signals from different
classes by performing a classification task.

Data selection and model generation

Inspired by RANSAC method, we randomly select one
subsequence from each complete sequence. If all the selected
subsequences are signal subsequences, we have a better rep-
resentation than using the complete sequences. By repeating
this process multiple times, we increase the probability of
selecting only signal subsequences. To evaluate the selected
subsequences, we fit a HMM to represent the overall dynamic
pattern at each selection. In the following analysis, we show
that given p, a pre-defined probability value, we can determine
S, the number of selections needs to be performed such that
at least one selection contains only signal subsequences.

Given a sequence of length L with signals of interest length
N (0.5L ≤ N ≤ L), we have L−M+1 subsequences, where
M (M ≤ N) is the length of subsequence. Similarly, there
are N −M + 1 signal subsequences. Let ε be the probability
of a subsequence being an erroneous subsequence. We can
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compute ε = ηL
L−M+1 , where η = 1 −N/L is the proportion

of outliers. Suppose we have K training sequences each with
length L. From each one of the K sequences, we randomly
select a length M subsequence, yielding K subsequences. The
probability of all K subsequences being signal subsequences
is (1 − ε)K . Within S sets of selections, the probability that
at least one out of S sets has no erroneous subsequences is
p = 1− (1− (1− ε)K)S . Therefore

S =
ln(1− p)

ln(1− (1− ε)K)
(2)

Eq. (2) determines the number of selections S needed to
achieve identification accuracy p given ε. For example, Fig. 4
shows value change of S with different p under different ε,
which depends on η and M . The value of M is often appli-
cation dependent. While the analysis holds true for M ≤ N ,
we will show in experiment part how we choose M . Note that
the training sequences do not need to have the same length
in general. We consider the same length case here and the
varied length case can be extended by similar arguments. After
selecting subsequences at each iteration, we learn a HMM
using EM algorithm, which has complexity O(MQ2) and Q
is number of hidden states. For the details of learning HMM,
readers are referred to [15]. The same process is applied to
each class of time series.

Model selection and signal identification

Model selection is to identify the HMM that is most likely to
be generated by a set s∗ consists of only signal subsequences.
We propose a method using logP (Y), namely log-likelihood
computed by HMM for model selection. The signals of interest
are then identified by the selected best model. We work with
log-likelihood values to avoid numerical underflow.

The intuition of this method is that the log-likelihood of
a signal subsequence computed by HMM should be larger if
the model is learned from mostly signal subsequences due
to the consistency assumption. Since the signals of interest
are the majority portion of a sequence, the summation of
log-likelihood of all the subsequences should increase as the
quality of learned model improves. To be specific, at each
iteration we keep record of the log-likelihood of each subse-
quence computed using learned HMM, yielding K(L−M+1)
log-likelihood values. The computational cost is O(LMQ2).
Let l(s)i be the log-likelihood computed by sth HMM for
ith subsequence. We calculate Ls, the sum of log-likelihood
values of all subsequences as

Ls =

K(L−M+1)∑
i=1

l
(s)
i , s = 1, ..., S (3)

The best model among S selections is determined as

s∗ = arg max
s
Ls (4)

To identify the signals of interest, we set a threshold h = L̄s∗
as the average log-likelihood over l(s

∗)
i . The ith subsequence

is considered as a signal subsequence if its log-likelihood is

higher than h. The signals of interest within each sequence
is the union of its signal subsequences. The overall process
of signal identification is summarized by Algorithm 1. The
overall computational cost is O(SLMQ2).
Algorithm 1 Robust signal identification
Input: K: number of sequences, M : length of subsequence,

S: number of iterations
Output: Signals of interest

1: for s = 1 to S do
2: D ← randomly select K length M subsequences, one

from each of the K sequences
3: θs ← learn HMM parameters with D
4: l

(s)
i ← compute subsequence i log-likelihood using θs

5: Ls ← compute log-likelihood sum using Eq.(3)
6: end for
7: s∗ ← arg maxs Ls
8: h← Ls∗/ total number of subsequences
9: return union of subsequences i with l(s

∗)
i ≥ h

Signal evaluation
We evaluate the quality of identified signals of interest by

performing a classification task. After robust identification
process, we relearn a HMM using identified signals of interest
for each class. Let θk, k = 1, ..., C be the parameters of kth

HMM, where C is the number of classes. Since the testing
sequence may also be corrupted by erroneous segments. We
propose to perform classification based on subsequences. We
divide the complete testing sequence into subsequences in the
same way as training, i.e. a length L sequence is divided into
L−M + 1 length M subsequences. Then we decide the label
of each subsequence using some classifier. In our experiment,
we tried two different classification methods. The first one
directly uses log-likelihood computed by learned HMM from
different classes. The second one uses multi-class linear SVM.
Nevertheless, the framework is completely general and any
off-the-shelf classifier can be applied. After we classify all the
subsequences, we decide the label of the complete sequence
as the majority class of subsequences. The algorithm of
complete testing process is described in Algorithm 2, where
classifier() represents some classification function.
Algorithm 2 Time series classification using subsequences
Input: X: testing sequence, M : length of subsequence
Output: Class label

1: n← 0, a[1...C]← 0
2: while n+M − 1 < length of X do
3: l← classifier(X(n : n+M − 1))
4: a[l]← a[l] + 1
5: n← n+ 1
6: end while
7: return label ← argmaxi a[i]

IV. EXPERIMENTS ON SYNTHETIC DATA

A. Data generation
In order to evaluate the effectiveness of proposed robust seg-

mentation algorithm, we perform two experiments on synthetic
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data, which consist of three classes of univariate time series
generated by pre-defined functions. Gaussian random noise
is added to each data point in each sequence. 1) Saw-tooth
waveform with negative slope: c1(t) = 1− (0.5t−b0.5tc); 2)
Saw-tooth waveform with positive slope: c2(t) = 0.5t−b0.5tc;
3) Sine waveform: c3(t) = 0.5 sin(πt) + 0.5, where bxc is
the largest integer that is smaller than or equal to x. The
discrete-time series are obtained by sampling the continuous-
time waveforms with period 1/20, i.e. di(n) = ci(n/20), n =
0, ..., 99, i = 1, 2, 3. Then each sequence has length 100 and
a complete pattern lasts 20% of total length. Finally, we add
Gaussian noise with mean 0 and σ = 0.25 to the generated
sequence.

B. Processes and results

The synthetic dataset is partitioned into training and testing
set. Training set contains 10 sequences for each class. Testing
set contains 30 sequences in total.

The first experiment involves training set only and the
hidden state number of HMM is fixed to be 3. For each
sequence, we introduce erroneous segments by substituting the
beginning and ending portion of each sequence by Gaussian
noise with µ = 0 and σ = 0.5. The proportions of substi-
tution at the beginning and end are chosen randomly with
total proportion equals to 30% of the sequence length. This
generation mimics the situation in real data where the onset
of signals of interest can be arbitrary. As a comparison, we
train HMM using either the entire sequence or only signal
portion for each class. Finally, we train HMM using signals
of interest identified by the proposed robust identification
method. For evaluation, we first compute log-likelihood of all
the overlapping subsequences from training set using HMM
as shown in Table I.

TABLE I
AVERAGE LOG-LIKELIHOOD PER SUBSEQUENCE COMPUTED BY
HMM LEARNED FROM DIFFERENT TYPES OF SUBSEQUENCES

Class Entire Identified by Alg. 1 Signals
1 -8.02 -6.23 -6.27
2 -5.07 -3.44 -2.73
3 -1.87 -1.08 -1.77

We see that using erroneous corrupted sequences yield the
lowest log-likelihood. The proposed method produces compa-
rable log-likelihood as the ideal case where only identified
signals of interest is used to train HMM. This provides
an empirical evidence that a higher log-likelihood sum is
effective in identifying signals of interest. We point out that a
threshold on log-likelihood value can be applied to filter out
extremely low values before computing the sum. However,
the choice of threshold is non-trivial. Here we relies on the
majority assumption of signal part to prevent extremely low
log-likelihood produced by poor model. For the third class, the
robust method produces higher log-likelihood than the ideal
case. This is due to the erroneous segment may mimic the
signal pattern since the log-likelihood computed by the entire
sequence is comparable with the one computed by signals only.

We then directly evaluate the quality of identified inliers by
comparing against the ground truth signal subsequences. This
is considered as a binary classification on individual sample
of a sequence. As shown in Table II, our method improves
precision and F1-score by 11.6% and 17.2% compared to the
case where treating all the samples as inliers.

TABLE II
IDENTIFICATION QUALITY USING ALGORITHM (1)

Class 1 2 3 Average Entire
Precision (%) 81.8 82.5 80.5 81.6 70.0
F1-score (%) 89.9 89.6 89.2 89.6 82.4

The second experiment is classification which involves
both training and testing sets and the hidden state number
of HMM is chosen through five-fold cross validation on
training set. We introduce erroneous segments in a similar
way as the first experiment with three different variations as
follows. Case 1: Only training sequences contain erroneous
segments. Case 2: Only testing sequences contain erroneous
segments. Case 3: Both training and testing sequences contain
erroneous segments. We decide class label as the one whose
corresponding HMM produces the largest log-likelihood. For
training part, we compare the cases with and without using
Algorithm 1. For testing part, we compare the cases with and
without using Algorithm 2. The baseline approach is using the
entire sequence in both training and testing. The classification
accuracy of all different cases are summarized in Table III.

TABLE III
CLASSIFICATION ACCURACY UNDER DIFFERENT CONDITIONS

WITH DIFFERENT METHODS.

Case Training / Testing
All/All Alg.1/All All/Alg.2 Alg.1/Alg.2

1 80.0 96.7 80.0 96.7
2 76.7 60.0 90.0 80.0
3 66.7 63.3 83.3 90.0

From the results in case 1 and 2, we see that erroneous
segments dampen the performance of classification. In case 1,
the deployment of Algorithm 1 produces higher classification
accuracy, which indicates the model is more likely to be
learned from signal subsequences. In case 2, the deployment
of Algorithm 2 improves the classification accuracy under
the same HMM learned from training data. This means a
majority vote strategy on classification is effective to alleviate
the contamination of testing sequences. In case 3, using a
combination of Algorithm 1 for training or Algorithm 2
for testing yields significant improvement on classification
accuracy. Consider case 3 is the most realistic situation in
practice, therefore it is critical to use both algorithms together.

Stage 1 (1s) Stage 2 (≤ 2s) Stage 3 (1s) 

target 

cursor 

Fig. 2. Timeline of a trial, where the goal is to hit the target using
cursor controlled by a joystick.
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V. EXPERIMENTS ON ELECTROCORTICOGRAPHIC DATA

A. Data collection and pre-processing
We evaluate the performance of proposed robust signal

identification algorithm on ECoG data, which has higher
spatial and temporal resolution comparing to other brain signal
modalities such as EEG and fMRI [16]. The signals were
recorded from patients with electrodes placed subdurally on
the surface of brain for solely clinical purpose of identifying
epilepsy seizure foci prior to surgical resection. The subjects
had normal cognitive capability and was given informed
consent. During the motion control experiment, the subject
held a joystick to move a cursor appearing on the screen to
hit a virtual target. Each trial consists of three stages with
total lasting time 3-4 seconds. Multiple trials were recorded
in a consecutive manner. Fig. 2 shows the time line of a trial.

The target can appear in eight different locations, which
leads to eight different directions of hand movement. We try
to differentiate the dynamic pattern of signals in response to
different hand movements, which is cast as a classification
problem. Based on the design of experiment, the stimulus
onset time, namely the beginning of stage 2 can be located.
However, the accurate onset and duration of motor cortex ac-
tivities, which are of primary interest, are difficult to obtained.
The lack of such ground truth information makes the pattern
recognition problem highly challenging.

Fig. 3. Features from multiple channels of a trial of subject A.
The unshaded, blue and red regions correspond to stage 1, 2 and
3 respectively. Target appears at the start of stage 2, whose duration
varies across different trials and subjects. (Best view in color)

The ECoG signal was originally sampled at 1200Hz for each
channel. For signal processing, we adopt a similar procedure
used in [17]. We first exclude channels with significant line
noise and then apply common average filter to all channels. We
then apply notch filter to further reduce line noise and their
harmonics. For feature extraction, we apply spectrum filter
followed by Hilbert transform to extract amplitude envelope
of representative frequency band. In this experiment, we use
γ band of range 70-170 Hz, which has been demonstrated
with significant correlation to motor activity [18]. Finally, we
down-sample the signal to 400Hz. Fig. 3 shows processed
signal from multiple channels over one trial from one subject.
Data from four subjects are used for further analysis. For each
subject, we identify the electrodes covering motor cortex area
resulting 4-6 channels of signals per subject.

B. Processes and results

For classification experiment, for each subject, we select
K = 10 trials from each direction of movement as training
set and additional 10 sequences for testing, in total of 80
testing sequences. Each sequence has L = 800 sample, i.e. 2
seconds, which is the maximum allowed time for completing
the motion portion of a trial. The chance level of classification
is 12.5%. Due to the sophisticated inter-subject variation, we
restrict the classification to be performed within each subject
and the results are reported for each individual subject.

The average time to hit the target correctly starting from
stimulus onset over 80 selected trials is 1.41s. Based on
this average operation time, a rough estimate of erroneous
portion can be as much as 1 − (1.41/2) ≈ 0.3. We choose
our subsequence length as M = 400, which corresponds to
duration 1 second. Based on Eq.(2), we compute the number
of iterations required given different identification accuracies
in log scale as shown in Fig. 4. In the following experiments,
we assume the outlier proportion be η = 20% (green curve in
Fig. 4). Choose the identification accuracy be 95%, we need
S = 463 iterations.

Fig. 4. Number of iterations needed to attain designated identification
accuracy under different values of outlier proportion η. (Best view
in color)

We compare three different methods against proposed robust
identification method including aligned cluster analysis (ACA)
[2], spectral clustering (SC) and manual selection. For ACA,
we use the implementation provided by the original authors,
where an entire sequence is segmented into multiple subse-
quences. We choose the longest subsequence as signals of
interest. For SC, we implemented the algorithm described in
[19], where we cluster each length M subsequence into two
clusters. The scaling parameter σ is set to the average L2-norm
of subsequences for computing affinity matrix. The signals
of interest are identified as the union of the subsequences of
the larger cluster. For manual selection, we simply use the
stimulus onset time as the start of signals of interest.

The signals of interest identified by each method is then
used to train a multi-class linear SVM, where we use libSVM
[20]. For fair comparison, we use the same type of classifier for
different methods so that the classification results only depend
on the quality of identified subsequences. For each method, the
first M time stamps of identified signals of interest are used
to train SVM, yielding the feature dimension be lM , where
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number of channels l = 6 for subject A,B,C and l = 4 for
subject D. To decide the hidden state number of HMM used in
our method, we perform five-fold cross validation on training
set and choose the number with highest average accuracy.
The classification accuracy on testing set is summarized in
Table IV. We also compute the 95% confidence interval for
the average accuracy following the method of [21].

TABLE IV
CLASSIFICATION ACCURACY AND 95% CONFIDENCE INTERVAL

(CI95) USING LINEAR SVM TRAINED ON SUBSEQUENCES
IDENTIFIED BY DIFFERENT ALGORITHMS

Subject A B C D Average (CI95)
Manual 32.5 65.4 74.5 42.5 53.7 (42.9,64.2)
ACA 63.0 58.1 58.8 41.8 55.4 (44.5,65.8)
SC 63.8 60.6 80.4 38.8 60.9 (49.9,70.9)

Ours 63.8 67.3 100 50.0 70.3 (59.5,79.2)

From the above results, we have the following observations.
First of all, comparing results across different subjects, we
observe significant variation, which suggests the variation
of brain signals across different subjects in response to the
similar motor task. Temporal alignment purely based on data
collection protocol may not be sufficient. This variation is also
partially due to inaccurate mapping between the placement of
electrodes and brain function area. Nevertheless, the average
accuracy of different subjects are all better than random guess
which only has 12.5% expected accuracy. These results show
promising in identifying motor signal pattern from ECoG data
despite the uncertainty of spatio-temporal location of the sig-
nals. Second, comparing results across different methods, we
observe that the proposed robust identification method yields
superior performance in improving classification accuracy. It
is consistently better than other competing methods across
different subjects with average relative improvement to the
second best method be 15.4%. This results indicate that by
exploiting the consistency assumption of dynamic pattern, we
are able to identify subsequences that are more distinctive to
the underlying neural activity patterns. Such subsequences are
therefore more likely to be the signals of interest.

VI. CONCLUSION

In this paper, we proposed a robust signal identification
algorithm to automatically identify signals of interest from
time series. The algorithm selects random subsequences, from
which a dynamic model is learned as the representation of
the entire time series. By repeating the process iteratively, a
relatively best model and the corresponding signals of interest
are identified. As the number of iterations increases, we can
guarantee that the selected data do not contain erroneous seg-
ments up to a pre-specified probability value. As an evaluation,
we use model learned from identified signals of interest for
a classification task. Experiments on both synthetic and real
ECoG data demonstrate the effectiveness of proposed method
comparing to other automatic or manual approaches. We are
planning to extend this strategy to analyze ECoG data from
multiple regions of recordings for the same task to gain more
insights on how brain signals propagate between different
brain regions over time.
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