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Abstract
Neurological disorders, such as spinal cord injury, stroke, traumatic brain injury, cerebral palsy, and multiple sclerosis cause
motor impairments that are a huge burden at the individual, family, and societal levels. Spinal reflex abnormalities contribute to
these impairments. Spinal reflex measurements play important roles in characterizing and monitoring neurological disorders and
their associated motor impairments, such as spasticity, which affects nearly half of those with neurological disorders. Spinal
reflexes can also serve as therapeutic targets themselves. Operant conditioning protocols can target beneficial plasticity to key
reflex pathways; they can thereby trigger wider plasticity that improves impaired motor skills, such as locomotion. These
protocols may complement standard therapies such as locomotor training and enhance functional recovery. This paper reviews
the value of spinal reflexes and the therapeutic promise of spinal reflex operant conditioning protocols; it also considers the
complex process of translating this promise into clinical reality.
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Introduction

Neurological disorders—including spinal cord injury
(SCI), stroke, traumatic brain injury (TBI), cerebral palsy,
and multiple sclerosis (MS)—affect many millions of peo-
ple in the USA and throughout the world (e.g., Table 1).
These disorders disrupt the brain’s influence on the spinal
cord, producing abnormal spinal reflexes that impair motor
control. Reflex abnormalities limit mobility (e.g., walk-
ing), disrupt sleep, and can cause pain and fatigue [3, 7,
8]. They contribute to spasticity and contractures.
Spasticity is one of the most common sequelae of neuro-
logical disorders, and a major contributor to functional
loss [9–13].

Currently, the treatment of motor impairments, such as
spasticity, includes rehabilitation (physical and occupational
therapy [14]) and pharmacological interventions [15–20].
Examples of treatments based on rehabilitation are therapeutic
exercise [21], stretching [21, 22], and mobility and gait train-
ing [22, 23]. These functional training regimes may include
devising new strategies to accommodate motor impairments;
and assistive devices may be prescribed to support achieve-
ment of patients’ functional goals. Pharmacological solutions,
such as antispasmodics (e.g., baclofen) and neurotoxins (e.g.,
botulinum toxin) aim to relieve the symptoms of spasticity by
reducing muscle activity [15–20].

However, despite treatment functional mobility and quality
of life (QoL) often do not return to pre-injury states or even to
functionally useful levels (e.g., a walking speed that enables
participation in the community [24–26]). This begs the ques-
tion: what is the current barrier to effective treatment of spas-
ticity and other motor abnormalities associated with many
neurological disorders? The answer, in part, is that current
rehabilitation does not target abnormal reflexes.

Reflexes play a crucial role in the control of muscle tone at
rest and during movement [27–30]; thus, reflex abnormalities
are an important factor in motor impairments [31]. Current
understanding of the role of reflexes and the consequences
of their abnormalities is based on more than a century of
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research, much of which has focused on the H-reflex (or
Hoffmann reflex [32, 33]). The H-reflex is a spinally mediated
response to nerve stimulation. It is commonly described as the
electrical analog of the spinal stretch reflex (e.g., the knee jerk
reflex), which is produced by a wholly spinal and largely
monosynaptic pathway [28]. H-reflex size indicates the excit-
ability of this reflex pathway. The pathway’s excitability re-
flects the current state of the spinal motoneurons and of the
afferent synapses on the motoneurons that are activated by the
nerve stimulation [28]. Thus, the H-reflex has long been, and
continues to be, a valuable tool for investigating mechanisms
of neuromotor control and for elucidating neuromotor impair-
ments [27–30, 34, 35]. For example, in people with SCI, brain
control of reflex pathways is impaired [31, 36–38] (i.e.,
supraspinal connections to the spinal cord are disrupted).
This often results in exaggerated stretch reflexes (i.e.,
hyperreflexia) [31, 36] that impair motor behaviors such as
walking. For example, the normal modulation of reflex excit-
ability during walking (e.g., reduced excitability during the
swing phase) may disappear, resulting in foot drop, clonus,
and other abnormalities [31, 36].

Over the last several decades, the H-reflex has acquired
further scientific and clinical importance with the develop-
ment and exploitation of operant conditioning protocols that
canmodify spinal reflex pathways. These protocols are among
the first of a powerful new class of noninvasive therapies that
can target beneficial plasticity (i.e., neuronal and/or synaptic
changes that improve important functions such as locomotion)
to critical sites in the central nervous system (CNS) (e.g.,
[39]). Using immediate visual feedback to guide brain activity,
they can, for example, change spinal reflex pathways so as to
decrease spasticity and restore more normal motor function
[37, 40–42]. Spinal reflex operant conditioning has been dem-
onstrated to improve locomotion in studies of animals with
incomplete SCI [39, 43] and in several small studies of people
with incomplete SCI [41, 44]; other applications are being
explored. By targeting beneficial plasticity to an important
reflex pathway, operant conditioning protocols trigger wider
plasticity that markedly improves important motor functions
such as locomotion [39, 41]. Thus, these protocols have the
potential to improve the treatment of motor impairments due

to neurological disorders; they should be able to complement
other therapies and enhance functional recovery.

The therapeutic impact of spinal reflex conditioning on
people with neurological disorders hinges on aligning re-
search to support clinical translation [45]. Clinical translation
is the process of transitioning from theory, basic science, and
mechanistic studies to (in the case of spinal reflex condition-
ing) a robust, clinically practical, operant conditioning system
and protocol. Clinical research oriented toward clinical trans-
lation and potentially commercialization is critical to bridging
this gap. The key questions for clinical translation reflect
many factors, including particularly the market require-
ments—the needs and wants of those who will buy and use
it: rehabilitation clinics, therapists, payors, and the patients
themselves. Attention to these factors, coupled with technol-
ogy development to support clinical research, leads to product
development, a business plan, and, ideally, to eventual com-
mercialization and widespread clinical use. This whole pro-
cess is iterative: clinical research drives further market re-
search and vice versa; and these, in turn, drive further business
model and technology development, which can lead to further
clinical evaluation.

In this paper, we review current and potential future uses of
H-reflex operant conditioning for treatment of motor impair-
ments related to neurological injury or disease. To begin, we
first describe the H-reflex in more detail. Specifically, we
summarize the procedure for its elicitation, discuss the mea-
surement of the reflex, and summarize insights into nervous
system control of muscular function derived from its measure-
ment. This sets the stage for reviewing H-reflex operant con-
ditioning protocols, the steps needed for their successful clin-
ical translation, and the work necessary to accomplish these
steps.

The H-Reflex

The H-reflex is a spinally mediated, largely monosynaptic,
response to nerve stimulation that was discovered a century
ago by Hoffmann [32, 33]. Its size (usually measured by elec-
tromyography (EMG)) reflects the excitability of a spinal
stretch reflex pathway. The pathway itself consists of group I
(and large group II) afferents frommuscle spindles (and Golgi
tendon organs) that project monosynaptically (and to some
extent di- and tri-synaptically) to spinal α-motoneurons, and
the motoneurons, which activate the muscle [27–30, 42, 46]
(Fig. 1). The H-reflex is elicited in a muscle by electrical
stimulation of the nerve that innervates it. In humans, this is
achieved noninvasively using surface skin electrodes (i.e.,
transcutaneous). The size of the H-reflex changes with the
parameters of stimulation. As stimulus strength increases,
the H-reflex increases to a maximum (Hmax) and then
declines as the recruitment of more and more (and

Table 1 Estimated prevalence and incidence of some neurological
disorders in the USA. Note that prevalence and incidence vary across
studies [1]

Neurological disorder Incidence Prevalence

Stroke 800,000 [2] 7.2 million [2]

Multiple sclerosis 10,000 [3] 350,000 [3]

Traumatic brain injury 1.5 million [4] 3.32 million [3]

Cerebral palsy 10,000 [5] 800,000 [5]

Spinal cord injury 11,000 [6] 285,000 [6]
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eventually all) efferent axons into the M-wave prevents
them from participating in the H-reflex (i.e., recruitment
curves; see [28, 30, 34]).

The H-reflexes of a variety of different muscles have been
elicited and studied [28, 30] (Table 2). The ability to elicit the
H-reflex is affected by the current level of muscle contraction,
the surface accessibility of the nerve, neuromotor pathology,
and other factors. For example, an H-reflex can be elicited
from the wrist flexor, flexor carpi radialis (FCR), when the
muscle is at rest; in contrast, the forearm flexor,
brachoradialis, produces an H-reflex only when the muscle
is active [28, 30].

H-reflex measures capture the task-dependent nature of
reflex pathways [27]. Reflex gain (i.e., H-reflex size at a spe-
cific level of ongoing muscle contraction) is lower in standing
than in sitting [29, 89–92], lower still during running [89,
93–95]; athletes, such as dancers, show significantly lower
H-reflexes during standing but not during sitting [92, 96].
Thus, H-reflex measures help to understand the role reflexes
play in movement, and to quantify the effects of reflex abnor-
malities due to neurological disorders. H-reflex size and laten-
cy are recommended (e.g., by Cigna Medical Coverage [97])

for clinical assessments of neuropathies [28, 77, 98] and
radiculopathies [28, 61, 99–103]. For example, unilateral
radiculopathies can be detected by comparing the H-reflex
sizes and latencies on the asymptomatic and symptomatic
sides [28, 101–103]. In bilateral radiculopathies, normative
values can be used to identify abnormalities [28, 77]. In
Fisher’s and in Guillain-Barre syndrome, the H-reflex is typ-
ically absent [104]. Thus, the H-reflex is part of an ensemble
of methods, including the F-wave, imaging (e.g., CT scan),
and patient history, that, together, aid in the diagnosis and
ongoing assessment of these conditions (see [61] for
example).

Decades of research has revealed the value of H-reflex
measures to characterize reflex pathways in stroke [27, 82,
105–110], dystonia [111, 112], periodic movement disorders
[113, 114], Parkinson’s disease [115], and cerebral palsy
[116–120]. In people with SCI, for example, changes in H-
reflex size and latency evolve from early injury (i.e., the peri-
od of spinal shock) to the onset of chronic hyperreflexia [121,
122]. People with spastic hyperreflexia due to SCI exhibit less
H-reflex decrease from sitting to standing [93], and the H-
reflex is inappropriately elevated during the swing phase of

Flexor Carpi Radialis 
Muscle Median Nerve

Stimulation

Spinal Cord (C6/C7)

5ms

M-wave H-reflex

1mV

Fig. 1 H-reflex and M-wave pathways for the wrist flexor muscle flexor
carpi radialis (FCR). The median nerve is stimulated by a short (0.5-ms)
pulse at a current just above M-wave threshold, resulting in two electro-
myographic (EMG) responses in the FCR. The first is the direct muscle

response (M-wave), produced by excitation of a few large α-motoneuron
axons (green). The second is the spinally mediated H-reflex, produced by
excitation of the largest proprioceptive afferent axons (red)

Table 2 A sample of peripheral
nerves, the muscles they
innervate, and selected studies of
their H-reflexes. (See also [27, 28,
30, 34])

Nerve Muscle

Tibial (posterior) Soleus*, gastrocnemius [47–50], flexor digitorum brevis [51], semitendinosus
[50, 52], abductor hallucis [53, 54]

Femoral Quadriceps (vastus lateralis, rectus femoris, vastus medialis) [55–59]

Sciatic Biceps femoris [50, 60, 61]

Peroneal Peroneus longus [62–66], tibialis anterior [50, 67]

Median Abductor pollicis brevis [68–71], flexor carpi radialis [50, 71–79], flexor digitorum
superficialis [50, 68, 80]

Ulnar Abductor digiti minimi [50, 69, 81], flexor carpi ulnaris [50, 81]

Radial Extensor carpi radialis [71, 82], brachioradialis [50, 83, 84], extensor digitorum
communis [67, 81]

Cervical (C3/C4) Trapezius [85–87]

Musculocutaneous Biceps brachii [81, 88]

*Many studies have examined the soleus H-reflex ([27] for review)
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locomotion [31, 36, 37, 41]. The latter pattern, also observed
in stroke, contributes to locomotor impairments such as clonus
and foot drop [123].

H-reflex measures have also been used in defining the ef-
fects of therapeutic interventions on reflex pathways (e.g.,
baclofen [124–127], botulinum toxin [128, 129], locomotor
training [130–133], cycling [134, 135], muscle stretching
[110, 136–139], therapeutic massage [140, 141], whole body
vibration [21, 142], spinal cord stimulation [114, 143–146],
transcranial direct current stimulation [147] and transcranial
magnetic stimulation [27, 148–151]).

One of the features of the H-reflex is that its reliable mea-
surement across sessions can be achievedwith attention to key
components including the setup (e.g., electrode locations),
environment (e.g., temperature), posture/movement of the pa-
tient, and time of day [30, 72, 152–155]. For example, muscle
and stimulation sites can be kept consistent across days by
attending to skin landmarks, such as in the SENIAM project
[156]. Grid arrays are promising options for automation of the
electrode placement process [157–160]; further work is need-
ed to validate and optimize them.

The H-reflex, however, changes with temperature [161,
162], age [163], caffeine intake [164], muscle circumpressure
[165], time of day [155, 166], medication (e.g., [124, 125,
129]), and muscle activation or movement in another limb
[27]. For example, hand/arm cycling (i.e., with a cycle ergom-
eter) decreases the soleus H-reflex [167], and ankle
plantarflexion (i.e., ankle extension) reduces the FCR H-
reflex [168, 169]. Due to these influential variables, care must
be used in H-reflex elicitation and interpretation [28, 35]. For
example, a stable posture and environment (temperature, com-
fort) are crucial. In addition, it is important to monitor the back-
ground EMG of agonist and antagonist muscles [41]. Joint
angle and muscle contraction can also affect nerve stimulation
and EMG measurement of the M-wave and H-reflex (e.g.,
[170]). Thus, it is important to use controls, such as the maxi-
mumM-wave, in any study inwhich limb position is a potential
variable or confound. All these considerations are important for
any effective effort to translate H-reflex measurement and/or
operant conditioning systems and protocols into clinical use.

Evidence that the H-reflex tracks functional outcomes begs
the question, why not change the H-reflex directly? Evidence
to date supports the hypothesis that appropriate H-reflex op-
erant conditioning can improve function, without adverse side
effects. The next sections describe this new therapy, its poten-
tial value, and what it will take to translate it into widespread
clinical use.

Spinal Reflexes as Therapeutic Targets

Over the past 35 years, many studies have shown that people
and animals can gradually increase or decrease the spinal

stretch reflex or its electrical analog the H-reflex when they
are exposed to an operant conditioning protocol that rewards
them when reflex size satisfies a criterion [37, 171–174]. The
reflex changes gradually over days and weeks due to plasticity
in both the brain and the spinal cord. This plasticity appears to
comprise a hierarchy in which the plasticity in the brain in-
duces and maintains the plasticity in the spinal cord [43, 175,
176] (reviewed in [42, 177, 178]).

Figure 2 illustrates the operant conditioning protocol for
the human soleus H-reflex [33]. This protocol enables inves-
tigators to separate change in the H-reflex due to plasticity in
the brain from change due to plasticity in the spinal cord [37].
Furthermore, it enables analysis of the developmental time
courses of the brain and spinal plasticity (i.e., neuronal and/
or synaptic changes) and of their persistence after condition-
ing ends [37, 41].

Because the operant conditioning protocol changes the spi-
nal reflex pathway, it affects behaviors, such as locomotion,
that use the pathway [179, 180]. This suggested that reflex
conditioning could be used therapeutically; the results are very
encouraging. In both rats and humans with incomplete SCI,
H-reflex conditioning that targets beneficial plasticity (i.e.,
changes that produce beneficial functional outcomes) to a
specific reflex pathway can improve locomotion (Fig. 3)
[41, 43, 44]. Furthermore, and most importantly, these initial
human studies, and studies in spinal cord-injured rats, indicate
that, by producing beneficial plasticity in a key reflex path-
way, the operant conditioning protocol triggers wider benefi-
cial plasticity that markedly improves locomotion and persists
after conditioning ends. Thus, in humans with incomplete
SCI, down-conditioning of the soleus H-reflex in one leg im-
proves locomotor activity in the muscles of both legs; this
accounts for the marked improvement in walking speed and
symmetry.

Operant conditioning of reflexes is an appealing therapeu-
tic approach to the rehabilitation of locomotion for multiple
reasons. First, it is uniquely targeted; it is possible to operantly
condition a specific abnormal reflex pathway and strengthen
or weaken it as appropriate for an individual person’s disabil-
ity. Second, while continued testing is prudent, there are no
known side effects to the conditioning protocol, and it does
not affect locomotion in healthy participants [37, 181].
Furthermore, in rats with incomplete spinal cord injury, inap-
propriate conditioning (i.e., down-conditioning the soleus H-
reflex to further weaken stance) did not further impair loco-
motion [39]. The absence of deleterious effects is likely to
reflect appropriate compensatory plasticity; and it is in accord
with the negotiated equilibrium model of spinal cord function
[177, 178, 182]. Third, in a person with impaired motor func-
tion, appropriate reflex conditioning can trigger wider benefi-
cial plasticity [41]. Fourth, evidence suggests that the benefi-
cial effects of conditioning are persistent. In rats with SCI, the
beneficial effects of appropriate reflex conditioning continue
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to increase after conditioning ends [183]. And in people
with SCI, follow-up sessions showed that decreases in
the ampli tude of the H-ref lex caused by down-
conditioning were still apparent three months later [41].
Fifth, reflex conditioning should be able to complement
other therapies and enhance recovery. By reducing
hyperreflexia, soleus H-reflex down-conditioning can en-
able more normal locomotion and thereby enhance the ef-
fectiveness of locomotor training (e.g., [184]).

Similarly, in people in whom a stroke has produced a dis-
abling flexor synergy in the arm, down-conditioning of a flex-
or muscle (e.g., FCR) H-reflex might reduce FCR activation
by afferent input and thereby enable more effective reach-and-
grasp practice. Studies are underway to determine if the effects
shown with the lower-limb reflex conditioning protocol trans-
late to the upper limb.

Current research on the therapeutic use of spinal reflex
conditioning is focused on extending the results of
Thompson et al. [41] to additional populations of people with
motor deficits, such as people who have experienced stroke
[185] or TBI [186]. Concurrent animal research is exploring
its value for improving function after peripheral nerve tran-
section and regeneration (e.g., [187, 188]). Ongoing inves-
tigations are exploring the combination of spinal reflex
conditioning with other rehabilitation therapies, such as
locomotor training [189]. Finally, scientific inquiries con-
tinue into the mechanisms of the plasticity in the brain and
spinal cord that underlies spinal reflex conditioning (see
[42, 177, 178] for review).

Clinical Translation of Spinal Reflex Operant
Conditioning

This section addresses what must happen for spinal reflex
conditioning to be effectively translated to clinical care of
patients with motor impairments associated with reflex abnor-
malities. Drawing on the material reviewed and the require-
ments of clinical translation, we identify the scientific, clini-
cal, and translational issues that must be addressed for spinal
reflex conditioning to achieve widespread use as a new reha-
bilitation therapy.

As Fig. 4 indicates, clinical translation proceeds from basic
science to clinical research studies to clinical use. In addition
to basic and clinical research, it involves market, regulatory,
and reimbursement research, and business model and technol-
ogy development, all informing each other along the way. One
of the first steps in the process is identifying and interviewing,
as part of market research, key stakeholders to understand
their needs and desires [190–192]. For example, clinicians
need intervention protocols that are efficient in terms of setup
and execution, results that are clinically important in terms of
patient function, and a reimbursement model that fits within
current policies.

Interviewing stakeholders (users, buyers, and payees) also
explores their costs, resources, buying decisions, and regula-
tory requirements. This initial step in the process of translation
helps shape an understanding of the tasks involved in properly
positioning the technology for widespread use in the rehabil-
itation market. These market requirements are used to inform
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Fig. 2 The spinal reflex operant conditioning protocol. Left—subject
with EMG electrodes above the right soleus muscle and nerve
stimulation electrodes behind the knee. Subject faces monitor in
standard study posture. Monitor displays visual feedback to the subject.
In all trials, a background EMG graph shows the correct range and its
current value. If the soleus EMG stays in the range for at least 2 s, an H-

reflex is elicited. In control trials, there is no feedback as to the size of the
H-reflex. In conditioning trials, an H-reflex graph is also shown with a
shaded target area. If H-reflex size for the trial falls in the shaded area, the
bar is green and the trial is a success; otherwise, the bar is red and the trial
is not a success. The screen also shows the success rate for the current 75-
trial run. (Modified from [37])
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the product development and overall translation plan. For ex-
ample, understanding how clinicians weigh the benefits of
spinal reflex operant conditioning, with its attendant procedur-
al requirements, against the time demands and the reimburse-
ment challenges [193] is important for designing an effective
and feasible clinical system, efficient therapist training, and a
viable reimbursement model. How these issues are addressed
will help shape the business model for operant conditioning.

In addition, it is necessary to consider the buyer’s purchas-
ing threshold. To disseminate spinal reflex conditioning, its
cost must be reasonable and justified; i.e., it must provide
value to payers, including hospitals and clinics, or to

consumers directly, if paid out of pocket. The $30-billion re-
habilitation market that spinal reflex conditioning will enter is
fragmented; nearly half of the 16,000 rehabilitation clinics are
independently owned [194]. Thus, device cost is an important
barrier. Extra technological features (e.g., a camera or
forceplates to ensure appropriate posture) might introduce in-
surmountable costs that are a barrier to sales and may not add
significant value.

Table 3 provides a broad summary of issues for stake-
holders and the role these issues are likely to play in the
translation of spinal reflex conditioning. Clearly, the goals
differ substantially across stakeholders. Thus, successful

Fig. 4 The process of translation to clinical use following the steps that define the market and the needs of customers/stakeholders within it

Fig. 3 H-reflex change and walking improvement in people with
incomplete SCI who decreased the H-reflex. (a) Average (±SE) H-
reflexes for baseline and conditioning sessions. (b) Rectified locomotor
EMG in soleus and tibialis anterior (TA) of both legs before (dashed) and
after (solid) H-reflex decrease in a subject. The step cycle is divided into
12 equal bins, starting from foot contact (bins 1–7 are stance, bins 8–12
are swing). After H-reflex decrease, EMG modulation is better in both
legs. This helps explain why walking is faster and more symmetrical. (c)
Average (±SE) 10-m walking speeds before and after H-reflex decrease
(*p < 0.05, paired t test). (d) Average step-cycle symmetry before and

after H-reflex decrease (ratio of time between the nonconditioned leg’s
foot contact (nFC) and the conditioned leg’s foot contact (cFC) to time
between cFC and nFC). (In each person, the soleus H-reflex of the more
impaired leg was down-conditioned.) A ratio of 1 is perfect symmetry.
Initially, the ratio is > 1. After conditioning, it has decreased toward 1 in
every subject (*p = 0.05). (e) Successive step cycles in a subject before
and after HR decrease. Each nFC (solid) and cFC (open) are shown. Short
vertical dashed lines mark the midpoints between nFCs, which is when
cFC should occur. Before HR decrease, cFC occurs too late; afterward, it
occurs on time. (Adapted from [41])
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clinical translation of spinal reflex conditioning requires
three key items, each forming a part of the overall steps
highlighted in Fig. 4:

(i) Strong clinical evidence that a clinically feasible proto-
col can produce clinically significant functional im-
provements in key clinical populations (e.g., people
with stroke, TBI, SCI, MS, cerebral palsy)

(ii) A cost-effective and implementable reimbursement
model

(iii) A robust, easy-to-use, and affordable operant condition-
ing system for clinical use

Clinical Research Studies

Studies are needed to determine 1) who spinal reflex condi-
tioning will work for and 2) how effectively it works in com-
bination with other therapies. Both are critical in supporting a
therapist’s decision concerning what therapies to administer.

For example, neurological disorders in which spasticity
contributes significantly to functional impairment may be par-
ticularly amenable to reflex operant conditioning therapies
[38]. On the other hand, people with disorders associated
with substantial cognitive impairments may not be able to
participate effectively in a reflex conditioning protocol. It
is therefore critical to understand in which disorders and/or
for which patient populations reflex operant conditioning
protocols are most likely to be effective. In addition, con-
ditioning protocols should be developed for an appropri-
ately broad range of muscle groups.

Furthermore, clinical studies need to determine the
number and length of sessions necessary to elicit signifi-
cant functional improvements that persist. For example,
the current operant conditioning protocol, which entails
30 1-h sessions, may not be clinically feasible (due to
limits on physical therapy visits) and/or might preclude
combining reflex conditioning with other therapies (e.g.,
locomotor training). Thus, clinical research aimed at reduc-
ing the number of sessions required is important. Ideally,
these studies should establish dose-response curves for dif-
ferent disorders and different motor impairments. In addi-
tion, they should enhance the reliability of reflex condi-
tioning (e.g., at present, conditioning is successful in about
70% of people with incomplete SCI [41]).

Clinical studies of spinal reflex conditioning should also
evaluate the impact of spinal reflex conditioning in combina-
tion with other therapies. The limited evidence to date sup-
ports the hypothesis that the combination of spinal reflex con-
ditioning with another effective less targeted therapy, such as
locomotor training, will be more effective than either therapy
alone [45].

These studies would support clinical uptake and reimburse-
ment by defining the clinical value of the system. It will also
be important to address the cost-effectiveness of spinal reflex
conditioning and safety [195]. This requires both class-1 (ran-
domized clinical trials (RCT)) and class-2 (e.g., prospective,
longitudinal, observational) studies. Class-2 studies often lack
the strict controls and randomization of class-1 studies. Real-
world class-2 evidence is often more useful and less costly for
determining cost-effectiveness, long-term benefits in a variety
of patient populations, and other effects of a therapy
[195–197]. RCTs are typically conducted in narrowly defined
populations, within specialized and very controlled environ-
ments by highly trained personnel; thus, they do not reproduce

Table 3 Key stakeholders in the clinical translation of spinal reflex conditioning. Their roles, goals, and challenges are indicated

Stakeholder Role in translation Needs, wants, goals Challenges

Patients Participate in operant conditioning
treatment; judge effectiveness;
pay portion of costs

Improved function (e.g., walking); reduced
need for drugs (e.g., baclofen, botulinum
toxin); decreased need for assistive devices;
improved ability to function in the community

Time commitment; potential cost
of device and co-pays

Clinician/therapist Decide whom will benefit; provide
operant conditioning

Clinically important improvement in symptoms
and function

Setup and implementation time;
deliver outcomes within
reimbursement constraints

Clinical administrator Buy operant conditioning device High-quality outcomes; marketability and
branding/name recognition for
state-of-the-art device/therapy

FDA approval; meets clinical need
and sustains itself financially;
capital investment

Payers Approve payment for operant
conditioning or pay within
existing coverage/reimbursement
guidelines

Improved outcomes; value; satisfy patient
needs

High-quality RCT trials; serve aging
population; decrease disability
burdens

Researcher Optimize methods and outcomes
of spinal reflex conditioning

Good study outcomes; research papers;
knowledge contribution; presentations;
patents

Grant funding; tech support; facilities;
sufficient time to complete studies
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or relate closely to the complex and continually varying real-
ities of a clinical setting [197]. While class-1 evidence is in-
valuable for defining relationships between a treatment and its
effects, class-2 evidence illuminates a treatment’s effective-
ness in diverse clinical settings and patient populations, and
in the presence of other treatments. Additionally, as medical
device development is often incremental, real-world data can
provide less costly and a more practical process for continuing
to evaluate its safety and effectiveness as its clinical imple-
mentation progresses [196].

A Reimbursement Model

A model that defines how a therapy is paid for is a critical
step in clinical translation; it is essential for shaping an
effective business model for a new therapy. Clinical evi-
dence is critical to determine how clinicians (therapists,
physicians, nurses) are reimbursed by insurance compa-
nies. Many insurers base their decisions on Centers for
Medicare and Medicaid Services (CMS) guidelines [195].
To obtain CMS coverage and payment codes requires sub-
stantial supportive class-1 evidence. Payment codes speci-
fy the procedures, diagnostic tests, and treatments for
which insurance companies and other payers reimburse.
However, a payment code alone does not necessarily result
in actual payment [195]. In this regard, other evidence
(e.g., concerning cost-effectiveness, length of stay, read-
mission rates, efficacy in a variety of disorders, etc.) is also
important and is becoming more so. The clinical evidence
needed to ensure actual reimbursement for new medical
device treatments is substantial (see [198, 199] for exam-
ples of the assessment of functional electrical stimulation
devices). The landscape for reimbursement is a large and
complicated one. It is therefore important to engage with
therapists, insurers, and other stakeholders, including
CMS, early on in the clinical translation process.

Technology and Product Development

In its present form, spinal reflex operant conditioning is a
complex procedure that uses a cumbersome software/
hardware system and requires extensive operator (i.e., thera-
pist) training. Thus, its use is currently limited to laboratory
environments and highly skilled personnel. This constraint
inhibits its wider clinical use. A robust and easy-to-use system
would enable clinical therapists to participate in the further
evaluation and eventual dissemination of spinal reflex operant
conditioning. This section covers considerations for such a
system, including cost and regulations.

To be effective, this clinical system, its accompanying
protocol, and associated documentation must ensure

appropriate procedures, including maintenance of body
and limb posture, appropriate concurrent activation of rel-
evant muscles, electrode placements, stimulation parame-
ters, measurement specifics, and adequate numbers of trials
and sessions. In short, standardization and rigorous main-
tenance of appropriate methods is extremely important.
Furthermore, these methods need to be straightforward
and convenient so that they can be easily mastered and
followed by conscientious therapists. It is essential that
the whole process of setup and treatment fit within the
work-flow of a busy clinic and conform to the prevailing
reimbursement rules for session times and types.

The realization of this practical clinical system is a daunt-
ing enterprise. It requires, along with much else, automated
algorithms to determine appropriate background EMG activ-
ity for agonist and antagonist muscles, detect the M-wave and
H-reflex, build M and H recruitment curves, select from them
appropriate stimulus intensities, define reward criteria, and
update stimulation and reward parameters as needed over
the course of treatment. Furthermore, development and vali-
dation of each part of the new system entails extensive, highly
iterative testing by representative therapists. This guides the
development of the product requirements (i.e., what a product
should do), including all the technical, usability, and function-
al requirements of the system.

For example, the selection of recording and stimulation
sites seeks to identify electrode locations that 1) are sensi-
tive and specific to the targeted muscle’s EMG activity and
2) provide a soleus M-wave/H-reflex recruitment curve
that enables stimulation at a level that elicits a small M-
wave and an H-reflex on the rising phase of H-reflex re-
cruitment. This site selection task is time-consuming and
requires significant training. In a clinically practical sys-
tem, this onerous task could be avoided by multi-electrode
grid arrays [157–160] and an automated procedure that
selects the most appropriate electrodes. Figure 5 illustrates
the use of such an array for automatic selection of stimu-
lation sites for operant conditioning of the FCR H-reflex.
One of the many steps in developing this array is to define
the minimum number of candidate electrodes needed to
identify the best stimulation sites and to ensure that this
identification can be performed within a clinically practical
and reimbursable setup time.

Once this initial technological development is complete, it is
necessary to finalize product specifications and requirements to
initiate a more formal product development cycle. This formal
medical device development cycle requires strict adherence to
detailed product design and manufacturing principles (e.g.,
quality assurance). Such adherence and its full documentation
are essential for Food and Drug Administration (FDA) approv-
al. FDA classification and regulation is the final step in medical
device product development. The FDA defines three classes of
devices (Classes I, II, III). Devices are classified according to
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their risk. For example, a stethoscope is Class I, an ultrasound
imager Class II, and an implanted pacemaker Class III.

As a putative Class-II device, a spinal reflex condition-
ing system has two options for FDA approval. If its
intended use and its technical specifications match those
of an existing FDA-approved device (i.e., a predicate de-
vice), its safety and effectiveness can be determined to be
equivalent to those of the predicate device, and it can there-
by be approved. If not, it needs to pursue a de novo path-
way, a classification path for novel, low to medium risk,
medical devices that do not have existing predicate de-
vices. A de novo pathway requires safety and effectiveness
data for FDA classification and approval. FDA approval is
needed for establishing payment and coverage. The regu-
lation landscape is continually evolving. It is therefore, in
general, extremely worthwhile to meet with FDA officials
early on to discuss the appropriate regulatory pathway and
to ensure that clinical studies and product development are
shaped to fulfill FDA requirements.

Conclusions

Spinal reflexes, in particular the H-reflex, are useful bio-
markers for evaluating neurological disabilities, for guiding
therapeutic interventions, and for assessing the functional ef-
fects of these interventions. In addition, the H-reflex is itself a
valuable therapeutic target. Noninvasive H-reflex operant
conditioning protocols can target beneficial plasticity to criti-
cal spinal sites; they can thereby initiate muchwider beneficial
plasticity that markedly improves important motor functions
such as locomotion. These targeted plasticity protocols could
complement less specific rehabilitation therapies and enhance
functional recovery. The successful translation of this exciting
new therapeutic approach into widespread clinical practice
requires further clinical studies and hardware/software

development, market research, a realistic business model, a
viable reimbursement strategy, and regulatory approval. This
complex and arduous process has just begun.
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reflex is identified (i.e., electrode 5)
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