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Reliability of Broadband Middle-Ear Power
Reflectance in Younger and Older Adults:

Application of Generalizability Theory
Marty J. Mahoney,a Dennis J. McFarland,b MiChelle S. Carpenter,a

Sabahet Rizvi,a and Anthony T. Cacacea

Purpose: To assess the reliability of broadband middle-ear
power reflectance (BMEPR) and transmittance profiles for
chirp and tonal stimuli using generalizability theory (GT).
Method: In adults without a history of middle-ear disease,
the authors assessed the reliability of BMEPR to chirp and
tonal stimuli using a multivariate approach based on an
analysis of variance model (GT). For comparisons with other
published studies, Pearson’s product–moment correlation
coefficients (Pearson’s r ) also were used.
Results: Based on GT with chirp stimuli, overall BMEPR
measures had good reliability; however, the reliability of
individual profiles across frequencies and ears was less
than optimal. Lower generalizability coefficients were found
when transmittance was evaluated. Test–retest reliability

using Pearson’s r was better for right versus left ears, and
mid-frequencies were generally more reliable than those at
either extreme of the frequency range. In contrast, tonal
stimuli had higher generalizability coefficients and Pearson’s r
values than chirps for all frequencies tested; Pearson’s r
values were also higher for right versus left ears.
Conclusion: The authors extended the use of GT as a
preferred way to evaluate reliability of BMEPR and
transmittance profiles for chirps and tones because it allows
for a more comprehensive evaluation compared with
unidimensional pairwise correlations.
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Measurement of broadband middle-ear power
reflectance (BMEPR) represents an emerging
technology for evaluating electroacoustic char-

acteristics of human middle-ear function in vivo (Allen, Jeng,
& Levitt, 2005; Jeng, Allen, Lapsey-Miller, & Levitt, 2008).1

With this method, high-resolution frequency reflectance,
absorbance, and/or transmittance profiles offer bio-inspired
assessment opportunities for evaluating the middle ear under
normal and pathological conditions (see, e.g., Feeney, Grant,
& Marryott, 2003; Feeney, Grant, & Mills, 2009; Hunter,
Tubaugh, Jackson, & Propes, 2008; Keefe & Simmons, 2003;
Shahnaz, Bork, et al., 2009; Shahnaz, Longridge, & Bell,
2009). Nevertheless, as BMEPR measures transition from
the laboratory to the clinic, the need for establishing the
reliability of these measures is an important factor for test
evaluation and clinical decision making.

Given the broadband characteristics of this metric,
methodological and design considerations should take into
account whether to base reliability on individual data points
(frequencies; Hunter et al., 2008), select bands of frequencies
(see, e.g., Beers, Shahnaz, Westerberg, & Kozak, 2010;
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1Broadband electroacoustic measures of middle-ear function can be
represented in a number of different formats: power reflectance,
absorbance, transmittance, and so on. Middle-ear power reflectance
is defined as the ratio of reflected power to the incident power, which,
when normalized, can range from 0 to 1 (where 0 = no reflectance and
1 = maximum reflectance), or it can be expressed as a percentage, from
0% to 100%. Absorbance is just a linear transformation of reflectance
(1 – reflectance) representing the amount of energy that is absorbed versus
reflected from the tympanic membrane/middle-ear system. Transmittance
transforms the absorbance metric into a decibel scale (see Equation 1).
Furthermore, there is no standard at present for representing how these
measures should be expressed. To be clear, expressing these data as
either a power reflectance or absorbance metric is a preference and not
a requirement; it will not fundamentally change the result. It has been
suggested that, by converting absorbance to transmittance, this metric
would be less variable and may be more amenable to comparisons with
hearing loss, because hearing loss is also expressed on a logarithmic (dB)
scale (e.g., Allen et al., 2005; Jeng et al., 2008; Keefe & Simmons, 2003).
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Shahanaz, Bork, et al., 2009; Vander Werff, Prieve, &
Georgantas, 2007), or the shape of the entire frequency
reflectance profile (the present study). Moreover, special
consideration should be given as to whether to compute
reliability metrics based on absolute difference measures
of central tendency and dispersion (Ms and SDs), Pearson
product–moment correlation coefficients (Pearson’s r), or
generalizability theory (GT).

Although researchers have used different approaches
to assess test–retest reliability, some methods are on more
secure scientific ground than others. For example, absolute
differences of BMEPR have been used as indices of test–
retest reliability when values are measured over two or more
points in time (see, e.g., Beers et al., 2010; Rosowski et al.,
2012; Shahnaz, Bork, et al., 2009; Vander Werff et al., 2007;
Werner, Levi, & Keefe, 2010). On the surface, this approach
makes intuitive sense because a reliable test is one that pro-
duces similar results on two different occasions. However, with
the absolute-difference method, the interpretation of good
or poor reliability is unduly subjective. This is due to the fact
that this method does not take variability into account, and
its meaning depends on the scale of measurement applied.
In contrast, the more conventional Pearson’s r provides a
standardized metric for reliability calculations because it is
based on the proportion of variance that is repeatable. Be-
cause Pearson’s r represents a normalized difference metric
that is signed, it allows for direct comparisons to be made
with other studies because it is independent of the unit of
measurement (see, e.g., Hunter et al., 2008; Werner et al.,
2010; the present investigation). Although the advantages of
using Pearson’s r over the absolute-difference method are
apparent, this approach is limited to pairwise comparisons;
therefore, the univariate nature of this metric is not well
suited for complex data sets. In comparison to these latter
two measures, GT is a multivariate approach to reliability
based on an analysis of variance (ANOVA) model, in which
more than two points in time and multiple independent
variables can be jointly considered in the computations.
Furthermore, GT is unique when compared with the typical
ANOVA model. Whereas the typical ANOVA model con-
siders subjects as the source of error and considers trends
over time as the effect of interest, in GT, the variance as-
sociated with subjects is the effect of interest, and the variance
over time is the source of error. With this strategy, the
resultant generalizability coefficient becomes a measure of
the effect size (i.e., the size of the main effect for subjects)
that represents the proportion of variance that is due to
consistent individual differences. Thus, GT provides a
framework for assessing multiple time points, including
main effects and interactions between multiple independent
variables. Of particular relevance to the current area of
interest is the interaction between subjects and stimulus
frequency because this relationship allows for the reliability
of individual frequency reflectance profiles to be assessed.

It is our contention that the choice and rationale of
whether to base reliability estimates on individual data
points, on select bands of frequencies, or on profiles should
depend on how clinicians actually use these measurements to

diagnose middle-ear disorders. For example, if a diagnosis is
based on a single point or on a single band, independent of
the overall shape of the profile, then the reliability of
individual data points or bands would be the appropriate
index. However, as Keefe and Simmons (2003) noted,

There is no evidence to suggest that the use of a single
frequency, as in clinical tympanometry, is optimal for
assessing middle-ear function at all frequencies im-
portant in auditory communication systems, no more
than would a single frequency suffice for assessing
cochlear, behavioral, or neural function. Wideband
measurements of middle-ear functioning appear to
have promise as a clinical diagnostic test. (p. 3217)

In this article, we extend the logic of Keefe and Simmons
to include the fact that if clinicians base their diagnosis on
the shape of the entire profile, then the reliability of the
profile would be the most appropriate feature to evaluate.
We focus herein on the use of GT for establishing test–retest
reliability of BMEPR data, whereby the effects of multiple
variables are to be considered (see, e.g., Crocker & Algina,
1986; Cronbach, Nageswari, & Gleser, 1963; Laenen,
Vangeneugden, Geys, & Molenberghs, 2006). Last, because
GT has not been used extensively in the audiological/hearing
science literature, we provide a concise overview to acquaint
readers with this topic (see the Appendix).

Method and Materials
Fifty-six adults, categorized into two age groups

(Group 1: 18–25 years, n = 28; Group 2: ≥ 50 and ≤ 66 years,
n = 28), were studied. Each age group was stratified by
gender (14 men, 14 women) and ear (56 left, 56 right) and,
therefore, provided a balanced design among age group,
gender, ear, and frequency. Because subjects were recruited
by word of mouth from friends, relatives, and students,
the data obtained were considered a convenience sample.
Inclusion criteria were a negative history of middle-ear
disease; no air–bone gaps exceeding 10 dB for any frequency;
and ear canals free of obstruction or debris, based on a
screening otoscopic exam. The Human Investigation Com-
mittee at Wayne State University approved this study, and
we obtained signed informed consent from each individual
prior to data collection.

Audiometric testing was conducted in a commercial
sound booth (Acoustic Systems, Model RE-144) through
use of a clinical audiometer (Grason-Stradler, Model 61)
with standard earphones (Telephonics, Model TDH-50P)
enclosed in supra-aural ear cushions (MX-41/AR). Pure-
tone air-conduction audiometry was performed at octave
frequencies from 250 Hz through 8000 Hz and at one-half–
octave frequency (3000 Hz) bilaterally. Bone-conduction
testing used a standard oscillator (Radioear B-71) and a
standard headband. Bone-conduction thresholds were
assessed at octave frequencies ranging from 250 Hz
through 4000 Hz.

BMEPR was measured using commercially available
hardware and software (Mimosa Acoustics, MEPA3 Clinical
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Reflectance System) and a high-quality probe assembly
(Etymotics, Model ER10C) to transduce acoustic stimuli
and record acoustic responses from the ear canal. Before
each recording session, the MEPA3 system was successfully
calibrated in a four-chamber coupler (Model CC4-V) in
accordance with guidelines provided by the manufacturer.
Particular care was taken to ensure that the foam ear tip of
the probe was properly seated and stable in the ear canal.
There were no crimps in the foam, and this coupling device
was fully expanded in the ear canal before testing was
initiated. After measurements from chirp and tonal stimuli
were obtained from each ear, the probe was removed and
reinserted into the same ear canal, and a second set of chirp
and tonal measures was acquired. Then, the second ear was
tested using the same approach. For the present investigation,
both sets of within-session data were used in this analysis.
The SPL of the chirp stimulus was set to 60 dB (re: 20 uPa),
and data were collected over a 1-s time epoch at ambient
ear canal air pressure. This allowed for 24 individual chirps
(È5 ms in total duration) to be collected and averaged. The
SPL of the tonal stimuli was also set to 60 dB (re: 20 uPa), and
nine individual pure tones (ranging from 257 Hz to 6000 Hz)
were analyzed. Individual tonal stimuli were 300 ms in total
duration, presented sequentially from low to high frequency
and separated by a 150-ms silent interstimulus interval. Se-
lection of the initial ear of measurement was randomized by
a physical coin toss (heads = left ear, tails = right ear) to
avoid potential order effects that might confound data inter-
pretation (see, e.g., Thornton, Marotta, & Kennedy, 2003).
The same medium-sized foam ear tips (14A) were used during
instrument calibration and data collection. With respect to
chirp stimuli, out of a possible 248 frequencies measured,
we selectively sampled a subset of 16 frequencies (258, 307,
398, 492, 633, 750, 796, 1008, 1270, 1500, 1590, 1992, 2530,
3000, 4060, and 5040 Hz) for this investigation that clearly
outlined the frequency reflectance profile. With respect to
tonal stimuli, we used default values and sampled nine
separate frequencies (258, 492, 750, 1007, 1500, 1992, 3000,
4007, and 6000Hz). Power-reflectance values associated with
both chirp and tonal stimuli were extracted from separate
stored output files that were available from each subject.

To allow for reliability to be evaluated from a multi-
variate perspective, we conducted an ANOVA to compute the
generalizability coefficients. To allow for comparisons with
other published studies in the literature, we also used Pearson’s
r to evaluate test–retest reliability for individual frequencies.

Results
Figure 1 shows grand averaged frequency reflectance

profiles separately for chirp and tonal stimuli collapsed
across all variables and for all combinations of age, gender,
and ear variables. Except for the highest frequency studied,
average power-reflectance values corresponding to each
stimulus type (chirp and tone) were very similar. In Figure 2,
individual scatter plots are shown for 16 frequencies and all
test–retest conditions for chirp stimuli. The general trends
observed in these plots show that within-session variability

increased from low to high frequencies. Figure 3 shows
individual scatter plots for nine separate tonal frequencies
and for all test–retest conditions. Although a similar trend
for increased within-session variability with increases of
stimulus frequency was also observed, tonal stimuli showed
less within-session variability than did chirps.

For comparison with previous studies, in Table 1
(left side) we provide Pearson’s r values for the test–retest
reliability of 16 individual frequencies for chirp stimuli,
separately for each ear. Trends in these data reveal higher
reliabilities for right versus left ears, with mid-frequency
reliabilities generally higher than those at either extreme.
Test–retest reliabilities of Pearson’s r values for the nine
individual frequencies are presented in the right side of
Table 1, separately for each ear obtained for tonal stimuli.
These data show higher test–retest correlation values in
comparison to chirps at corresponding frequencies; right ears
also showed higher test–retest correlations than left ears.

Next, we analyzed both chirp and tonal data sets with
an ANOVA, in two ways. First, the effect of subjects was
used in the error terms to evaluate the consistency of age,
gender, ear, and test effects across subjects (i.e., traditional
null hypothesis significance testing). The second set of
analyses used tests in the error terms to evaluate the pro-
portion of variance due to subject effects that was consistent
across tests (i.e., generalizability or test–retest reliability).
Results were calculated for both power reflectance and
transmittance. We analyzed the transmittance metric be-
cause we thought that this transformation might reduce
variability and thus potentially improve the generalizability
coefficients (Allen et al., 2005), keeping inmind that although
this assertion was suggested by Allen and colleagues (2005),
it has never been proven empirically.

Chirps
We conducted a six-way ANOVA in which the effects

of age and gender were used as between-subjects variables
and ear, frequency, and time were used as within-subject
variables. With subject effects used as the error term, the
ANOVA showed a significant main effect of frequency
(F = 350.31, p < .0001), resulting from the lower power re-
flectance in mid-frequencies, as seen in all plots of Figure 1.
There were also Gender × Ear (F = 4.22, p < .045), Gender ×
Frequency (F = 2.38, p < .002), and Age × Gender × Ear
(F = 4.60, p < .037) interactions. The Gender × Frequency
interaction was due in part to greater reflectance in men
at the highest frequencies. The three-way interaction was
associated with greater reflectance in the right ear of older
women and the left ear of older men, with less difference in
younger women and men.

The results of the ANOVA in which test effects were
used as the error term resulted in the generalizability coef-
ficients shown in Table 2 (left side). Also shown in Table 2
(right side) are generalizability coefficients for the trans-
mittance values, computed as follows:

T ¼ 10� log10½1� ðjRj2Þ�ðdBÞ; ð1Þ
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where T is the transmittance and |R|2 is the power reflec-
tance expressed as a proportion in decibels.

These data show that the generalizability coefficient
associated with the main effect of subjects was 0.82. This
score represents the average for each subject collapsed
over frequency and ear. The reliability associated with the
Subjects × Frequency interaction was 0.56. This effect cor-
responds to the profile for individual subjects across fre-
quencies averaged across both ears. The reliability of the
Subjects × Ear × Frequency interaction was 0.35. This
corresponds to the shape of the profile for individual sub-
jects across frequencies for individual ears and probably
represents the feature of greatest interest to the clinician.
Generalizability coefficients for transmittance were some-
what lower, particularly for the three-way interaction.

Tonal Stimuli
Generalizability coefficients for middle-ear power

reflectance using tonal stimuli are shown in Table 3 (left

side). The generalizability coefficient associated with the
main effects of subjects was 0.86. The reliability associated
with the Subjects × Frequency interaction was 0.72. The
reliability associated with the Subjects × Ear interaction
was 0.75, and that for the Subjects × Ear × Frequency
interaction was 0.63. Because reliability coefficients are
correlations, differences can be evaluated with Fisher’s z
transformation, and significance levels depend on the num-
ber of cases studied. In the present comparison (0.63 vs. 0.75),
in which there were 56 subjects, the difference was not sig-
nificant (see Ramseyer, 1979). Nevertheless, these values
were considerably higher than those reported for chirps.
Values for the transmittance data for tonal stimuli (see
Table 3, right side) were similar to the power-reflectance data.

Discussion
Cronbach and colleagues (1963) andCronbach,Gleser,

Nanda, and Rajaratnam (1972) initially introduced GT

Figure 1. Grand averaged frequency–reflectance profiles for chirps and tonal stimuli. The demarcations noted at the top of each figure (“All,” “Age,”
“Gender,” “Ear”) represent individual categories of data. “All” indicates that data were collapsed across age, gender, and ear; “Age” (young and old)
indicates that data were collapsed across gender and ear; “Gender” (male and female) indicates that data were collapsed across age and ear;
and “Ear” (left and right) indicates that data were collapsed across age and gender.
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into the educational psychology literature to evaluate the
reliability of profiles of standardized test scores in school-
age children. Because of its unique capabilities of assessing
reliability from a multivariate perspective, GT has garnered
increased interest in other fields of inquiry, including speech,
hearing, vestibular, andphysical sciences,where awide range of
topics—physiology, electroacoustics, perception, responses
to questionnaires, and so forth—have already been investi-
gated. Relevant examples include the reliability of distor-
tion product otoacoustic emissions over a 24-hr time period
(Cacace, McClelland, Weiner, &McFarland, 1996), postural
control in the evaluation of concussion (Broglio, Zhu,
Sopiarz, & Oark, 2009), speechreading abilities (Demorest
& Bernstein, 1992), perceptual scaling (S. O’Brian, Packman,
Onslow, & O’Brian, 2003), analysis of observational data
(N.O’Brian,O’Brian, Packman,&Onslow, 2003; Scarsellone,
1998), videographic representation of tooth and lip position in
smiling and speech following orthodontic and dentofacial
surgery (van de Geld, Oosterveld, van Waas, & Kuijpers-
Jaqtman, 2007), and in force measurements used in physical
therapy and rehabilitation (Roebroeck, Hariaar, & Lankhors,

1993). Use of GT in assessing the reliability of BMEPR
profiles expands this list of testing domains to include another
form of auditory-based electroacoustic analysis, in which
profiles involving multiple frequencies evaluated at two or
more points in time and numerous independent variables
(age, gender, and ear) are under consideration.

We chose to analyze power-reflectance profiles of
individual frequencies as our primary metric because this is
the relevant feature derived from commercially available
instrumentation and the one that clinicians would actually
use to make inferences about normal or pathological states of
the middle ear. Moreover, advanced textbooks on research
design and statistics consider GT the most comprehensive
technique available for estimating test measurement reliability
(Schiavetti & Metz, 2006, p. 123), and they do not even
recognize the absolute-difference method, as described in this
article, as a metric of reliability (Maxwell & Satake, 2006).

Established diagnostic exemplars of this methodology
include categories of tympanometric types (i.e., profiles of
immittance shape as a function of positive and negative air
pressures; see, e.g., Jerger, Jerger, & Mauldin, 1972) or on

Figure 2. Composite scatter plots for 16 frequencies for different variables studied. Data collected from Test 1 are plotted on the y-axis, and
data collected from Test 2 are plotted on the x-axis. If the within-session data from Test 1 and Test 2 were identical for each of the different
frequencies, then data points would fall directly on the solid diagonal line in each of the plots. On the basis of the scatter of data points
observed, the degree of within-session variability appears rank ordered from low, to middle, to higher frequencies.
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more quantitative immittance typologies based on the
theoretical model of Vanhuyse (see Margolis, Van Camp,
Wilson, & Creten, 1985; Van Camp, Margolis, Wilson,
Creten, & Shanks, 1986; Vanhuyse, Creten, & Van Camp,
1975). The potential for BMEPR measures to identify and
delineate different pathological conditions of the middle ear
provides the rationale and support for instituting a profile
analysis because diagnostic interpretations are already
being made using this approach (see, e.g., Allen et al., 2005;
Feeney et al., 2003, 2009; Keefe & Simmons, 2003; Shahnaz,
Longridge, & Bell, 2009).

Based on GT using chirps, the reliability for the overall
effect (i.e., the power reflectance averaged across all frequen-
cies) was 0.82; this is acceptable by standard convention
(Cicchetti, 1994). The reliability of the frequency reflectance
profile (the shape of the profile independent of height) was
0.56, which would be considered fair. Repeating the test and
averaging the results yielded a profile reliability of 0.72,
which is considered good. However, profiles involving ears
andEar×Frequency interactionswere at levels conventionally
considered to be poor (0.35). For tonal stimuli, the reliability
of the overall effect was 0.86. The reliability of the frequency

Figure 3. Composite scatter plots for nine separate tonal frequencies for different variables studied. Data collected from Test 1 are plotted on the
y-axis, and data collected from Test 2 are plotted on the x-axis.

Table 1. Pearson’s r correlations for chirps and tones.

Frequency (Hz)

Chirps Tones

Left ear Right ear Left ear Right ear

257 0.24 0.50** 0.75** 0.66**
304 0.17 0.70**
398 0.44** 0.83**
492 0.52** 0.83** 0.78** 0.83**
632 0.50** 0.85**
750 0.60** 0.85** 0.82** 0.87**
796 0.57** 0.82**
1007 0.53** 0.81** 0.82** 0.92**
1265 0.44** 0.69**
1500 0.30* 0.60** 0.52** 0.85**
1593 0.34** 0.64**
1992 0.55** 0.61** 0.58** 0.87**
2531 0.31* 0.63**
3000 0.38** 0.73** 0.67** 0.84**
4007 0.51** 0.66** 0.64** 0.78**
5039 0.26 0.72** 0.79 0.89**

*p < .05. **p < .01.
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reflectance profile was 0.72. Repeating the test and averaging
the results yielded a profile reliability of 0.75, and profiles
involving ears and Ear × Frequency interactions were at 0.63.
Thus, in comparison to chirps, the reliability for tones was
better.

Using chirps, we made within-session test–retest
reliability measures using Pearson’s r for 16 individual fre-
quencies ranging from 258 Hz to 5040 Hz. These data, which
were collapsed across gender and age group, ranged from
0.30 to 0.85 for the right ear and from 0.18 to 0.57 for the
left ear. These values agreed favorably with the adult data
of Werner et al. (2010), who assessed 15 frequencies across
a similar bandwidth (ranging from 281 Hz to 7336 Hz). Their
correlation values from adults ranged from 0.28 to 0.95,
where data were collapsed across gender and were presented
for right ears only. In addition, Hunter and colleagues (2008)
provided test–retest correlation coefficients for nine fre-
quencies, ranging from 258 Hz to 6000 Hz, with data col-
lapsed across age, gender, and ear and focused on children
ranging in age from 3 days to 47 months. Their correla-
tion values ranged from 0.68 to 0.97 and were higher than
those reported in adults. Test–retest correlation values
for tonal stimuli from the present study ranged from 0.52
to 0.92.

Werner and colleagues (2010) used a hybrid approach
to assess reliability of power reflectance in infants and adults
using three different metrics: (a) absolute-difference mea-
sures, (b) test–retest correlations of 15 individual frequency
bands using Pearson’s r, and (c) the cross-correlation method

to examine reliability of the entire profile for the same ear
and for left and right ears on two occasions. In their study,
test–retest correlations for individual frequency bands were
predominantly positive and were statistically significant.
The highest correlation values were generally observed in
the lower frequency range; the lowest correlations were
observed in the higher frequency range. When test–retest
correlations were averaged across frequency for the individ-
ual age groups (our computations are based on Table 1 of
Werner et al., 2010), they were rank ordered, being lowest
for 5- to 9-month-olds (M = 0.274, SD = 0.158, range: –0.05
to 0.44), intermediate for 2- to 3-month-olds (M = 0.401,
SD = 0.139, range: 0.16 to 0.57), and highest for adults
(M = 0.551, SD = 0.196, range: 0.30 to 0.95). In regard to
adults, the cross-correlation method that was used to assess
reliability of the shape of the profile and collapsed across
age group produced a value of 0.85; the average between-
ear cross-correlation was 0.84. However, it is noteworthy
that the cross-correlation statistic is typically performed
by comparing two time series, using a lag term to shift
one function against the other as a way to determine the
maximum correlation. Werner and colleagues indicated
that “frequency was the lag variable” (p. 7), but they did
not elaborate on the nonconventional use of this statistic.
Applying the cross-correlation in this way results in profiles
being aligned at different frequencies, a practice that con-
trasts with typical usage and one that has a questionable
theoretical rationale because direct comparisons across
frequency are not possible. Nevertheless, it is our contention

Table 2. Chirp generalizability for reflectance and transmittance.

Effect/error

Reflectance Transmittance

MS r2 SE MS r2 SE

Subjects 2,360.880 0.8196 0.0241 55.95144 0.7788 0.0296
Subjects × Time 260.713 6.95624
Subjects × Frequency 291.408 0.5621 0.0585 18.49421 0.4771 0.0699
Subjects × Frequency × Time 81.681 6.54339
Subjects × Ear 609.427 0.3877 0.0818 11.19549 0.2581 0.0991
Subjects × Ear × Time 268.925 6.60240
Subjects × Ear × Frequency 108.633 0.3484 0.0871 6.98064 0.0133 0.1319
Subjects × Ear × Frequency × Time 52.494 6.79778

Note. MS = mean square; r2 = generalizability coefficient; SE = standard error.

Table 3. Tone generalizability for reflectance and transmittance.

Effect/error

Reflectance Transmittance

MS r2 SE MS r2 SE

Subjects 988.5041 0.8546 0.0194 10.39252 0.8505 0.0200
Subjects × Time 77.5189 0.83962
Subjects × Frequency 258.4342 0.7218 0.0372 3.06893 0.7888 0.0282
Subjects × Frequency × Time 41.7633 0.36238
Subjects × Ear 321.4741 0.7541 0.0315 4.30111 0.7114 0.0386
Subjects × Ear × Time 42.9896 0.72534
Subjects × Ear × Frequency 100.8526 0.6296 0.0495 0.83801 0.5346 0.0622
Subjects × Ear × Frequency × Time 22.9267 0.25412
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that the overall shape of the profile (e.g., power-reflectance
values across frequencies) within individual ears is the pri-
mary feature of interest to clinicians using it for diagnostic
purposes.

As noted above, we found that the reliability estimates
of BMEPR and transmittance values were better for tones
than for chirps. Although the precise reason for this disparity
remains to be determined, several factors can be investi-
gated in future studies. Consider that a broadband chirp is
a continuously changing dynamic waveform in the time
domain that is spectrally complex in the frequency domain.
Even though the input waveform has a short duration
(È5 ms), it is evaluated over a longer time epoch (1 s), such
that acoustic reflections from the eardrum can be captured
by the probe microphone, allowing for computations to be
made on the metric of interest. With this in mind, single
cycles of individual frequencies may be susceptible to inter-
ference and/or perturbations from physiologic events that
may be present in a closed ear canal, such as respirations,
blood flow pulsations from surface vessels, spontaneous or
evoked otoacoustic emissions from the cochlea, subject
movement, cord noise, and so forth. Thus, we speculate that,
either alone or in combination, these factors can lead to
increased variability in measurement. On the other hand,
individual tonal stimuli are repetitive steady-state oscillations
and perhaps are less affected by physiologic (state) and
subject (trait) variables.

Ear-specific profiles of measurements across frequen-
cies are commonplace in the field of diagnostic audiology;
obvious examples include audiograms, iso-level/frequency
profiles of distortion-product otoacoustic emissions (aka
DPGrams), tympanograms, and BMEPR profiles. Thus, the
problem of assessing reliability is ubiquitous in this field,
and GT provides a robust solution to this problem. As noted
above, we have already applied GT to DPGrams and
evaluated the influences of time of day, stimulus frequency,
stimulus SPL, and gender in adults with normal hearing
(Cacace et al., 1996). We found that DPGrams were reliable
measures within subjects over a contiguous 24-hr time
period. Significant and reliable differences and interactions
across frequency, SPL, and gender were also observed.

Another issue that requires further study concerns
which characteristics of a profile might be meaningful
clinically and how clinicians and researchers could poten-
tially use this information to improve reliability estimates.
As an example, Feeney et al. (2003) and Shahnaz, Bork, et al.
(2009) have described trends associated with middle-ear
pathology as alterations in broadband features (e.g.,
increased low-frequency power reflectance associated with
otosclerosis). Because broadband changes such as those seen
in otosclerosis involve lower-order trends, we speculate that
it might be useful to fit these profiles with simple functions
that capture these trends and smooth over measurement
noise. Therefore, trend analysis might be a useful way to
model these effects and, thereby, improve reliability. How-
ever, whether all clinically relevant information would be
captured in lower-order trends remains to be seen; we suspect
that this would not be the case. One alternative is to consider

the possibility that the variability of a profile—made mul-
tiple times in the same individual—might represent a path-
ologic feature. In this context, it would be interesting to
determine whether high variance in the residual after the
removal of lower-order trends would be associated with
clinically useful information. Pathological states of the middle
ear that might show such effects include tympanic membrane
perforations, monomeric tympanic membranes secondary
to healed perforations, and ossicular discontinuities. Thus,
further work in this area will be necessary to assess this
hypothesis.

On the basis of the arguments presented in this article,
and with respect to current clinical usage, profile analysis of
BMEPR values appears to be the most relevant metric for
evaluating and diagnosing middle-ear disorders. In contrast
to tympanometry, which typically uses only one (226 Hz)
or perhaps only a few specific probe-tone frequencies (e.g.,
226 Hz, 660 Hz, 1200 Hz) to estimate characteristics of
middle-ear function, power-reflectance techniques can rapidly
measure hundreds of points over a much broader bandwidth
and in a considerably shorter period of time (seconds). This
is noteworthy because it allows for a more comprehensive
account of energy transfer characteristics of the middle ear
than is currently available from other methods. Combined
with computer-controlled hardware and based on rapidity
of measurement, BMEPR has many desirable attributes
consistent with a viable clinical tool. Therefore, improving
reliability of measurement is an essential requisite in the
evolution of this method if it is to transition effectively from
the laboratory to the clinic.

In conclusion, the reliability of BMEPRmeasurements
is an important consideration in establishing this method
for clinical decision making. The application of GT allows
for a more comprehensive evaluation of these types of data
compared with other approaches, and we advocate for the
strategic use of this metric in future investigations.
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Appendix (p. 1 of 2)

A Concise Overview of Generalizability Theory (GT)

The conceptual basis of GT requires a detailed understanding of repeated measures analysis of variance (ANOVA); tutorial and
computational methods are available to assist clinicians or researchers in this regard (see Di Nocera, Ferlazzo, & Borghi, 2001;
Mushquash & O’Connor, 2006). However, we caution that there is no simple “cookbook” approach to data analysis with GT.
This is due in part to the many design features that are possible within a given experimental framework. Thus, as would be the
case for any experimental design using ANOVA, the approach taken will depend on the complexity of the experiment and the
statistical model being used.

In Figure A1, two hypothetical cases involving four test sessions in three subjects are shown in diagrammatic form.
The figure illustrates a case in which the relative ranking of each subject’s test scores is consistent across test sessions (Panel A).
In this case, the main effect of subjects is large relative to the interaction between subjects and test sessions. In a second case,
the ranking of the subjects’ test scores varies considerably across test sessions (Panel B). This results in a large interaction
between subjects and test sessions relative to the main effect of subjects. The generalizability coefficient is a ratio of the main
effect of subjects to the sum of that main effect and the interaction between subjects and test sessions. Thus, this ratio would be
much larger in the first case than in the second.

The metric used in GT is expressed as the proportion of the total variance due to subjects that is common to the testing
occasions of interest. For a single measure determined on two testing occasions, this can be computed as Pearson’s r ;
for k testing occasions, it is computed as

ρ2 ¼ σ2
subj=ðσ2

subj þ σ2
errÞ; ðA1Þ

where σ2
subj is the variance due to the main effects of subjects and σ2

err is the variance due to error (i.e., the nonadditive or
inconsistent effect of subjects across testing occasions).

As a relevant example, we present a “thought experiment”whereby the reliability of middle-ear power reflectance is assessed
at 1500 Hz for the right ear on two occasions. Here, our sample consists of 56 adults without a history of middle-ear disease.

Results from the ANOVA are depicted in Table A1. Degrees of freedom, sum of squares, mean square, and expected mean
square can be obtained from many statistical programs that are commercially available in the marketplace (e.g., SAS, SPSS,
Statistica, etc.). Statistical programs such as these report F values and probability estimates (p values) associated with the effects
of time of testing and their significance. The F for the effect of time is simply the ratio obtained by dividing the value in Row 2 by

Figure A1. Examples of tests with differing generalizability coefficients. In both plots, each of three subjects’ scores on four
test sessions is represented by a line. Themain effect of subjects represents the variance in the average difference between
subjects. This is large when the profiles are parallel. The interaction between subjects and sessions represents the
extent to which the ordering of subjects varies across sessions; it is large when the profiles are nonparallel. In Panel A, one
can see that the three subjects performed relatively consistently across the four test sessions. As a result, the main effect
of subjects is large relative to the interaction between subjects and test sessions. In Panel B, one can see that the three
subjects performed inconsistently across the four test sessions. As a result, the main effect of subjects is small relative to
the interaction between subjects and test sessions.
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A Concise Overview of Generalizability Theory (GT)

that in Row 1 for the mean-square value. In this example, the p value is not significant (p > .05; result not shown). The expected
mean square (EMS) for the effects of subjects is

EMSsubj ¼ kσ2
p þ σ2

err; ðA2Þ
after Crocker and Algina (1986). The mean square (MS) for subjects represents the variance summed over all testing occasions
and associated error. The EMS for the error is MStime × subj and represents the nonadditive effect of subjects over time (i.e.,
the effect of test sessions), often computed as the residual in this design:

σ2
subj ¼ ðMSsubj �MSerrÞ=k: ðA3Þ

A pooled estimate of the proportion of the variance in subject scores that is consistent across time (additive) can be obtained by
the following equation:

ρ2
pooled ¼ ðMSsubj �MSerrÞ=ðMSsubj �MSerrÞ þMSerr: ðA4Þ

This represents the reliability of a composite of the test scores summed across time and is reported under “Subjects pooled” in
Table A1. Because one is usually interested in the reliability of single tests, this is computed as

ρ2 ¼ ½ðMSsubj �MSerrÞ=k�=½ðMSsubj �MSerrÞ=k þMSerr�; ðA5Þ
and takes into account the estimate of single test variance from Equation A3 and is reported under “Subjects single test” in
Table A1.

More complex models that include additional facets that interact with subjects can also be constructed. For example, if
separate measurements were taken for each ear on several occasions, then an Ear × Subjects interaction could be computed.
In this case, the model would be

ρ2 ¼ ½ðMSear�subj �MSerrÞ=ek�=½ðMSear�subj �MSerrÞ=ek þMSerr�; ðA6Þ
where e represents the number of ears and k represents the number of test sessions. TheMSerr is now the value ofMStime × ear × subj.
Thus, interactions between subjects and various measures repeated across subjects can be generated by substituting these
interaction terms for the main effect terms in Equation A5. Conceptually, in a model including subjects, ears, and occasions,
the generalizability coefficient associated with the main effects of subjects (MSsubj) represents the reliability of a score averaged
across ears, whereas the generalizability coefficient associated with the Ear × Subjects interaction represents the reliability
of a score as the difference between the ears. In fact, a wide variety of models can be generated following the logic of the general
linear model (see Laenen et al., 2006).

Although statistical packages such as SAS, SPSS, or Statistica do not offer explicit tools for computing generalizability
coefficients, the individualMS values are provided in the standard ANOVA summary table for a model including time as a repeated
measure (i.e., in within-subject designs). Thus, generalizability coefficients can be readily computed with just a few simple
operations. To aid in these computations, Mushquash and O’Connor (2006) provided a guide for users of SAS, SPSS, or MATLAB.

Table A1. Summary of example “thought experiment” of power reflectance at 1500 Hz in the right ear for 56 subjects tested on two occasions.

Source df SS MS EMS Subjects pooled Subjects single test

Time 1 13.99 13.99
Subjects 55 14,794.53 268.99 s2err + k s2subj 0.917 0.847
Time × Subjects 55 1,224.78 22.27 s2err

Note. SS = sum of squares; MS = mean square; EMS = expected mean square.
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