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Abstract
Objective. Several neuroimaging studies have demonstrated that the ventral temporal cortex 
contains specialized regions that process visual stimuli. This study investigated the spatial 
and temporal dynamics of electrocorticographic (ECoG) responses to different types and 
colors of visual stimulation that were presented to four human participants, and demonstrated 
a real-time decoder that detects and discriminates responses to untrained natural images. 
Approach. ECoG signals from the participants were recorded while they were shown colored 
and greyscale versions of seven types of visual stimuli (images of faces, objects, bodies, line 
drawings, digits, and kanji and hiragana characters), resulting in 14 classes for discrimination 
(experiment I). Additionally, a real-time system asynchronously classified ECoG responses to 
faces, kanji and black screens presented via a monitor (experiment II), or to natural scenes (i.e. 
the face of an experimenter, natural images of faces and kanji, and a mirror) (experiment III).  
Outcome measures in all experiments included the discrimination performance across 
types based on broadband γ activity. Main results. Experiment I demonstrated an offline 
classification accuracy of 72.9% when discriminating among the seven types (without color 
separation). Further discrimination of grey versus colored images reached an accuracy of 
67.1%. Discriminating all colors and types (14 classes) yielded an accuracy of 52.1%. In 
experiment II and III, the real-time decoder correctly detected 73.7% responses to face, kanji 
and black computer stimuli and 74.8% responses to presented natural scenes. Significance. 
Seven different types and their color information (either grey or color) could be detected 
and discriminated using broadband γ activity. Discrimination performance maximized for 
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combined spatial-temporal information. The discrimination of stimulus color information 
provided the first ECoG-based evidence for color-related population-level cortical broadband 
γ responses in humans. Stimulus categories can be detected by their ECoG responses in real 
time within 500 ms with respect to stimulus onset.

Keywords: ECoG, real-time, gamma, visual, brain–computer interface, BCI, 
high gamma mapping

(Some figures may appear in colour only in the online journal)

1.  Introduction

Real-time detection and discrimination of visual perception 
could lead to improved human-computer interfaces, and may 
also provide the foundations for new communication tools 
for people with serious neurological disorders such as amyo-
trophic lateral sclerosis (ALS).

Substantial research based primarily on functional magn
etic resonance imaging (fMRI) has shown that categorization 
of visual perception is implemented by the brain across dif-
ferent regions on the ventral temporal cortex. Most notably, 
areas on or around the fusiform gyrus are well known to pro-
cess face stimuli (Kanwisher et al 1997, Halgren et al 1999, 
Kadosh and Johnson 2007, Collins and Olson 2014), and can 
be used to discriminate visual stimuli of different categories 
(Grill-Spector and Weiner 2014). The left fusiform gyrus 
is known to process visually presented words (Cohen et  al 
2000, McCandliss et al 2003) and the inferior temporal gyrus 
has been shown to play an important role in recognition of 
numerals (Shum et al 2013).

The neural basis of face perception has also been inves-
tigated with electrocorticographic (ECoG) recordings. Initial 
work in this area investigated ECoG evoked responses to faces 
versus scrambled faces (Allison et al 1994), faces versus non-
faces (Allison et al 1999), and more diverse stimuli including 
faces versus parts of faces versus scaled and rotated faces 
(McCarthy et  al 1999) and faces versus bodies (Engell and 
McCarthy 2014a). In addition to investigating traditional 
evoked potentials, whose physiological origin is complex and 
unresolved (Makeig et al 2002, Mazaheri and Jensen 2006, 
2008, Kam et  al 2018), other studies have suggested that 
ECoG activity in the broadband γ (70–170 Hz) range is a gen-
eral indicator of cortical population-level activity during audi-
tory (Crone et al 2001, Edwards et al 2005, Potes et al 2012, 
2014), language (Edwards et  al 2009, Edwards et  al 2010, 
Chang et al 2011, Pei et al 2011a, 2011b, Leuthardt et al 2012, 
Kubanek et al 2013), sensorimotor (Crone et al 1998, Miller 
et al 2007, Schalk et al 2007, Kubanek et al 2009, Wang et al 
2012), attention (Ray et al 2008, Gunduz et al 2011, 2012), 
and memory (Jensen et al 2007, Sederberg et al 2007, Tort 
et  al 2008, van Vugt et  al 2010, Maris et  al 2011) tasks. 
Physiologically, broadband γ has been shown to be a direct 
reflection of the average firing rate of neurons directly under-
neath the electrode (Miller et al 2009, Manning et al 2009, 
Whittingstall and Logothetis 2009, Ray and Maunsell 2011), 
and has been shown to drive the BOLD signal identified using 

fMRI (Logothetis et al 2001, Mukamel et al 2005, Niessing 
et al 2005, Engell et al 2012, Jacques et al 2016). Hence, more 
recent studies of visual perception investigated ECoG broad-
band responses to faces and other objects (Lachaux et al 2005, 
Tsuchiya et al 2008, Engell and McCarthy 2011, Engell and 
McCarthy 2014a, 2014b, Ghuman et al 2014), and used them 
to predict the N200 evoked response (Engell and McCarthy 
2011), or to predict the onset and identity of visual stimuli 
(Miller et al 2016).

Different studies investigated the degree to which faces or 
other objects can be decoded from brain signals in individual 
trials. These offline studies reported detection performance 
of 85% for recognized faces on the ventral temporal cortex 
(VTC) (Tsuchiya et  al 2008), 90.4% for faces and objects 
(Gerber et al 2017), 96% for faces and houses (Miller et al 
2016), and about 60% for animals, chairs, faces, fruits and 
vehicles (Liu et al 2009). Another study reported 69% online 
accuracy in a target selection task of two overlaying images 
(Cerf et al 2010). ECoG’s high signal-to-noise ratio even sup-
ports significant discrimination of two different faces or two 
different expressions of one face in single trials (Ghuman et al 
2014). One study decoded twelve categories (excluding faces) 
during an object naming task with a mean rank accuracy of 
76% (i.e. in a list of 100 objects, ranked by their probability to 
be selected by the classifier, the target object appears on posi-
tion 24 on average) with a chance level of 50% (Rupp et al 
2017). Another study decoded 24 different categories with an 
accuracy of 25% (chance level 4.2%) (Majima et al 2014).

The present study extends this large body of work via three 
experiments that decode type and color information in experi-
ment I (offline), and (in real time) decode different computer-
based stimuli in experiment II and natural image stimuli in 
experiment III. Specifically, ECoG signals were recorded in 
four patients while they were shown both color and greyscale 
versions of seven different types of visual stimuli (photos of 
faces, objects and bodies, images of line drawings and digits, 
and kanji and hiragana characters), thus creating a total of 14 
stimulus classes. Experiment I investigated the spatial and 
temporal activity reflecting responses to visual stimulation in 
terms of discrimination performance at individual instants and 
sites, and classified across all types and colors in single trials. 
In addition, a real-time system was implemented to identify 
presented faces or kanji characters on a computer screen 
(experiment II), natural scenes with real faces (i.e. the faces of 
two experimenters and a mirror) and printed faces and kanji 
characters (experiment III).
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2.  Methods

2.1.  Subjects

Four patients with epilepsy at Asahikawa Medical University 
(A and D) and The University of Tokyo Hospital (B and C)  
participated in this study. Each patient was temporarily 
implanted with subdural electrode grids to localize seizure 
foci and underwent neuro-monitoring prior to resective brain 
surgery. The grids consisted of platinum electrodes with 
an exposed diameter of 1.5–3.0 mm and an inter-electrode 
distance of 5–10 mm. After grid placement, each subject 
had postoperative computed tomography (CT) imaging to 
identify electrode locations in conjunction with preopera-
tive magnetic resonance imaging (MRI). Table  1 provides 
an overview of the subjects and their clinical profiles. The 
study was approved by the institutional review boards of 
Asahikawa Medical University and The University of Tokyo 
Hospital. All subjects gave informed consent prior to the 
experiment.

Figure 1 shows the subjects’ reconstructed brain models 
and indicates implanted electrode locations (dots). Each sub-
ject’s brain model was reconstructed in FreeSurfer (Martinos 

Center for Biomedical Imaging, Cambridge, USA) using pre-
operative T1-weighted MRI data (Dale et al 1999). Then pre-
operative MRI data were co-registered to post-operative CT 
scans using SPM (Wellcome Trust Centre for Neuroimaging, 
London, UK) to localize electrode positions on the cortex 
(Penny et al 2007). Finally, the resulting 3D cortical models 
and electrode locations were visualized in NeuralAct 
(Kubanek and Schalk 2015).

2.2.  Data acquisition

ECoG signals were recorded at the bed-side with a DC-coupled 
g.HIamp biosignal amplifier (g.tec medical engineering, 
Austria) after neuro-monitoring was completed—prior to 
resective surgery. Data were digitized with 24-bit resolution 
at 2400 Hz for offline assessment and 1200 Hz for real-time 
processing, synchronized with stimulus presentation using a 
photo diode, and stored using the g.HIsys real-time processing 
library (g.tec medical engineering GmbH, Austria). Ground 
(GND) and reference (REF) were located in dorsal parietal 
cortex (i.e. distant from task-related electrodes in the temporal 
lobe).

Table 1.  Clinical profiles of the four subjects. The IQ values in the table represent combined verbal and performance IQ scores. 
Handedness (H) was obtained and language lateralization (LL) was defined using WADA tests. ‘# of elec’. refers to the total number of 
electrode contacts in each patient. Subjects participated in up to three experiments (EXP).

Subject Age Sex IQ H LL Seizure focus
Covered 
hemisphere

# of 
elec. EXP

A 26 M 96 R L Right temporal Bilateral 188 1–3
B 20 F 74 R L Left temporal Left 254 1
C 18 M 122 R L Occipital Bilateral 254 1
D 29 F 85 R L Right Right 144 2

Figure 1.  ECoG recording sites for subjects A–D. Black dots represent implanted subdural electrodes. Red balls highlight ECoG electrodes 
at locations that demonstrated significant broadband γ responses to visual stimuli for subjects who participated in experiment I (A–C). 
Subject D only participated in experiment II, in which all channels were spatially filtered.

J. Neural Eng. 15 (2018) 036001
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2.3.  Experimental procedure

The three experiments in this study are illustrated in figure 2. 
Experiment I assessed neural responses to visual stimuli using 
offline analysis. We also obtained online accuracies during 
real-time visual perception tasks, where the subjects looked 
at monitor-based stimuli in experiment II and natural images 
in experiment III.

During the assessment (experiment I) subjects A–C 
observed stimuli that were presented on a computer screen, 
which was placed about 80 cm in front of the subject. The 
stimuli were about 20 cm in size, and consisted of seven types 
((i) Body, (ii) Face, (iii) Digit, (iv) Hira (Hiragana), (v) Kanji, 
(vi) Line and (vii) Object), all seven of which were shown in 
color (Color) or greyscale (Grey). This led to a total of 14 
different classes for discrimination, which were presented 
sequentially in random order. Kanji and hiragana characters 
are components of the Japanese writing system and cor-
responded to the subjects’ native language. Experiment I in 
figure  2 illustrates examples from 20 different stimuli for 
each class and shows the timeline of four out of 560 trials 
in the visual stimulation paradigm. Each trial consisted of a 
200 ms presentation period and a subsequent black screen for 
600–800 ms.

Experiment II employed real-time decoding of stimuli 
shown on a monitor, including images of faces and kanji char-
acters, and an additional black screen as a new type. Thus, the 
three possible classification outcomes were Face, Kanji, and 

Idle (i.e. neither Face nor Kanji, see figure 2, experiment II).  
Two subjects (A and D) participated in this discrimination 
experiment and were asked to observe a sequence of 30 (sub-
ject D) or 40 (subject A) stimuli of each type in randomized 
order with a presentation time of 400 ms each. Inter-stimulus-
intervals (ISI) showed a black screen for 2.0–3.3 s. Each 
subject performed two runs (a total of 3 classes  ⋅30 trials ·2 
runs  =  180 trials for subject D and 3 · 40 · 2 = 240 trials for 
subject A), one for calibration and another to validate the real-
time decoding performance.

Subject A also participated in experiment III, a real-world 
scenario with natural stimuli (see figure 2, experiment III), in 
which one of the people attending the experiment presented 
the subject with kanji characters and faces printed on pieces of 
paper, a mirror and two experimenters’ faces—who appeared 
in front of the subject. A computer classified Face, Kanji and 
Idle in real time, and provided visual feedback about that type 
via a monitor next to the subject, by displaying a face, a kanji 
character or a black screen. The monitor output was not vis-
ible to the subject, but was recorded by a video camera that 
taped the experiment at a rate of 30 FPS for later synchroniza-
tion of stimulus onset with ECoG data and for quantification 
of the decoder’s performance. Frames of the video were syn-
chronized with ECoG data based on the decoder output (i.e. 
the first video frame showing a kanji character on the monitor 
corresponded to the sample time at which the decoder classi-
fied a Kanji stimulus).

Figure 2.  Presented stimulus types and experimental procedures for the three experiments. Experiment I, the assessment, collected ECoG 
responses from visual stimuli (200 ms presentation time) of seven types (Body, Face, Digit, Hira, Kanji, Line and Object). Examples show 
one out of 20 stimuli for each type in colored (Color) and greyscale (Grey) versions. Each stimulus occurred twice within the experiment 
(i.e. 40 stimuli per type and color, 560 stimuli in total). Experiment II evaluated the real-time discrimination performance of ECoG 
responses to presented Face and Kanji computer stimuli (400 ms presentation time), and to idle stimuli (black screen). Subjects viewed  
30–40 stimuli of each type (180–240 trials in total) to calibrate the decoder and repeated the experiment with real-time discrimination 
(without getting any feedback). Experiment III tested the real-time discrimination performance of ECoG responses to natural stimuli  
(i.e. printed faces and kanji, mirror, real face) presented by the experimenter, one face presented by a co-experimenter and intermediate idle 
periods where nothing was shown.

J. Neural Eng. 15 (2018) 036001
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2.4.  Signal processing for assessment

Figure 3 illustrates the feature extraction and classification 
method for assessment in experiment I. Recorded ECoG sig-
nals were denoted as x[m] (digitized multi-channel data at 
time m) and underwent a 2 Hz Butterworth high-pass (HP) 
filter (4th order) to remove DC drifts. Visual inspection of fil-
tered data left 182, 247 and 246 channels (after exclusion of 
artifactual signals like epileptic activity, etc) for subsequent 
processing for subjects A–C, respectively. A common average 
reference (CAR) montage re-referenced the signals (Liu et al 
2015) and a 110–140 Hz band-pass (BP) filter (Butterworth 
low and high pass filter, each of 4th order) extracted broad-
band γ activity. Given the time-frequency maps in figure 4, this 
band turned out to be most discriminant for individual classes. 
Next, the signals were temporally stabilized by computing the 
variance σx̃[n] based on 20 ms (50% overlap) epochs of x̃[m], 
and further normalized by log-transformation. This provided 
the output metric y[n], where n was an instant of the down 
sampled signals ( fs  =  100 Hz). Data from each channel were 
further z-scored based on all samples of the baseline periods 
of all trials (−300 to 0 ms pre-stimulus interval), generating 
standardized data z[n]. Information in z[n] was used to identify 
reactive ECoG locations and to discriminate ECoG responses 
to the visual stimulus types.

Channels were considered for classification only if the 
standardized data z[n] of any class was significantly higher 
for the task period compared to the baseline period. Thus, a 
Wilcoxon rank-sum test compared the average z-scores of a 
stimulus type’s baseline periods (−300 to 0 ms pre-stimulus 
interval) with the average z-scores of the corresponding active 
periods (100–400 ms post-stimulus interval). This test was 
performed for each stimulus type and if a significant response 
was found (p  <  0.01, Bonferroni corrected for the number of 
channels and tested stimulus types) the channels were consid-
ered for further analysis.

Standardized responses z[n] in selected channels (high-
lighted with red balls in figure 1) were discriminated by a pat-
tern recognition approach. To do this, the assessment data were 
separated into NT  =  40 trials of each class i (i ∈ {1, 2...14}). 

Each trial zi,l (l ∈ {1, 2...NT}) consisted of a 100–400 ms post-
stimulus interval of z[n]. For pattern recognition templates 
were computed from 39 trials of each class, which were 
derived as follows:

ti,k =

NT∑
l=1

zi,l

NT − 1
, l �= k.

� (1)

Each template vector ti,k  was calculated from training data, 
and was subsequently compared to the kth trial of each 
class (leave-one-out cross validation (LOOCV) approach, 
k ∈ {1, 2...40}). Thus, the remaining trial vector zi,k  was cor-
related with the template ti,k  leading to ri,k, the correlation 
coefficient for class i and trial k.

ri,k =
σti,k ,zi,k

σti,kσzi,k

.� (2)

The correlation followed the definition of the Pearson’s corre-
lation coefficient with σti,k ,zi,k as the covariance of ti,k  and zi,k , 
and σti,k  and σzi,k  as the variance of ti,k  and zi,k , respectively. 
Correlation coefficients were computed for all 14 templates 
for each of the 14 test trials. Hence, for a given tested feature 
vector, the classifier determined the type and color that pro-
duced the highest correlation (MAX(ρ)). Results from 40 rep-
etitions (14 · 40 = 560 classifications in total) with new sets 
of templates yielded class specific positive rates (TPR) and an 
overall accuracy (ACC).

The same assessment approach was applied to paired con-
ditions of colored and greyscale types to investigate any color 
or type specific bias that affected the discrimination perfor-
mance. For paired conditions a test trial was correlated with 
the template vectors of the two selected classes and assigned 
to the class that correlated most.

Additionally, the assessment led to classification accura-
cies using temporal and spatial features only. Specifically, the 
temporal features contained concatenated z[n] of the selected 
channels for a dedicated 20 ms epoch and were classified 
by the pattern discrimination in 10 ms steps (from  −300 to 
450 ms relative to stimulus onset). A similar strategy for the 

Figure 3.  Feature extraction pipeline and classification method for the assessment (experiment I). Signal processing steps for the multi-
channel ECoG signals x[m] included drift removal by a high-pass filter (HP), spatial filtering (CAR), temporal band-pass filtering (BP), 
variance estimation (VAR), log-transformation (LOG) and standardization (z-score). Colored time series show the mean z-scores (z[n]) with 
standard errors for all stimulus types (color codes are based on figure 1) from ECoG electrode location 182 of subject A. Areas shaded in 
grey represent the active period used for discrimination. One active period (trial) of z[n] was correlated with templates (t1,1,tt2,1...) based 
on the remaining trials of each stimulus type. The template that correlated most strongly (MAXρ) assigned the trial class according to the 
template class. A leave-one-out cross validation (LOOCV) yielded the classification accuracy (ACC) of all trials and stimulus types.

J. Neural Eng. 15 (2018) 036001
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spatial assessment included the pattern discrimination of con-
catenated z[n] over time (100–400 ms post-stimulus interval), 
tested for each selected channel.

For each assessment, an additional permutation test gener-
ated a random distribution of accuracies based on trial labels 
that were shuffled 1000 times. Hence, the rank of the assess-
ment output in the random distribution gave the probability p 
for random classification. This probability was transformed 
into an activation index (AI) as follows (Schalk et al 2007, 
Kubanek et al 2009, Gunduz et al 2011, 2012, Gunduz et al 
2016, Wang et al 2012, Liu et al 2015, Lotte et al 2015):

AI = − log( p).� (3)

The AIs were used to highlight reliable discrimination for the 
temporal and spatial assessment, whereas the p values were 
used to indicate results that were significantly better than 
chance (p  <  0.05).

2.5.  Signal processing for online discrimination

Real-time processing of multichannel ECoG signals requires 
time efficient feature extraction methods that guarantee a cer-
tain processing time, independent from the number of recorded 
channels. At the same time, asynchronous detection of visual 
perception requires robust features that are stable over time to 
enable detection and discrimination of visual stimuli based on 
sliding windows. Hence, the signal processing pipeline used 
for the assessment had to be modified to fulfill the aforemen-
tioned requirements.

Before classifying ECoG data in real-time, it was nec-
essary to first process calibration data. Figure  5 shows the 
required signal processing steps. First, a 4th order Butterworth 

high-pass (HP) filter removed the DC drift of the recorded 
ECoG signals x[m] for visual inspection. If a channel con-
tained power line interferences or epileptic waveforms, it 
was manually excluded. This led to 182 and 140 remaining 
channels for subjects A and D, respectively. Then, a 110–
140 Hz band-pass (BP) filter extracted broadband γ activity 
xfilt[m]. Common spatial patterns (CSP) were computed from 
filtered signals to improve the signal-to-noise ratio (SNR) and 
reduce the feature dimensionality (Müller-Gerking et al 1999, 
Ramoser et  al 2000, Guger et  al 2000). Since CSPs maxi-
mize the signals’ variance for one condition and minimize it 
for another condition, a set of spatial filters for three ‘one-
versus-all’ conditions generated distinctive features for Face, 
Kanji and Idle. First, Face against combined Idle and Kanji 
stimuli, second Kanji against combined Idle and Face stimuli 
and finally, Idle against Face and Kanji stimuli. Hence, each 
combination resulted in a set of spatial filters sorted by their 
impact on the conditions’ variance. The CSP filters were cal-
culated from ECoG data from 100-600 ms post-stimulus. For 
further processing only the four most relevant filters of each 
paired condition were used (i.e. the filters that corresponded 
to the two highest and the two lowest eigenvalues (Blankertz 
et  al 2008)), resulting in twelve feature channels in total. 
Specifically, spatial filters were applied as channel weights 
(wCSP,j, j ∈ {1, 2...12}) for all electrodes:

x̃CSP,j[m] = wT
CSP,jxfilt[m].� (4)

Then, from each resultant time series x̃CSP,j[m] the variance 
σx̃CSP,j [n] was calculated from 500 ms epochs with a 97% 
overlap. These signals were log-transformed to normalize the 
data and to get yCSP[n], the normalized broadband γ power. 
Finally, three linear discriminant analyses (LDA) were trained 

Figure 4.  Time-frequency maps of two locations (yellow star and red diamond) of subjects A and B. Each map contains the standardized 
power change in z-scores for a given type (Line, Digit...) and color (Grey and Color) with respect to a reference window  −300 to 0 ms 
relative to the visual stimulation onset. The yellow star location in A turned out to be Face selective, showing a strong broadband γ power 
increase for Face stimuli, whereas other most other locations remained silent or show little activation (like Body). A Color selective region 
was located in B (indicated by the red diamond). The average power change in z-scores of 120 ECoG locations on the VTC in subjects  
A–C, averaged over a period of 100–400 ms after stimulus onset, revealed the strongest change for the selected 110–140 Hz band 
(highlighted by the red bar).

J. Neural Eng. 15 (2018) 036001
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to discriminate the twelve features of each class (30–40 trials 
per class of Face, Kanji and Idle), from data of the remaining 
classes. Each of the three combinations (denoted with 
i ∈ {F, K, I}) gave class specific weights wLDA,i.

After the calibration phase, the subsequent processing 
occurred in real time. Therefore, the ECoG data were sam-
pled with 1200 Hz and read into the real-time processing in 
frames of 16 samples, which resulted in a processing rate of 
75 Hz. In each processing step, data were HP and BP filtered, 
yielding xfilt[m] (as shown in figure 5). The twelve spatial fil-
ters were applied on xfilt[m] to get twelve time series x̃CSP[m] 
for variance estimation and log-transformation, which yielded 
yCSP[n]. Subsequently, the three weight vectors wLDA,i were 
applied to yCSP[n] to get the three LDA outputs qi for Face, 
Kanji and Idle:

qi = wT
LDA,iyCSP[n].� (5)

Each LDA output was translated into a probability using a 
Softmax function (Sutton and Barto 1998):

piC = 1 − eqi

3∑
j=1

eqj

.
� (6)

Here, piC was the complement probability that features rep-
resent class i. Hence, the classifier selected the class that cor-
responded to the lowest piC. In the case that no piC reached the 
confidence threshold of piC < 0.05, the output was automati-
cally set to Idle. Finally, the activation index (AI) was calcu-
lated from the complementary probability piC according to the 
following equation:

AI = − log( piC).� (7)

In the real-time processing mode, when the AI crossed the sig-
nificance threshold (piC or AI > 3), an image of a face, a kanji 
character or a black screen appeared on a feedback monitor. 

This feedback was only visible to the experimenter, not the 
subjects.

3.  Results

3.1.  Assessment (experiment I)

3.1.1.  Pairwise discrimination of colored and greyscale 
types.  Figure 6 shows the TPR for each type of stimula-
tion versus all each other type. TPR values were obtained by 
assigning the test trials to one of two template classes. Every 
matrix contains the TPR for each possible combination of 
classes. Subjects A and C reached very high TPRs (>90%) 
for Face stimulation versus all other types, except for Color 
Face versus Grey Face. Of course, the TPR reached its maxi-
mum if a type was compared with itself as illustrated by the 
diagonals. Figure 6 further depicts that the TPR minimized for 
comparisons of Color and Grey stimuli of the same type. For 
example, subject A correctly classified only 50% of Grey Line 
versus Color Line stimuli.

Table 2 contains the classification accuracies (50% chance) 
for each subject and each type. Accuracies correspond to the 
average TPR obtained from all pairwise discrimination tests 
of a certain type with any other type (i.e. the mean of each 
type’s row and column TPR in figure  6). The highest clas-
sification accuracy of 97.9% was reached by subject C for 
Color Face stimulation. Subject A reached the second and 
third highest accuracies of 97.8% for Color and Grey Face 
stimulation. Subject B yielded the lowest classification accu-
racies (76.7%, 78.7% and 80.7%) for Grey Digit and Body, 
and for Color Body stimulation. Face stimulation achieved 
92.3%, the highest average accuracy across all subjects, fol-
lowed by Body (90.1%) and Object (90.0%) stimulation. The 
weakest average performance was found for Digit (88.0%) 
stimulation. Across all stimulus types and colors, the average 

Figure 5.  Feature extraction pipeline and classification method for real-time detection and discrimination in experiment II and III. 
Calibration: Recorded multi-channel ECoG signals x[m] were HP and BP filtered and submitted to a common spatial pattern (CSP) analysis 
that computed a set of spatial filters (wCSP). Spatially filtered signals x̃CSP[m] underwent variance estimation (VAR) and log-transformation 
(LOG) and resulted in normalized yCSP[n]. A linear discriminant analysis (LDA) generated class specific weights (wLDA) for real-time 
processing. Online: Real-time processing steps included the HP and BP filtering and the spatial (wCSP) filtering, followed by the variance 
estimation (VAR) and log-transformation (LOG). The linear classifier (wLDA) weighted the features in yCSP[n] and generated LDA outputs 
(qF,qK,qI) for Face, Kanji and Idle. Finally, a Softmax function transformed the LDA output in complementary probabilities (pFC ,pKC,pIC). 
The diagram yCSP[n] shows the real-time processing output for Face (blue), Kanji (yellow) and Idle (black) based on 182 combined ECoG 
locations in subject A.
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accuracies were 92.8%, 83.1% and 93.6% for subjects A–C, 
respectively. Accuracies above 65.0% (for A) and 62.5% (for 
B and C) were statistically better than chance (p  <  0.05).

3.1.2.  Overall discrimination of types and colors.  Table 3 
contains the classification accuracy after discrimination of 
Color and Grey images (‘Color versus Grey’), whereby sub-
ject C achieved the highest accuracy of 73.0% (50% chance). 
It contains also the classification accuracy after discrimination 
of stimulus types without color separation (‘7-Types’) when 
the seven types were classified against each other. Again, 

subject C reached the highest accuracy of 82.1% (14.3% 
chance). ‘T&C’ in table 3 contains the accuracy after classifi-
cation of all 14 colored and greyscale stimulus types against 
each other. Here subject C reached 61.6% (7.1% chance). 
Interestingly, ‘7-Types’ performed better than ‘Colors versus 
Grey’. Although ‘T&C’ performed worst, because of the 14 
different classes, all subjects achieved highly significant accu-
racies (p  <  0.0004).

Figure 7 illustrates the TPRs for ‘Color versus Grey’,  
‘7-Types’ and ‘T&C’. In the ‘Color versus Grey’ assessment, 
subject C achieved a TPR of 74.3% for Grey and 71.8% for 

Figure 6.  Results for pair-wise classification of colored (Color) and greyscale (Grey) stimulus types for subjects A–C. Colored squares 
indicate the true positive rate (TPR) for each type (rows) and color (columns) against every other type and color. A blue box indicates 
random classification, while perfect classification is highlighted in red (see color bar; 50% chance for paired classification). Diagonals are 
shown in black (i.e. no TPR available), as the same class templates used for discrimination were the same. The diagonals in the bottom left 
and top right quarter of each subject contain the TPR of colored stimuli against greyscale stimuli of the same type.

Table 2.  Classification accuracies for each type (Body, Face...) for colored and greyscale stimuli (Colors) for subjects (S) A–C. The best 
three accuracies are bold, whereas the worst three accuracies are in italic.

Accuracy (%)

S Colors Body Face Digit Hira Kanji Line Object Average

A Color 94.7 97.8 91.5 90.9 91.0 93.2 93.0 93.2 92.8
Grey 94.8 97.8 91.5 89.0 91.3 89.4 92.2 92.3

B Color 80.7 80.8 83.6 88.4 86.5 86.3 84.1 84.3 83.1
Grey 78.7 82.8 76.7 84.9 84.5 84.1 81.1 81.8

C Color 96.1 97.9 92.0 91.4 93.4 91.8 96.1 94.1 93.6
Grey 95.6 97.0 92.8 90.7 90.9 90.6 93.8 93.0
Average 90.1 92.3 88.0 89.2 89.6 89.2 90.0 89.8 89.8

Table 3.  Overall offline classification accuracies (ACC) for colors (Color versus Grey), types without color separation (7-Types) and 
types with color separation (T&C) for subjects (S) A–C. Random accuracies (RAND) and p values derived from a randomization test with 
scrambled trial labels.

S

Color versus Grey 7-Types T&C

ACC (%) RAND (%) p ACC (%) RAND (%) p ACC (%) RAND (%) p

A 58.8 50.0 0.0865 77.5 14.3 <0.0002 51.1 7.1 <0.0004
B 69.5 50.0 <0.0005 59.5 14.3 <0.0002 43.6 7.1 <0.0001
C 73.0 50.0 <0.0005 82.1 14.3 <0.0002 61.6 7.1 <0.0001
All 67.1 73.0 52.1
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Color, whereas subject B correctly classified Color (72.1%) 
more often than Grey (66.8%). Subject A identified 61.8% of 
the Grey stimuli, but did not reach significant TPR for Color. 
In the ‘7-Types’ classification Face performed best for sub-
jects A and C. Indeed, all Face stimuli were identified in sub-
ject A. In subject B the TPR maximized for Hira and reached 
68.8%. In the ‘T&C’ mode, the classification worked best for 
Color Face in subjects A (75.0%) and C (90.0%), and Color 
Object in subject B (72.5%). Grey Line in subjects A (27.5%) 
and C (37.5%) and Grey Digit in subject B (20.0%) performed 
worst.

3.1.3. Temporal and spatial characteristics.  The temporal 
pattern of the TPR is plotted in figure 8 for each type (Body, 
Face...), and Grey and Color. Each star shows the time point 
with the highest average TPR (classification accuracy) of all 
types. The classification accuracy reached its peak at 240, 210 
and 250 ms after stimulus onset for subject A–C, respectively. 
The classification accuracies (7.1% chance) at those times 
were 41.8%, 24.6% and 41.8%, respectively, and thus led to 
an average peak accuracy of 36.1% at about 233 ms across 
subjects. Responses to Face and Body stimuli gave a high 
TPR after 200 ms and remained stable until about 400 ms for 

Figure 7.  TPR for colors (Color versus Grey), types (7-Types) and both (T&C) after a leave-one-out cross validation test for three subjects 
(A–C). Stars indicate the expected random accuracy for each test. The red bar ends at the significance border (p  <  0.05) of an empirically 
derived random distribution based on scrambled trial labels. As an example, subject A had a 50% chance level for ‘Color versus Grey’ with 
a threshold TPR of 60.0% (p  <  0.05), a chance level of 14.3% for ‘7-Types’ with a threshold TPR of 32.5% (p  <  0.05), and a chance level 
of 7.1% for ‘T&C’ with a threshold TPR of 25.0% (p  <  0.05).

Table 4.  Asynchronous classification accuracy (Accuracy) of the computer stimuli in experiment II and natural stimuli in experiment III 
for subjects A and D. Accuracy with sub-sampling (w ss) includes classification results (ACC) from data sub-sampled randomly 50 times, 
with equally balanced conditions (i.e. Face, Kanji and Idle). Accuracy without sub-sampling (w/ss) contains the classification results (ACC) 
including all Idle data. Random (RAND) accuracies for the three classes reflect the mean accuracy after a permutation test with 1000 
times shuffled trial labels. The duration (DUR) shows the length of each experiment. The latency (LAT) shows the time delay between the 
stimulus onset and the actual real-time decoder output with best match.

Accuracy (w ss) Accuracy (w/ss)

S Stimulus DUR (s) LAT (ms) ACC (%) RAND (%) p ACC (%) RAND (%) p

D Computer 275 440 66.7 33.3 <0.001 91.1 83.7 <0.001
A Computer 275 468 80.8 33.3 <0.001 90.7 75.6 <0.001
A Natural 39 468 74.8 33.3 <0.001 82.8 69.7 <0.001
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subject A and C. The biggest TPR difference could be found 
for subject C for Object. Subject B attained the highest TPR 
of about 58% for Kanji at about 210 ms. Interestingly, Body, 
Face and Object produced a high TPR over a long period of 
about 150–400 ms, while all other stimulus types showed a 
much shorter peaks.

Figure 9 summarizes the classification accuracy for each 
selected electrode channel discriminating all ‘7-Types’ and all 
seven types and two colors (‘T&C’). Yellow stars label those 
ECoG electrode locations that provided the highest classifica-
tion accuracy for each subject. For the ‘7-Types’ comparison, 
the highest classification accuracies (14.3% chance) were 

26.4%, 24.3% and 21.6% for subjects A–C, respectively. Note 
that each accuracy resulted from a single channel. The corre
sponding average peak accuracy across subjects was 24.1%. 
For the ‘T&C’ assessment the highest classification accura-
cies (7.1% chance) reached 12.5%, 10.4% and 11.6% for 
subjects A–C, respectively. Here, the average peak accuracy 
across subjects was 11.5%.

Figure 10 shows the highest TPR of all stimulus types 
and electrode locations for ‘7-Types’ or ‘T&C’. Subject A 
reached a high TPR for Face around the area indicated with 
the star. In the ‘7-Types’ condition, the types with the highest 
TPR (14.3% chance) were Face, for subject A (62.5%) and B 

Figure 8.  TPR and activation index (AI) over time for types and colors. Each time segment (20 ms epochs with 50% overlap) led to a 
feature vector and resulted in an independent classification output. Thus, the curve represents the TPR for individual segments and the edge 
color of each bullet shows the AI (black edges indicate reliable activation), which was derived from a randomization test with scrambled 
trial labels. Stars with vertical lines represent the times for which average TPR and AI maximized for types and colors.

Figure 9.  Spatial distribution of the average classification accuracy for types without color separation (7-Types) and types with color 
separation (T&C) for subjects A–C. Diameters show the average classification accuracy. Only channels with significant activation in 
the channel selection test were considered for classification and are marked with different AI scale values in green. All other recording 
locations were excluded from EXP1 and are indicated with small black dots. Yellow stars mark sites that showed the best discrimination 
performance between types (with and without color separation).
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Figure 11.  Real-time classification output (AI) over time for the computer stimuli in experiment II of subject A. Stimulus presentation (SP) 
times of Face (blue) or Kanji (yellow) computer stimuli are overlapped with the AI of Face (blue) and Kanji (yellow).

Figure 12.  Real-time classification output (AI) over time for the natural stimuli in experiment III of subject A. Stimulus presentation (SP) 
times of natural Face (blue) or Kanji (yellow) stimuli are overlapped with the AI of Face (blue) and Kanji (yellow). These four photographs 
were taken from a video during the experiment and show the experimenter(s) (on the left) and the subject (on the right). From left to right, 
the pictures show: (1) the experimenter holding a printed kanji and the brain–computer interface (BCI) system successfully decoding Kanji; 
(2) the experimenter holding a printed face; (3) the experimenter holding a mirror; (4) a second experimenter. The video monitor on the 
bottom demonstrates that the brain signals were classified in real time.

Figure 10.  Spatial distribution of the classes with the highest TPR for types without color separation (7-Types) and types with color 
separation (T&C) for subjects A–C. Diameters show the TPR and the colors indicate the types with the highest TPR. Only channels with 
significant activation in the channel selection test were considered for classification (locations with colored dots). All other recording 
locations were excluded from experiment I and are indicated with small black dots. Yellow stars highlight sites with the highest TPR.
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(47.5%), and Kanji for subject C (61.3%). Adding the color 
information in ‘T&C’, the types with the highest TPR (7.1% 
chance) were Color Line (37.5%), Color Object (42.5%) and 
Grey Face (42.5%) for subjects A–C, respectively.

3.2.  Online discrimination of computer and natural stimuli 
(experiment II and III)

Table 4 lists the total duration of data collection, the latency 
of the real-time classification output with respect to stimulus 
onset, the asynchronous classification accuracies and the 
corresponding random accuracies for subjects A and D. The 
actual stimulus and the decoder output matched best after 
shifting the decoder output 440–467 ms backwards in time, 
and thus showed the processing speed for real-time classifica-
tion. In experiment II the real-time decoder correctly identified 
73.7% of the computer stimuli for both subjects on average. 
The highest accuracy of 80.80% was achieved by subject A 
in the computer stimulus run. Even in the natural run sub-
ject A achieved an accuracy of 74.82% and performed better 
than subject D performed in the computer stimulus run. The 
latency of the decoder during the natural run was fixed to the 
467 ms obtained in experiment II.

Figures 11 and 12 illustrate the AI over time for the comp
uter stimuli in experiment II and the natural stimuli in experi-
ment III. The decoder classified this output in real time into 
Face or Kanji when AI exceeded the dashed significance line 
(AI  >  3, corresponding to p  <  0.05), and Idle otherwise. The 
AI time series in both figures  were corrected for the mean 
latency of the cortical responses (i.e. 440–468 ms) and thus 
shifted compared to the stimulus presentation bars.

4.  Discussion

Many neuroimaging studies have demonstrated that ventral 
temporal cortex and inferior temporal gyrus are well known 
to contain specialized regions that process visual stimuli, and 
represent objects, words, numbers, faces and other categories. 
Some electrophysiological studies using electrocorticography 
(ECoG) have corroborated and extended these findings by 
identifying broadband ECoG responses to visual stimuli in the 
γ band. The present study provides the first human electrocor-
ticographic evidence for color-related population-level cortical 
broadband γ responses, and demonstrated that neural catego-
ries established using stimuli presented on a video screen may 
generalize to the presentation of real-world visual scenes.

Results in this study were obtained by offline (experiment I)  
and online analyses (experiment II and III), which were fun-
damentally different in their decoding strategy. Specifically, 
the synchronous classification strategy during offline analysis 
revealed subject and location specific differences of individual 
categories, whereas the online decoder aimed to asynchro-
nously detect and decode neural categories in real time.

The assessment showed that all types Body, Face, Digit, 
Hira, Kanji, Line and Object could be classified with a grand 
average accuracy of 89.8%, and for each type, the accuracy 
was  ⩾88% (see table 2). The best performance was achieved 

for Grey Face and Color Face yielding 92.3% classification 
accuracy on average. Subject B achieved a lower accuracy than 
subjects A and C, which may result from missing coverage 
of the right fusiform gyrus, the location of fusiform face area 
(FFA). In contrast, subjects A and C had at least partly cov-
erage of the left and right fusiform gyri and showed almost 
perfect Face classification in pairwise discrimination, which is 
consistent with the 86–96% correctly detected faces reported 
elsewhere (Tsuchiya et al 2008, Gerber et al 2017, Miller et al 
2016).

Aside from the detection of face-related neural responses, 
it is noteworthy that the accuracy for Color and Grey Digits 
reached 92.8% and 92.0% for subject C. Interestingly, elec-
trode sites in subject C covered the right inferior temporal 
gyrus, which has been identified as a number form area (Shum 
et al 2013).

Overall discrimination showed that the best classification 
accuracy of 72.9% was achieved when the ‘7-Types’ were dis-
criminated from each other based on class templates obtained 
from broadband γ responses. Other decoders have utilized 
event-related potentials (ERP), achieving a discrimination 
performance of about 60% for five stimulus categories (Liu 
et al 2009), or single neuron recordings, leading to 69% cor-
rectly assigned image labels in a two class selection task (Cerf 
et al 2010).

Furthermore, the discrimination of colored and greyscale 
stimuli yielded 67.1% correct classification. In the present 
study ECoG signals for color discrimination were obtained 
mainly from visual area VO1, which has been reported to be 
color and object selective (Brewer et al 2005), and further to 
be responsive to color changes (Brouwer and Heeger 2013). 
A previous reported decoder based on fMRI utilized signals 
obtained from visual area VO1 and discriminated responses 
to eight colors with an accuracy of 48% after more than 15 
repetitions (Brouwer and Heeger 2009).

The discrimination of all 14 classes in ‘T&C’ gave the 
lowest accuracy of 52.1%, but contained of course 14 dif-
ferent classes. Subjects A and C performed better for types 
than for colors, but in contrast, subject B performed better for 
colors than for types. Therefore, the electrode location could 
play an important part for color or type separation. Several 
ECoG locations showed the highest classification accuracy 
for Face or Kanji stimuli. Those locations were spread across 
the cortex and support the model of alternating face and let-
terstring selective cortex regions around the middle fusiform 
sulcus (Matsuo et  al 2015). Notably, ECoG locations that 
showed the highest TPR to Face stimuli were grouped into 
clusters of bigger regions than for Kanji locations. One cluster 
was located on the right FFA in subject A and turned out to be 
face selective and causally involved in face processing after 
systematic electrical cortical stimulation (Schalk et al 2017). 
Such a face selective cluster of ECoG locations has also been 
previously reported in another electrical stimulation study 
(Parvizi et al 2012). In the current study two of these clusters 
were found in subject A (one in each hemisphere), whereas 
only one cluster, located in the left hemisphere, was found 
in subjects B and C. This can be most likely explained by 
missing or only partial coverage of the right fusiform gyrus.
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Another interesting finding is that features obtained from 
Kanji locations enabled the decoder to discriminate even 
between Hiragana and Kanji stimuli. Such a discrimination 
task has not been presented elsewhere and shows that the let-
terstring locations reported in Matsuo et al (2015) can be fur-
ther subdivided into more specific regions.

The assessment further showed that even a single ECoG 
electrode location decoded specific stimulus types with an 
accuracy of 24.1% in the ‘7-Types’ discrimination. Although 
this is already remarkable, combined information from mul-
tiple locations revealed the 72.9% accuracy of the ‘7-Types’. 
For real-time processing, it was important to efficiently con-
sider multiple electrodes. This was realized with the CSPs that 
automatically weighted each electrode according to its impor-
tance for the classification task. Therefore, the most important 
electrodes were considered automatically, resulting in higher 
classification accuracy than single channel analysis.

The spatial distribution of type-specific information 
remained stable throughout experiments, whereas the onset 
of broadband γ activity varied from trial to trial and caused 
a different temporal pattern for each repetition. Hence, it is 
important to train the classifier on multiple trials and uti-
lize moving variance windows for real-time classification. 
It is likely that the known relationship between modulatory 
activity in the α band and cortical population-level broadband 
γ activity (phase-amplitude coupling (Canolty et  al 2006, 
Coon et al 2016, Coon and Schalk 2016)) resulted in variable 
broadband γ responses. Hence, in real-time mode the variance 
was calculated from 500 ms windows and induced, together 
with the response time of the subject, a delay of 400–500 ms 
with respect to the stimulus onsets. However, this latency 
did not affect the performance of the decoder in the present 
study, as the feedback was not presented to the subject. Still, 
the observed delay here is much shorter than the reported 
1–10 s of the online decoder presented in Cerf et al (2010). 
This is mainly due to the different experimental design, which 
required the subject to voluntarily activate stimulus selec-
tive neurons. Shorter latencies reported in other studies were 
obtained offline (Miller et al 2016) and did not report asyn-
chronous classification over time (Tsuchiya et  al 2008, Liu 
et al 2009, Majima et al 2014).

The TPR over time in figure 8 revealed that Body, Face and 
Object generated distinctive broadband γ activity over a rela-
tively long period from 150 to 400 ms. This was much wider 
than for Digit, Hira, Kanji and Line, which indicates that pro-
cessing stimuli of types like Body, Face or Object requires 
more time and thus is a more complex cognitive task.

Face, Kanji and Idle phases could be separated in real time 
with accuracies between 66.7–80.8% after about 4 minutes 
of training in experiment II. These accuracies were achieved 
without giving feedback to the subject. With longer training 
periods, and with feedback to subjects, performance would prob-
ably increase further. The feedback may help the subject focus 
on the required tasks and maintain concentration, in addition to 
facilitating learning. The performance difference between sub-
ject A (80.80%) and D (66.67%) can be most likely explained 
by the dense electrode coverage of the ventral temporal cortex of 
subject A (66 recording sites versus 20 in subject D).

Spontaneous online detection of visual stimuli in the real-
world scenario in experiment III demonstrated a surprisingly 
high accuracy of 74.82%. Noteably, the real-world stimuli 
(e.g. the face of the experimenter) were not part of the stimuli 
used for training with the visual stimuli shown on the comp
uter screen. Thus, the real-world scenario was not only based 
on new and independent data, but also on a different set of 
stimuli than the artificial stimuli shown on the computer in 
experiment II. In fact, natural stimuli included images of kanji 
and faces printed on a sheet of paper, but also real human 
faces of the experimenters and the subject through a mirror. 
This showed that, in subject A, the same cortical regions pro-
cess information from natural stimuli and from trained faces 
and kanji characters shown on a computer monitor.

Another issue relevant to real-world applications is the 
additional cortical activity due to eye motion and moving 
visual targets, described as motion related augmentation of 
broadband γ activity on the lateral, inferior and polar occipital 
regions (Nagasawa et al 2011). Such activation patterns could 
interfere with the expected features from the training runs and 
therefore impair the classification performance. Furthermore, 
time-locking the onset of neural responses due to natural 
stimuli is much more challenging than time-locking the onset 
of responses resulting from stimuli presented via a computer.

4.1.  Conclusion

Real-time detection and discrimination of visually perceived 
natural scenes is even possible when the system is trained on 
different data than was presented on a computer screen. This 
could lead to improved human-computer interfaces such as 
those proposed in the context of passive BCIs (van Erp et al 
2012). Specifically, learning the identity of a perceived (or per-
haps even covertly attended) visual object could be useful for 
constraining or otherwise informing the options of an interface. 
This ability may also prove useful for establishing new commu-
nication options for people that have lost the ability to commu-
nicate, such as people with amyotrophic lateral sclerosis (ALS).
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