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Abstract

Currently, the quantification of event-related EEG is usually based on power feature with the classical band power method. In this

paper, the method quantifying the complexity and irregularity of event-related EEG data in relation to hand motor imagery is presented.

Two groups of the complexity indexes: Kolmogorov complexity (Kc) and Fourier spectral entropy (FSE) are discussed. The event-related

desynchronization/synchronization (ERD/ERS) time course is analyzed and characterized by two parameters Kc and FSE, respectively.

The percentage of EEG complexity during imagination of the unilateral hand movement relative to that during reference period is

calculated for quantifying the complexity measure of ERD/ERS time course. The method is applied to two sets of movement-related

EEG data recorded over the primary sensorimotor area from two subjects. In addition, the validity of the quantitative measure of

complexity of the event-related EEG is testified by evaluating the performance of feature extraction and classification. The results show

that both Kc and FSE can effectively describe the dynamic complexity of event-related EEG and also display the consistent and similar

behaviors. The relative increase and decrease of event-related EEG complexity could be an indicator of ERD/ERS, which is also

independent of the power changes. Thus, the dynamic complexity measure of event-related EEG quantified by Kc and FSE provides

another evidence for ERD/ERS and can be meaningful for analyzing the event-related EEG.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Studies have shown that during imagining or preparing
for unilateral hand movement, the amplitude of EEG
rhythms within the specific frequency band (i.e. alpha and
beta activity) attenuates over contralateral sensorimotor
hand areas, which is called event-related desynchronization
(ERD); while in certain cases, the amplitude of corre-
sponding EEG rhythms increases over ipsilateral sensor-
imotor hand areas at the same time, which is called event-
related synchronization (ERS) [12,13]. Based on ERD/
ERS, the left- or right-hand motor imagery tasks are easily
discriminated, which can be translated into binary output
e front matter r 2006 Elsevier B.V. All rights reserved.
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to control external devices. This technology is called Brain
Computer Interface (BCI) [24].
In Refs. [3,13,14], the classical band power method for

quantifying ERD/ERS was described by Pfurtscheller and
his associates. The main idea is to compare the band power
change of EEG recorded during hand motor imagery with
that during reference period with brain resting state.
Through the changed power percentage between the two
different brain states, the ERD/ERS could be quantified.
Other methods for analyzing ERD/ERS can be seen
elsewhere including inter-trial variance method [3], auto-
regressive models and spectral decomposition [1], temporal
spectral evolution method [21], task-related power increase
and decrease method [3,14], etc., which were reviewed in
[14]. Most of these methods are based on band power
analysis. In this paper, analogous to classical band power
method quantifying ERD/ERS, the analysis method of
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quantifying the complexity measure of ERD/ERS is
proposed. Two sets of movement-related data from two
subjects are analyzed and two groups of complexity indexes
including nonlinear measure Kc (Kolmogorov complexity)
and the measure of information entropy FSE (Fourier
spectral entropy) are discussed, respectively. The prelimin-
ary results suggest that with the amplitude attenuation of
movement-related EEG, the corresponding EEG complex-
ity measure increases, and vice versa. The dynamic
complexity measures of event-related EEG quantified by
Kc and FSE display the similar behaviors, but an inverse
pattern as compared with the band power measure of
ERD/ERS. Therefore, the complexity measure can be
considered to characterize the dynamic change of event-
related EEG.

2. The experimental data

Two sets of event-related EEG data from two subjects
are analyzed, both of which were investigated in a feedback-
guided motor imagery experiment. The Subject 1 performed
the following task repeatedly in a series of sessions, in which
each trial lasted 9 s. During the first 3 s reference period of
each trial, the subject was asked to keep relaxed with eyes
open, followed by an arrow pointing either to the right or
left (cue stimulus) indicating motor imagery task of either
with right- or left-hand till t ¼ 4.25 s. The feedback bar,
presented during the following period till t ¼ 9 s, was
moving horizontally towards the right or left boundary of
the screen dependent on the on-line classification of the
EEG signals, which directs the subject performing hand
motor imagery. The feedback is the classification result
obtained by the analysis of the preceding 1 s EEG. The
details of experiment were provided in [9,16]. Three bipolar
EEG channels were measured over the anterior and
posterior of C3, Cz, C4 with inter-electrode intervals of
2.5 cm. EEG was sampled with 128Hz and filtered between
0.5 and 30Hz. Both the train datasets and test datasets
include 140 trials and the class labels, respectively, with
the equal number of left- and right-hand motor imagery
tasks.

Subject 2 performed the similar left- or right-hand motor
imagery tasks to control the navigation in a virtual
environment. The recordings were made with a bipolar
EEG amplifier from g.tec. The EEG was sampled with
125Hz and was filtered between 0.5 and 30Hz with
Notchfilter on. Each trial lasts 8 s. In the first 3 s, the
subject is asked to keep relaxed, and then the subject is
asked to imagine the movement of left or right hand until
the end of trial. The details can be found in [7]. The train
dataset include 320 trials and the class labels with also the
equal number of left- and right-hand motor imagery tasks.
In actual analysis, we only use 319 trials with exempting
one trial containing NaN value. Both the two sets of
data were provided by Graz University of technology
available at the BCI2003 and BCI2005 competition
website, respectively.
3. Methods

3.1. Kc measure

The complexity of EEG signal can be quantified by the
Kc. As a nonlinear complexity measure, Kc can effectively
reveal the regularity and randomness in a time varying
EEG arising from the brain system and gain the informa-
tion regarding the dynamics of the specific regional brain
subsystem. According to Kolmogorov’s definition, the
complexity of a given string of zeros and ones is given by
the number of bits of the shortest computer program which
can generate this string [5]. Lempel and Ziv described the
Kolomogorov complexity algorithm successfully. With the
programs that allow copy and insert operations [5,8], they
quantified the complexity of a given string x 2 ½0; 1� by
calculating a number cðnÞ, which is a useful measure
describing the string with the length n and reflect the
relative complexity of the string x. The details can be found
in Refs. [5,8]. It has been shown by Lempel and Ziv that for
almost all x 2 ½0; 1�, cðnÞ tends to the same value [4]:

bðnÞ ¼ lim
n!1

cðnÞ ffi
n

log2 n
, (1)

bðnÞ gives the asymptotic behavior of cðnÞ for a random
string x; if normalize cðnÞ by bðnÞ, the normalized
complexity Kc is obtained [8]:

Kc ¼ cðnÞ=bðnÞ. (2)

Obviously, 0pKcp1. Kc ¼ 1 means the randomness of
the signal reaching the maximum. Some studies showed
that the complexity measure may be useful in tracking
short-term and long-term changes in brain functions such
as anesthetized depth [23], drug effects [20]. Also, the
parameter Kc can be used to characterize dynamic
complexity of event-related EEG [10].
Before calculating Kc complexity of the data, EEG is to

be transferred into a symbol sequence x 2 ½0; 1�. Here,
binary symbol sequences were constructed by partitioning
about the mean.
3.2. FSE measure

The complexity of EEG signal also can be characterized
by FSE, which was introduced and applied to quantify the
EEG irregularity by Inouye et al. [2]. FSE calculates the
entropy of EEG spectrum within a specific frequency range
so that it actually characterizes the uniformity degree of
EEG power distribution within different frequency band.
By analyzing the distribution of the EEG spectrum in
specific frequency band, FSE can effectively describe the
EEG structural complexity. For the EEG spectrum within
a specific frequency band, the narrower spectrum peak and
the smaller the peak number is, the smaller the spectral
entropy is, the more regular the corresponding EEG signal
is, and vice versa. Different from the Kc complexity, FSE
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was defined by the Shannon entropy, which describes the
EEG structural complexity from the frequency domain.

If we let X ðkÞ; k ¼ 1; 2 . . .N denote the complex FFTs of
the EEG signal xðkÞ, where N is the number of EEG
sample points, then the corresponding EEG power
spectrum can be obtained as follows [2]:

PðkÞ ¼ X ðkÞ
�� ��2. (3)

The frequency of the kth spectral sample is

f k ¼
kf s

N
, (4)

where fs is the sampling frequency. For a specific frequency
band, for example, f k 2 ½f p�f q� Hz, kr ¼ Nf r=f s; ðr ¼
p; qÞ, where kr denotes the integer part of (Nfr/fs); assuming
that f q4f pand setting k 2 ½kp; kq�, then the normalized
signal power pj, which reflects the percentage of EEG
spectrum at each frequency to the total spectrum within
f p�f q, could be defined as follows:

pj ¼ PðkÞ=
Xkq

k¼kp

PðkÞ, (5)

where
P

j

pj ¼ 1.

And then the corresponding FSE of EEG within f p�f q

can be calculated as follows:

FSE ¼ �
X

j

pj lnðpjÞ. (6)

For EEG oscillations in different frequency bands such
as delta (0–4Hz), theta (4–7Hz), alpha (8–13Hz) and beta
(14–30Hz), the complexity measure FSE of the corre-
sponding EEG rhythms could be flexibly quantified by
selecting fp and f q.

From the above analysis, it can be seen that both Kc and
FSE could measure the EEG complexity and irregularity.
Therefore, it’s reasonable to expect that the event-related
EEG time courses characterized by two complexity
measures of Kc and FSE should show the consistent
behaviors. The movement-related EEG appears mainly
within alpha and beta band. Here, FSE and Kc of EEG
within 8–30Hz are studied, respectively.

To describe the time-dependent EEG complexity
changes, EEG is divided into many 1-s segments to extract
the complexity for each segment. Then slide time window
stepped by one sample to calculate the complexity of the
next segment. The process is made until the EEG
complexity of the last 1-s segment is calculated. And the
continuous EEG complexity time course can be obtained.

3.3. The quantitative measure of complexity of ERD/ERS

The complexity method for quantifying event-related
EEG is similar to the band power method proposed by
Pfurtscheller [3,13,14]. The difference between the two
methods is the different EEG feature to be selected. The
classical band power method to quantify ERD/ERS is
based on EEG power feature, i.e. the squared amplitude.
Complexity method is based on EEG complexity feature.
The procedure of quantifying the complexity measure of
ERD time course by Kc and FSE can be as follows:
(1)
 Computing of the complexity time course of event-
related EEG within the specific frequency band.
(2)
 Squaring of the Kc complexity sample to obtain the
squared Kc complexity; there is no need to squareFSE

for it calculates the Shannon entropy of the squared
EEG amplitude.
(3)
 Averaging of the complexity samples (FSE or squared
Kc) across all trials.
(4)
 Calculating of EEG complexity percentage during hand
motor imagery relative to the complexity during the
reference period.
(5)
 Averaging over time samples to smooth the data and
reduce the variability.
As a comparison, the algorithm of the classical inter-trial
variance method is described simply as the following four
steps: bandpass filter, squaring the inter-trial amplitude,
averaging over trials, averaging over time. The details
could be found in [3,14].

3.4. Performance evaluation

Different from the classical band power method, the
quantitative complexity measure of the event-related EEG
can reveal the complexity information of the time varying
EEG signals arising from the specific brain system.
Especially for the Kc parameter, as a nonlinear complexity
measure, it directly reflects the dynamics of the brain
sensorimotor subsystem underlying electrodes C3 and C4.
To demonstrate the validity of complexity measure for

quantifying the event-related EEG, as an example, we
select Kc extracting the complexity features of EEG
combined with the power features extracted by classical
FFT method to discriminate the left- and right-hand motor
imagery tasks. Here, Fisher discriminant analysis is used to
realize the classification of two classes of EEG patterns.
Firstly, according to the above analysis, the two kinds of
features of event-related EEG within 8–30Hz from the
electrodes C3 and C4 over the left and right hemispheres
for the train data and test data are calculated to construct
the four-dimensional time-dependent feature vectors
F train�t; and F test�t, respectively. By learning the training
vectors, the time-dependent weight coefficients W t and
threshold b0t in Fisher discriminant are obtained. The time-
variant Fisher discriminant is obtained as follows:

Dt ¼W t � FT
test�t � b0t, (7)

where Dt is the classification margin, which reflects the
confidence degree of classification at each time point t. For
one specific trial, the class label of each time point is
deterministic. To derive the continuous classification at a
certain time t0, we can incorporate the prior knowledge



ARTICLE IN PRESS
X.-M. Pei et al. / Neurocomputing 70 (2006) 263–272266
from all the preceding time points tpt0, leading to an
information accumulation across time about the Fisher
discriminant distance so that the binary decision could be
better made. Here, the accumulative Fisher discriminant
distance is defined as follows:

Dct0 ¼
Xt0

Dt, (8)

where Dct0 is the sum of the classification margin preceding
time points tpt0, which reflects the overall confidence
degree of classification incorporating the previous informa-
tion. For the test feature vector F test�t0at time point t0, by
the symbol Dct0 , the class label can be determined as
follows:

F test�t0 2 left;Dct0o0;

F test�t0 2 right;Dct040;

nondecisive;Dct0 ¼ 0:

(9)

Two sets of dataset are from the BCI competition, and
therefore the performance indexes for evaluating BCI
system are introduced. Currently, there are two major
indexes, i.e. classification accuracy and mutual information
(MI) for evaluating the classification results and the
performance of BCI system. The classification accuracy
reflects the ability of BCI system identifying the brain
consciousness tasks correctly. If we regard BCI as a direct
communication channel between brain and external
environment, the information transfer performance of
BCI is also to be considered. The information transferred
by a BCI system is the effective information contained in
brain consciousness, which can be translated into the
effective control order over external environment. Thus,
MI reveals how much the correct brain motor imagery
information is contained in the classification results. In
[22], Schlogl proposed that the parameter MI could be used
to quantify the information transfer of BCI system.
According to Shannon communication theory, signal-noise
ratio (SNR) and MI between BCI input and output are
derived during the imagination of left- or right-hand
movement:

SNRt0 ¼

2 var
i2fL;Rg

fDc
ðiÞ
t0 g

var
i2 Lf g
fDc

ðiÞ
t0 g þ var

i2fRg
fDc

ðiÞ
t0 g
� 1, (10a)

I t0 ¼ 0:5 log2ð1þ SNRt0 Þ, (10b)

where SNRt0 is the signal-noise ratio, i stands for the ith
trial, varfdg represents calculating variance for all the trials
i, Dc

ðiÞ
t0 is the accumulative discriminant distance in the ith

trial, fLg; and fRgare the sets of left and right trials, and I t0

is the MI between BCI input and output. The details can be
found in Ref. [22]. Both classification accuracy and MI also
can reflect the separability of features for classification of
two classes of EEG patterns and therefore can be used to
evaluate the contribution of the different EEG features.
4. Results

4.1. The analysis of complexity measure time course

The complexity measures of two sets of movement-
related EEG data from Subject 1 and Subject 2 are
analyzed by two parameters Kc and FSE. The move-
ment-related EEG from the electrodes C3 and C4 are
studied during left- or right-hand motor imagery task.
Firstly, the complexity measure (Kc,FSE) of EEG within
8–30Hz in the first second time window is calculated. Then
the time window slides to the next 1 s stepped by one
sample until the complexity of EEG data in the last second
time window is calculated so that the complexity time
course of event-related EEG could be obtained. According
to the above procedure presented in Section 3.3, the
percentage of EEG complexity during the imagination of
hand movement relative to that during the reference
period is computed. The complexity measure time courses
of ERD/ERS for Subject 1 and Subject 2 quantified by Kc

and FSE are presented in Fig. 1(c–f) and 2(c–f),
respectively. As a comparison, ERD and ERS time courses
quantified by inter-trail variance band power method [3]
are also given in Fig. 1(a,b) and 2(a,b), in which the
0.5–1.5 s epoch is defined as the reference period. In
complexity measure of ERD time course quantified by Kc

and FSE measure, the 0–2.5 s epoch containing the
complexity changes of 0.5–1.5 s EEG data is used as
reference period.
Let’s begin with the complexity analysis of event-related

EEG for Subject 1. From Fig. 1, it can be seen that ERD
and ERS appear over the contralateral and ipsilateral brain
hand areas, respectively, which correspond to the
pronounced decrease and increase of EEG power in
Fig. 1(a,b), and correspond to the increase and decrease
of complexity measure shown in Fig. 1(c–f). The complex-
ity measure time courses of event-related EEG quantified
by both Kc and FSE display consistent behaviors with each
other, but they show the opposite patterns compared with
ERD/ERS time course by band power method. For
example in Fig. 1(a), during the imagination of left-hand
movement, a pronounced power decrease over electrode C4
occurred at the imagination onset, that is at about t ¼ 3 s
which is known as ERD, and the corresponding complexity
measures obviously increase during t ¼ 4–5 s in Fig. 1(c,e),
while the increased power of ERS over electrode C3
corresponds to the decreased complexity measures. The
similar EEG changes for right-hand motor imagery are
illustrated in Fig. 1(b,d,f). Because the complexity at time t

is obtained from the 1-s data segment prior to the time t,
the complexity changes of the event-related EEG delay 1 s
relative to the EEG power changes. From Fig. 1, it can be
seen clearly that with the EEG power dropping, the
corresponding complexity increases corresponding to
ERD, and vice versa.
Next, let us look at the complexity measure time course

of event-related EEG for Subject 2. In Fig. 2(a,b), it can be
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Fig. 1. Quantification of ERD time course of event-related EEG with inter-trial band power and with the complexity analysis method, respectively, for

Subject 1; (a) and (b) describe ERD time course with band power method during imagination of left- and right-hand movement, respectively; (c) and (d)

quantify the complexity measure of ERD by Kc corresponding to (a) and (b); (e) and (f) quantify the complexity measure of ERD by FSE; the thick and

thin lines correspond to the analysis of the event-related EEG over electrodes C3 and C4; the left and right columns describe event-related EEG time

courses for left- and right-hand motor imagery.
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seen that different from Subject 1, ERD appears bilaterally
over both contralateral and ipsilateral brain hand areas,
but with the more decreased power over contralateral
cortex area than that over ipsilateral cortex area during
Subject 2 imagined the movement of left or right hand.
Accordingly, the complexity measures of the event-related
EEG quantified by Kc and FSE increase remarkably over
two hemispherical hand areas, with the more increased
complexity over contralateral cortex area than that
over ipsilateral cortex area. Although ERD/ERS patterns
appear differently over contralateral and ipsilateral areas
between Subject 1 and Subject 2, there still exist the similar
ERD/ERS behaviors between the complexity measure Kc

and FSE, and the opposite ERD/ERS patterns between
the complexity measure and band power. ERD corre-
sponds to the desynchronized EEG processes, which would
result in the increased EEG irregularity so that the
corresponding EEG complexity increases. ERS corre-
sponds to the synchronized EEG processes which would
result in the increased EEG regularity so that the
EEG complexity decreases. For Subject 2, the more
enhancement of ERD over contralateral hand area reflects
the stronger desynchronized EEG process than that
over ipsilateral hand area, which also is consistent with
the more enhancement of complexity measure of event-
related EEG.

The number of single trials for Subject 1 and Subject 2 is
different, but it will not affect the analysis results, because
the analysis data of Kc, FSE and the band power are
calculated by the averaged corresponding parameters
across all the trials to show the statistical mean behaviors.

According to Figs. 1 and 2, we can also see that Kc and
FSE quantifying the complexity measure time courses of
event-related EEG have a very similar pattern. In contrast,
they exhibit somewhat different behaviors between the left-
and right-hand motor imagery tasks. For example, the
curve over C3 in Fig. 1(c), corresponding to the ERD for
left-hand motor imagery, displays the slightly different
behavior from the curve over C4 in Fig. 1(d) also
corresponding to ERD but for right-hand motor imagery.
The similar case also occurs between the curves over C3
and C4 in Fig. 1(e,f). This slightly different behavior of
complexity measure of event-related EEG between left-
and right-hand motor imagery tasks possibly may result
from the asymmetry of two brain hemispheres.

In general, the two parameters Kc and FSE quantifying
the complexity measure of ERD time courses show the
consistent behaviors, which indicates that the complexity
measure changes of EEG recorded over left and right
sensorimotor hand cortex areas can characterize the event-
related EEG data during the imagination of the unilateral
hand movement.

4.2. Classification accuracy and MI time courses

To testify the validity of quantitative complexity
measure of event-related EEG, the complexity features
are used to realize classification of left- and right-
hand motor imagery and the two evaluation indexes
including classification accuracy and MI are introduced
in Section 3.4. In this Section, we will give the classification
results for the two subjects. Firstly, we obtained the band
power feature and the complexity feature of EEG within
8–30Hz extracted by classical FFT and Kc method,
respectively. Then the two kinds of features are combined
to distinguish the left- and right-hand motor imagery
tasks. By the method described in Section 3.4, the two
indexes including classification accuracy and MI time
course for Subject 1 and Subject 2 are calculated and
shown in Fig. 3. Here, for Subject 1, we obtain the
classification results of 140 test dataset by learning the 140
train dataset. For Subject 2, the train dataset include
enough large amount of dataset with 319 single trials. To
simplify the problem, only the train dataset are analyzed to
evaluate the classification performance by leave-one-out
(LOO) cross-validation.
From Fig. 3(a,b), we can see that for Subject 1, the

maximum classification accuracy and MI appear at about
t ¼ 7 s with 88.57% and 0.5965 bit, respectively. Subject 2
reaches the maximum value with the classification accuracy
90.60% and with MI 0.6195 bit. The two indexes are
gradually increased with time changing because the
accumulated information preceding time are applied in
classifier design. The satisfactory classification results show
that both the complexity feature and band power feature of
event-related EEG make contributions.
To compare the contribution of the complexity feature

with that of the band power feature, the two kinds of
features are separately extracted to discriminate the left-
and right-hand motor imagery tasks. Table 1 gives the
comparison of two evaluation indexes, i.e. the maximum
classification accuracy and MI by using the band power
features extracted by FFT, complexity features extracted
by Kc and the combined features, respectively, for Subject 1
and Subject 2.
From Table 1, we can see that only by combining with

the two kinds of features, i.e. the band power features and
complexity features, could the best classification results be
obtained. Any single kind of feature cannot give satisfac-
tory results. For the two subjects, the feature of the band
power and the complexity contributes to the classification
results differently. Even if the single complexity feature
gives the lower classification results for Subject 2, it does
improve the performance when combined with power
features. For Subject 1, the single complexity features give
the better classification accuracy than the single band
power feature. Kc, as a nonlinear complexity measure,
quantifies the regularity and randomness in the event-
related EEG and reveals the information regarding the
dynamics of the specific brain system. Thus, Kc measure of
event-related EEG carries the information independent of
that by the band power method, which helps to improve
the classification accuracy when combined with the band
power features.
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Fig. 3. Classification results for Subject 1 and Subject 2; (a, b) classification accuracy and the corresponding MI time courses by combining the power

feature and complexity feature of event-related EEG within 8–30Hz extracted by FFT and Kc method, respectively, for Subject 1; (c, d) classification

accuracy and the corresponding MI time courses for Subject 2.

Table 1

Comparison of the classification results with different EEG features for

Subject 1 and Subject 2

Features Max classification accuracy ( %) Max MI (bit)

Subject 1 Subject 2 Subject 1 Subject 2

Complexity 86.43 70.0 0.5256 0.138

Power 85.71 89.9 0.5422 0.598

Power, Complexity 88.57 90.6 0.5965 0.6195
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5. Discussions

In Ref. [15], Pfurtscheller showed that motor imagery is
closely related to the primary sensorimotor areas activa-
tion. A desynchronized EEG indicates excited cell assem-
blies ready or prepared for sensory, motor or cognitive
processing [15]. EEG desynchronization is induced by
information input which implies a lesser coordination
between the ongoing EEG processes and more independent
neural processes contribute to complex brain dynamics
[11,15] so that the desynchronized EEG shows the more
irregular behavior. A synchronized EEG within specific
frequency band correlated of deactivated cortical areas
marks specific cortical areas at rest or an idling state
[11,18], which implies a more coordination between the
ongoing processes so that the synchronized EEG shows the
more regular behavior. The fact that the increase of event-
related EEG complexity quantified by Kc and FSE

corresponds to ERD over the activated brain areas, and
the complexity decrease corresponds to ERS over the
deactivated brain areas for Subject 1 can provide another
evidence for the above viewpoints. For Subject 2, although



ARTICLE IN PRESS
X.-M. Pei et al. / Neurocomputing 70 (2006) 263–272 271
the ERD appears over both hemispheres, it can be seen
that the degree of ERD over the contralateral hand area is
more than that of ERD over the ipsilateral hand area.

It was reported that the complexity of EEG during open
eyes increases relative to that during closed eyes, which
suggests that more independent, parallel, functional
processed activities are involved during open eyes than
during closed eyes [6]. Studies on single-channel EEG
correlation dimension also found increase after eye opening
[19]. Motor imagery as well as eye opening involves
information processing, and the corresponding brain state
changes are similar. The complexity increase of EEG
resulting from hand motor imagery is also in accordance
with the above findings.

When calculating Kc of EEG, it would be overestimated
for a shorter data segment [23]. In this paper, the data
length to be analyzed is short with only 1 s data segment.
However, the quantitative measure of the complexity of
ERD time course by Kc actually reflects the ratio of
complexity between the two different periods i.e. motor
imagery period and reference period for the same length
data segments. The complexity time course quantified by
Kc can be understood in a relative sense. So the short
length data makes no difference for the analysis results.

Kc measures the complexity of event-related EEG in
time domain. FSE characterizes the structural complexity
of EEG in frequency domain by calculating the uniformity
degree of EEG signal power distribution within the specific
frequency band [2]. There are two considerations to
quantify ERD/ERS time course by the parameter FSE.
On the one hand, for the investigated event-related EEG
within 8–30Hz, it contains alpha (8–13Hz) and beta
(14–30Hz) rhythms, which would show different behaviors
during hand motor imagery. Furthermore, studies on the
functional dissociation of lower and upper frequency mu
rhythms of movement-related EEG showed that the lower
frequency component (8–10Hz) results in a widespread
movement-type nonspecific ERD pattern, whereas the
upper frequency component (11–13Hz) shows a more
focused and movement-type specific pattern [17]. Within
8–30Hz, there exist at least three different frequency band
EEG oscillations in relation to hand motor imagery, which
show inconsistent behaviors with one another. It is
reasonable to expect that the different distributive informa-
tion of EEG components within the three separate frequency
bands must have great effects on the complexity measure of
event-related EEG quantified byFSE. Therefore, FSE within
8–30Hz reflect not only the distributive information of the
power in three separate bands but also the distributive
information of the power at each frequency. On the other
hand, the imagination of left- or right-hand movements
results in different spatial ERD patterns over contralateral
and ipsilateral sensorimotor hand cortex areas. The synchro-
nized EEG would result in the concentrated distribution of
signal power, and vice versa. By FSE, we could characterize
how concentrated or widespread the power spectrum of
event-related EEG signal can be.
Different from the classical band power method, Kc and
FSE characterize the complexity of the event-related EEG
and reflect the desynchronized and synchronized processes
from another viewpoint. Although the complexity features
extracted by only Kc measure are applied to classify left-
and right-hand motor imagery tasks and the corresponding
classification results are evaluated in Section 4.2, however,
the fact that the complexity features extracted by Kc

improve the classification performance when combined
with band power features at least can show that the
complexity information is independent of the power
changing in the event-related EEG. Therefore, the com-
plexity measure Kc and FSE of the event-related EEG can
be regarded as another indicator of ERD/ERS.
In general, based on the analysis of two sets of event-

related EEG and the performance evaluation from two
subjects, we can conclude that the two parameters Kc and
FSE can well quantify the complexity measures of the
dynamic event-related EEG. Moreover, the complexity
indexes Kc and FSE quantifying the complexity measures
of ERD/ERS not only show the very consistent and similar
behaviors with each other, but also display an inverse
pattern as compared with the band power measure of
ERD/ERS by classical band power method. The results
suggest that the time-dependent complexity measure
quantified by Kc and FSE can be meaningful in analyzing
the event-related EEG.
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