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Abstract
As collection of electron microscopy data for single-particle reconstruction becomes more efficient,
due to electronic image capture, one of the principal limiting steps in a reconstruction remains particle
verification, which is especially costly in terms of user input. Recently, some algorithms have been
developed to window particles automatically, but the resulting particle sets typically need to be
verified manually. Here we describe a procedure to speed up verification of windowed particles using
multivariate data analysis and classification. In this procedure, the particle set is subjected to multi-
reference alignment before the verification. The aligned particles are first binned according to
orientation and are binned further by K-means classification. Rather than selection of particles
individually, an entire class of particles can be selected, with an option to remove outliers. Since
particles in the same class present the same view, distinction between good and bad images becomes
more straightforward. We have also developed a graphical interface, written in Python/Tkinter, to
facilitate this implementation of particle-verification. For the demonstration of the particle-
verification scheme presented here, electron micrographs of ribosomes are used.
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INTRODUCTION
Cryo-electron microscopy combined with single-particle reconstruction (see Frank, 2006) is a
powerful method for visualizing biological macromolecules. With use of the transmission
electron microscope, it is possible for an idealized homogeneous specimen under ideal
conditions of imaging to yield an atomic-resolution reconstruction from as few as 10,000
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projections of a structure (Henderson, 1995). However, real specimens are imperfect in terms
of homogeneity; imaging is affected by instrument instabilities; and reconstructions are
degraded computationally by interpolation and alignment errors. For real, non-ideal specimens
and imaging conditions, typically tens of thousands of images are required even to reach
intermediate resolutions (in the 10- to 20-Å range).

Initially, when single-particle methods were introduced, small particle sets, on the order of
hundreds of particles, were selected manually and individually from digitized micrographs.
Thus, particle selection and verification were done in a single step. With the introduction of
automated particle selection procedures, to cope with the requirement for much larger data
sets, came the need for some form of quality verification. In the following, we will differentiate
between the windowing and verification steps, avoiding the term “particle picking,” which
lumps both steps together.

Considerable effort has been expended to try to automate particle-windowing (reviewed in Zhu
et al., 2004). However, even with the best implementations, reliability is not perfect. That is,
a certain proportion of real particles -- “real” as judged by a human observer -- is always
excluded, while a portion of non-particles is included. Thus, the second step, particle
verification, is normally necessary, in which the output of the automated particle windowing
is evaluated for quality-control purposes; this step is typically a manual process.

In a typical implementation of manual particle verification, a set of windowed particles is
displayed as a montage. Each candidate image derived from the particle-windowing step can
either be confirmed and saved, by a mouse click for example, or it can be skipped and thus
rejected and discarded. This mouse-click operation is repeated for each image among the tens
of thousands of particles that were obtained in the automated particle-windowing step. This
process is quite tedious and, if the goal is high-throughput image-processing, it can be severely
rate-limiting.

An implementation of particle-verification using multivariate data analysis (MDA) and
classification has been described previously (Roseman, 2004). Here we present an extension
of that scheme. whereby, groups of particles are verified collectively, rather than the individual
verification of particles. The programs affords further control allowing removal of outliers.

MATERIALS
Grids containing E. coli 70S ribosomes were generated as described previously (Vestergaard
et al., 2001). Micrographs were collected under low-dose conditions on an FEI Tecnai F20 at
a nominal magnification of 49,700, with defocus values ranging from 1.1 to 3.1 µm underfocus,
and digitized on a Z/I scanner (Huntsville, AL) at a step size of 14 µm, corresponding to a pixel
size of 2.82 Å. The reference structure was a 70S ribosome with a UAA stop codon in the A
site and fMet-Phe-Thr-Ile-tRNAIle in the P-site (Rawat et al., 2003). Using lfc_pick.spi (Rath
& Frank, 2004; Suppl. Fig. 1), we windowed 115,221 from 76 micrographs. Batch files, Python
scripts, and documentation are provided on the SPIDER Techniques WWW page
(http://www.wadsworth.org/spider_doc/spider/docs/techniques.html).

RESULTS
MDA and classification have been used previously for particle verification (Roseman, 2004).
In that study, the specimen analyzed was keyhole limpet hemocyanin, a molecule that adopts
few orientations of the grid. As a generalization of the procedure, it is deemed desirable to
account for specimens that present many more orientations in a continuous range, e.g., the
ribosome (Penczek et al., 1994; Shaikh et al., submitted). One option would be to use more
classes in a single-step classification, but in practice, overrepresented views tend to dominate
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inordinately many classes, leaving underrepresented views and non-particles to distribute
among too few remaining classes. Instead, we developed a procedure comprising two steps of
classification. First, we bin the windowed images by orientation, or in other words, according
to which reference projection the windowed images were assigned during multi-reference
alignment. Then, the particles associated with a particular reference projection are run through
principal component analysis. The particles are then binned further by K-means classification.

Prior to this classification, particle images were windowed using locally normalized fast
correlation (Roseman, 2003) (“lfc”), implemented in the SPIDER batch file lfc_pick.spi (Rath
& Frank, 2004; Suppl. Fig. 1). Here, in order to describe the performance of the algorithms,
we will categorize the output windowed images dichotomously into “real particles” -- i.e.,
images of the molecule of interest -- and “nonparticles.” We further categorize non-particles
into two sub-categories: junk and noise (Lata et al., 1995). “Junk”s images include particle
fragments, contaminants, or other material with a density higher than background. Noise
images lack any distinct features above background.

Using the procedure lfc_pick.spi, we rank the cross-correlation peaks between a projection of
the reference and the micrograph from highest to lowest. With the default settings of
lfc_pick.spi, coordinates of peaks in the cross-correlation map of the micrograph are recorded
for subsequent windowing, unless they violate proximity criteria; that is, peaks are windowed
in the order of ranking until there is no more room left in the micrograph. Typically in the end,
there are more areas windowed than there are real particles in the micrograph. Windowed
images output by lfc_pick.spi with the highest cross-correlation coefficient (CCC) value often
tend to be “junk” while the lowest-ranked images typically contain only noise (Suppl. Fig. 1).
These windowed images are then subjected to projection-matching.

A flowchart for standard projection matching is shown schematically in Figure 1A, and, in the
modified form described here, in Figure 1B. The first step of classification, the multi-reference
alignment, minimizes the variation in the binned images that is due to orientation; that type of
variation is not relevant for the purpose of quality control. Instead, upon K-means classification
following multi-reference alignment, the variation is due mainly to the differences between
real particles and non-particles. Another potential source of irrelevant variation is difference
in defocus. To eliminate or minimize this source of variability, before classification, images
are low-pass filtered to the spatial frequency of the first phase reversal of the contrast transfer
function for the most strongly underfocused image.

Verification modes
Whole classes and highest ccc modes—In the simplest mode of classification-based
verification, the user selects the desired class averages (Fig. 2A) and thereby selects the
windowed images corresponding to those classes (Roseman, 2004). Figure 2A shows a
montage of class averages from an E. coli 70S ribosome data set (see Materials section). In
this example, the CCC between each class average and the corresponding reference projection
was calculated. In the montage, the class averages are ordered from lowest CCC to highest.
The number of classes was determined from the number of images classified; here, we used a
ratio of one class per 75 images.

When the quality of a class is in doubt, a montage of the individual windowed images in that
particular class can be viewed. Figure 2B shows an example of a montage of a class containing
mostly real particles. Since the particles are aligned and correspond to the same orientation, it
is straightforward to discern real particles from non-particles. Note that there are a few non-
particles or questionable particles in this class. Outliers will be addressed below. This selection
step is then repeated for each reference projection; for an asymmetric object, a choice of quasi-
equivalent spacings of 15° between adjacent projections, for example, corresponds to a total
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of 83 reference projections. Following a few internal book-keeping steps, the verified particles
are piped to the 3D reconstruction procedure. This mode will be referred to below as the “whole
classes” mode. Since a single mouse operation will select a set of, on average, 75 particles, this
mode will be very fast, taking ~1.5 hr for our test data set (Table 1).

Figure 2C shows part of a montage of a class which contains images of predominantly noise.
That the average (class #008 in Fig. 2A) looks reasonably normal illustrates the risk posed by
reference bias. In this particular montage of class averages, the classes with the lowest
correlation values contain non-particle images, like class #008, but in general, the correlation
coefficient serves only as a rough guide to quality. Numerical parameterization of class quality
will be discussed further below.

Given the observation that there are non-particles still contained in classes of real particles, we
deemed it desirable to offer the user more control over the choice of retained particles. In one
method, the user selects those particles that have the highest correlation coefficients for each
class. The images are arranged in the montage ordered from lowest to highest correlation, so
this selection amounts simply to clicking on the first particle to be kept (denoted in Fig. 2B
with a “1”). This mode will be referred to below as the “highest ccc” mode. This mode requires
only a single mouse operation more than was required for the “whole classes” mode after
loading the individual-image montage, so it will also be quite fast, taking ~4.5 hr for our test
data set (Table 1).

Scatter plot mode—In a general sense, the time-saving steps entailing classification that
we have devised involve the “chunking” of data, such that ensembles of comparable images
are evaluated collectively. The more image data that can be displayed simultaneously, the faster
this verification can proceed. Above, we represented a class by its average image, and it was
possible to evaluate one orientation class – or reference projection – at a time. In contrast, in
the “scatter plot” mode that is introduced next, we represent each class as a point in two
dimensions, and thus can display representations for all classes and reference projections
simultaneously.

First, we needed to parameterize the classes by a pair of suitable metrics. One obvious metric
to use is the CCC between the class average and the reference projection. Another promising
metric is the standard deviation of the class variance map (SDVAR). The rationale behind the
choice of SDVAR was that in an ideal good class, there should be little variation among the
individual images constituting this class, and thus the class variance map should be flat, i.e.,
with a low value for its standard deviation. In addition, a good class would be expected to have
a high CCC. The converse would be true of an extremely bad class, i.e., a bad class would be
expected to have both a low CCC and a high SDVAR.

We wrote a Python/Tkinter utility, named scatter.py, designed to select points representing
classes within a user-defined region of a 2D plot (Fig. 3A). The boundary of the region
containing good classes is determined by viewing montages of individual particles from
selected classes in the 2D plot; the user opens the montage by clicking on the corresponding
point. The boundary enclosing the good classes and excluding the bad classes defines a
polygon, inside which reside the classes that are to be retained. Only on the order of tens of
classes need to be opened to define the encapsulating polygon; thus, this mode of verification
is extremely fast, taking only ~10 min for our data set (Table 1).

Since the same classes had been verified above using the “whole classes” mode, we could
compare classes chosen using that method with those picked using the “scatter plot” mode.
Retained (“good”) and excluded (“bad”) classes from the “whole classes” mode are depicted
in Fig. 3B using the same axes: SDVAR and CCC. The points assume roughly the form of a
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comet, with the good classes -- those with high CCC and low SDVAR -- forming the head,
and the bad classes forming the tail. There is overlap in the plot between the retained and
excluded classes, meaning that some bad classes will have been retained in the selection in
Figure 3A.

While verifying classes, one pattern that we observed was that class averages of good classes
tended to have averages showing a bright particle on a dark background, whereas bad classes
tended to have averages with a flat density, with little differentiation between particle and
background (see Fig. 2A). We parameterized this characteristic using the standard deviation
of the average (SDAVG). For the particular data set under analysis, this combination of
parameters was shown to be powerful (Fig. 3C). However, for another data set in which
evaluation by SDAVG and SDVAR was tested, the separation between good and bad classes
was not pronounced (D.J. Taylor & J.S.L., unpublished results).

Python interface
In the verification modes above, the degree of control is quantized. The user can select entire
classes, or with additional intervention, can select the particles with the highest correlation
coefficients from a class. There were existing Python/Tkinter tools (Baxter et al., 2007) to
display contents of a class (classavg.py), and there were separate tools to select particles
(montage.py), so we combined those functions and customized them to work in conjunction
with the various classification-based verification schemes (Fig. 4), into a utility called
verifybyview.py. With this utility, the user can work according to the “whole classes” mode
and simply select class averages, or alternatively can deselect individual outliers from an
otherwise good class.

Reliability of the various verification modes
Before the development of the classification-based verification methods, particles for the E.
coli ribosome data set had been verified using the standard method, i.e., individually, by hand.
Of the 115,221 particles windowed automatically, 63,846 were selected. This mode will be
referred to as the “by hand” mode. We used this hand-selected particle set as the initial gold
standard to which the results of the classification-based methods would be compared. The
rationale for considering visual selection the gold standard is that such characteristics as
cohesion, size, and shape of molecule are readily recognized by the expert human eye, and that
this performance has yet to be matched by a computational automated procedure.

As an intentionally lenient particle set, we devised a particle set as follows. Since
lfc_pick.spi ranks the windowed images by CCC, we manually picked the real particle with
the highest CCC and the real particle with the lowest CCC for each micrograph, and we kept
all particles in between. From this particle set, only the high-correlation junk images and
lowest-correlation noise images will have been excluded. This set, by definition, had all 63,846
of the “by hand” set, plus interspersed non-particles, to bring the total number to 88,175. The
mode that gave rise to this particle set will be referred to as the “truncated lfc” mode.

Using the “by hand” particle set as a gold standard, we could examine the error rates for the
various modes (Table 1). Likely the most insidious of the types of errors is the false-positives,
i.e., non-particles retained as real particles. False-positives will at best contribute noise to the
reconstruction, and will at worst contribute to reference bias; they may also prevent a stable,
converged refinement. False-negatives -- i.e., good particles that have been erroneously
excluded -- are less worrisome. At worst, the signal-to-noise is lessened; in the best case, the
particle number is not the limiting factor in the quality of the reconstruction. The simplest
classification-based mode, “whole classes,” yielded more false-positives than did the more
sophisticated “highest ccc” variant; however, it was three times faster. The false-positive rate
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for “truncated lfc” was obviously poor. For the “scatter plot” mode, the number of false-
positives was comparable to that for the “whole classes” mode, but the number of true-positives
was lower than in the latter.

To evaluate the effect of the trade-off between false positives and false negatives, we examined
Fourier shell correlation (FSC) curves, adopting the hypothesis that the best particle sets would
yield the best resolution curves. Instead, all particle sets showed approximately the same
behavior (Fig. 5A). Surprisingly, the “truncated lfc” particle set, which was known to contain
the highest fraction of non-particles (28%), showed slightly better FSC values at intermediate
resolutions, 1/30Å−1 to 1/17Å−1, than the other curves.

The “truncated lfc” particle set comprised the largest particle set, so, supposing that raw particle
number reinforces the resolution curve in addition to particle quality, we limited the particle
set to a fixed size (40,620) by randomly selecting particles, with a constant number of images
for a given defocus group for all of the particle sets. Even though the FSC curves did not overlap
(Fig. 5B), the differences were small.

The observation that a particle set with many non-particles could yield a reasonable-looking
resolution curve was reminiscent of the effect of reference bias. To test for bias, we performed
two experiments. In the case of alignment of pure noise, agreement between the two half-sets
used to compute the FSC worsened during the process of refinement (Shaikh et al., 2003).
Thus, for our test ribosome images, we refined the orientation parameters for six iterations
(Penczek et al., 1994; Shaikh et al., submitted), using all windowed images for each particle
set, i.e., not a fixed number. The resolution curves for the particle sets were again similar (Fig.
5C). In contrast to the noise-only case, when there is a mix of real particles and non-particles,
it appears that signal from the real particles is sufficient to enable to alignment of the non-
particles.

A second test for the presence of reference bias entailed to computation of cross-validated
resolution curves (Shaikh et al., 2003). Briefly, we excised a spherical shell from the Fourier
transform of the reference, re-ran the alignment, calculated reconstructions, and computed
resolution curves. If there were real data in the excised region of the Fourier transforms of the
half-sets used to compute the FSC, there would be correlation in the excised region of the FSC.
Whereas if only noise were present, there would be no significant correlation in the excised
region of the FSC. Rather than mask with a spherical shell with a sharp edge, we used a spherical
shell with a soft edge for the mask profile (Fig. 5D, gray), in order to minimize potential
alignment artifacts. Use of a soft edge did not show an appreciable difference from a sharp
edge in the corresponding resolution curves (data not shown). Use of a fixed number of images
did give rise to a better separation of FSC curves than did use of the original, variable number
of images (data not shown). Upon cross-validation, the “highest ccc” mode, which required
the most user interaction of the classification-based methods tested here, yielded the best FSC
curve (Fig. 5D). The “truncated lfc” mode yielded the worst FSC curve. The “by hand” mode
was similar in FSC quality to the “scatter plot” and “whole classes” modes. There was a general
correlation between user interaction required and strength of the cross-validated FSC.

Effects of false positives
Above, we asserted that the inclusion of false positives is the most insidious type of error in
particle-verification. The “by hand” particle set did not show the best behavior out of the five
particle sets, so to obtain a better gold standard for “good” particles, we took the intersection
of the three particle sets that required the most human interaction: “by hand,” “whole classes,”
and “highest ccc.” In all, 38,033 particles were found to be common to these particle sets.
Similarly, 39,456 unanimously “bad” particles were identified from those three particle sets.
Cross-validated FSC curves best distinguished the behavior of good and bad particle sets above,
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so additional cross-validation tests were carried out using known numbers of good and bad
particles from these new gold standards.

First, we calculated reconstructions and cross-validated FSC curves when using all of the good
particles mixed with varying numbers of bad particles, such that the final percentages of good
particles were 100%, 90%, 75%, and 50%. The hypothesis had been that the behavior of the
cross-validated FSC was largely determined by the total number of good particles (Shaikh et
al., 2003). Instead, the presence of bad particles eroded the FSC (Fig. 6A), with a difference
in FSC value, between 100% good to 50% good, of approximately 0.15.

Second, since the separation among the particle sets' FSC curves increased when a constant
number of windowed images was used (Fig. 5B vs. Fig. 5D), we calculated cross-validated
FSC curves upon decreasing the number of good particles while increasing the number of bad
particles, such that the number of total windowed images was constant (constant aside from
small rounding errors when subsets were drawn). The percentages of good particles were set
to be the same as in the experiment above: 100%, 90%, 75%, and 50% (Fig. 6B). An additional
FSC from a pair of reconstructions with only bad particles was also calculated. Slice series of
three of these reconstructions -- containing 100%, 50%, and 0% good particles – are included
in Supplementary Figure 3. Use of a fixed number of images yielded an even larger drop in
the cross-validated FSC than in the case with a variable number of images, with a difference
between 100% good and 50% good of about 0.25. We propose that one test for the presence
of false positives is a cross-validated FSC between half-set reconstructions with a fixed number
of images.

DISCUSSION
Rather than attempt to develop a more foolproof particle-picking protocol, we addressed the
less ambitious goal of improving manual verification techniques. The simplest verification
scheme presented here, the “whole classes” method, shows a false-positive rate of
approximately 10%. This rate is somewhat higher than, but similar to, the rate that was reported
earlier in a study using MDA and classification (Roseman, 2004). In addition, reliability can
be improved with the introduction of additional levels of control, using the “highest ccc”
method (Table 1) or the Python/Tkinter utility verifybyview.py (Fig. 4).

The underlying assumption in the use of classification for particle verification is that the real
particles will be separated from the non-particles. The ribosome exceeds 2 MDa in molecular
mass, has distinctive features, and has high contrast due to its RNA content, so the above
assumption tends to hold. Also, our test data set had a large fraction of the windowed images
(>1/3) deemed real particles. If the above characteristics do not apply however – if the molecule
has low molecular weight, smooth features, low contrast, or a small fraction of windowed
images as real particles – that assumption may be invalidated. In this case, the particle
verification simply defaults to the fully manual mode.

Further room for improvement lies in the classification method used. K-means classification
was used here, because its implementation in SPIDER (command CL KM) works robustly on
large image sets, in contrast to Diday's method (SPIDER command CL CLA), and allows
straightforward control over the number of classes requested (as opposed to hierarchical
classification, SPIDER command CL HC). This verification scheme is not intended to be
dependent on any one classification method. Classification algorithms implemented outside of
SPIDER, such as self-organized maps (Pascual et al., 2000), may prove useful, as well. The
more accurately the classification process separates particles from non-particles, the less
intervention would be required on the part of the user. There are large, unexplored areas from
computer vision and other fields which may lend themselves to this application.
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The notion of “error rate” in particle-picking begs the question of what the “correct” particle
set is. It is assumed that the manually verified particle set is to be the gold standard, but that is
not necessarily be the case. For the particle sets used in Figure 6 for instance, the gold standard
was found to be not precisely the hand-picked particle set but rather the intersection of that
particle set with those from two other verification modes. While manually verifying ribosomes,
a human user looks for appropriately sized structures with textural features distinguishable
from contaminants. Subjectivity is inherent in these decisions, and thus different users will
select different particles sets from the same starting set (Zhu et al., 2004). A valuable additional
visual cue is that the particles are aligned for the verification step, adding to those cues
otherwise used in manual verification.

Given the danger of reference bias, namely, that images of non-particles can give rise to an
averaged image that looks like that of a real particle (Fig. 2A, Fig. 2C), there is a danger that
a user will include non-particles in a reconstruction, with adverse effects. The best test for
particle-set reliability used here proved to be the cross-validated FSC (Fig. 5D, Fig. 6). In the
evaluation of a single particle set, a large difference between the normal FSC and the cross-
validated FSC may be indicative of aberrant behavior, for example, the “truncated lfc” curves
in Figure 5B and Figure 5D. When comparing two or more particle sets, normalization of the
number of particles provided even greater sensitivity (Fig. 5D, Fig. 6B). However, one caveat
of the cross-validation test, as presented here, is that it operates on collective particle sets, as
opposed to individual particles.

Additional checks downstream from the initial verification step may be desirable. One check
is to exclude particles with the lowest CCC values. However, a CCC cutoff is generally not
effective by itself, since real particle images recorded close to focus may be excluded; thus any
such cutoff should be implemented conservatively. Another check would be to exclude aberrant
particles during orientation refinement; we are developing an implementation of such a feature.
Rather than try to devise a single algorithm that can distinguish real particles from non-
particles, it may be more practical to run particle sets through a gauntlet of algorithms in series,
with each removing non-particles by one of a set of complementary methods.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Flowcharts for two projection-matching schemes. (A) In the standard method, particles are
verified individually, and then particles are aligned. (B) In our modified method, particles are
aligned first and then verified using classification.
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Figure 2.
Examples of classification. (A) Montage of class averages for one reference projection.
Underneath the average is the class number, followed by the number of images in that class.
(B) Montage of individual particles belonging to class #013 above. (C) Montage of the 52
particles with the highest CCC of 217 particles total from class #008 above. The individual
images here have been low-pass filtered and are sorted from lowest correlation coefficient to
highest.
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Figure 3.
Scatter plot examples. (A) x-axis is cross-correlation coefficient (CCC). y-axis is standard
deviation of the class variance (SDVAR). Selected classes are displayed in green. The boundary
between retained and excluded classes was determined by clicking on selected points and
opening the montage of individual particles. Labels for circled points refer to the figure for the
corresponding montage of particles, e.g., (S2D) for Supplementary Figure 2D. (B) Comparison
of the retained classes as selected by the “whole classes” mode. (C) Same classes as in B
redisplayed, with the SDVAR as abscissa and the standard deviation of the average (SDAVG)
as ordinate.
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Figure 4.
Python/Tkinter interface, verifybyview.py. (A) Class montage. (B) Individual particle montage
from class #13, containing the same particles as in Fig. 2B. In both cases here, images are
sorted from highest CCC to lowest CCC.
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Figure 5.
Fourier shell correlation curves for various particle-verification modes. Following the name
of each particle set is the nominal resolution according to the 0.5 FSC criterion. (A) FSC curves
for complete particle sets from a single iteration of alignment. The number of particles in each
set is listed in Table 1. (B) FSC curves for a fixed number of particles (40,620) used for each
particle set. (C) FSC curves for complete particle sets after six iterations of orientation
refinement. (D) FSC curves for a fixed number of particles after cross-validated alignment.
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Figure 6.
Fourier shell correlation curves using known numbers of good and bad particles. “Good” and
“bad” particles were identified from the intersection of the included and excluded particles,
respectively, from the particle sets “by hand,” “highest ccc,” and “first good.” The mixtures
of good and bad particles are such that the proportion of good particles was 100%, 90%, 75%,
or 50%. Following the name of each particle set is the nominal resolution according to the 0.5
FSC criterion. (A) All 38,033 good particles were included with varying numbers of added bad
particles. (B) A roughly constant number of total particles was included for each. Slices of
three of these reconstructions are shown in Supplementary Figure 3.
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