
 
 

  

Abstract—This paper presents a comparison of the use of 
broadband and narrow band signals for phase synchronization 
analysis as applied to Independent Components of ictal and 
interictal scalp EEG in the context of seizure onset detection 
and prediction. Narrow band analysis for phase 
synchronization is found to be better performed in the present 
context than the broad band signal analysis. It has been 
observed that the phase synchronization of Independent 
Components in a narrow band (particularly the Gamma band) 
shows a prominent trend of increasing and decreasing 
synchronization at seizure onset near the epileptogenic area 
(spatially). This information is not always found to be 
consistent in analysis with the raw EEG signals, which may 
show spurious synchronization happening due to volume 
conduction effects. These observations lead us to believe that 
tracking changes in phase synchronization of narrow band 
activity, on continuous data records will be of great value in the 
context of seizure prediction. 

I. INTRODUCTION 
 HASE SYNCHRONIZATION analysis in the analysis of 
neurophysiologic activity has gained momentum [1]-[4]. 

It was first introduced for the description of two coupled 
harmonic oscillators [5] and made possible the measurement 
of the strength of phase synchrony between two signals. It 
was also shown that these measures could be applied to 
noisy and chaotic signals [6]. Thus the concept of phase 
synchronization helped to measure the synchrony evolution 
while the amplitude of the signals remained uncorrelated. It 
should be noted that the underlying theory of phase 
synchrony assumes the signals to have a narrow frequency 
band and it has not been demonstrated whether or not it is 
appropriate to extend the same analysis for broad band data . 
This assumption is usually seen to be ignored in the context 
of biomedical signals like the electroencephalogram (EEG). 
This study aims to compare the broad band and narrow band 
phase synchronization analysis in the context of epileptic 
seizure detection and prediction. Here the obvious question 
that would be raised is how to determine what would be the 
optimum width of the narrow band for an analysis. The 
solution to this problem is not trivial but in the case of EEG 
signals we need not isolate signals at each frequency as 
phase synchronization measures synchrony within a range of 
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mean frequencies (as long as this range of frequencies is not 
very large) [5]. In the present context we have used 20 Hz 
bands from 1-80 Hz of frequency to analyze changes in 
synchrony across a wide bandwidth, also they will roughly 
relate to bands of interest in EEG, such as beta (13-30 Hz), 
gamma (>60 Hz), etc.  

Phase synchrony has long been considered as an important 
factor in the genesis of epileptic phenomenon [7]. Many 
studies suggest an underlying correlation between neuronal 
synchronization and seizure development and onset [3],[7]. 
We investigate the variability of the amount of phase 
synchronization in multivariate EEG data. In order to 
partially isolate the signals of interest in a particular area 
(spatially) from multivariate EEG data, we have used the 
concept of constrained Independent Component Analysis 
(cICA) [8]. EEG signals are contaminated by noise and 
artifacts that can be efficiently isolated and removed with 
ICA. Also due to volume conduction, EEG the signals on the 
scalp get spatially overlapped which may lead to spurious 
synchronization. This effect is removed by the use of ICA as 
it aims to isolate the source signals (i.e. ICA combats the 
effects of volume conduction). 

II. THEORY 

A. ICA and Spatially Constrained ICA  
ICA is a statistical technique which performs Blind 

Source Separation (BSS) on linear mixtures of statistically 
independent sources. For a set of p random variables v(t)= 
[v1,v2,v3….vp]T assumed to be a linear combination 
(represented by the mixing matrix A) of m unknown 
statistically independent sources   s(t) =[s1,s2,s3, …, sq]T  where 
q < p , such that v(t) = A s(t). ICA aims to find the demixing 
matrix W such that s(t) = W v(t). The demixing matrix thus 
helps to find the sources s(t). To simplify the estimation we 
‘whiten’ the mixtures (de-correlate), which makes the 
covariance matrix of v(t) diagonal and its components of 
unit variance. There are various implementations of ICA in 
the literature [8]-[11] and we have selected FastICA 
[10],[11] because of its ease of implementation and speed of 
operation. 

In general, in ICA, there are two main limitations with the 
IC’s obtained:  1) The sign of IC’s cannot be determined and 
2) there is no ordering of the IC’s. This poses a problem in 
objective identification of the IC’s of interest (seizure 
topographies in this case). This is the motivation of using 
spatial constraints in conjunction with ICA [8],[12]. Spatial 
constraints are references provided in the form of source 
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projections whose location in the source mixture model is 
specified a priori. It should be noted that constrained ICA 
partially relaxes the independence assumption for 
constrained sources, which are independent of the 
unconstrained sources but may be mutually dependent [8]. 

B. Phase Synchronization Analysis  
 Phase synchronization measurements require an 

estimation of instantaneous phases of the two signals, the 
variability of the phase difference is then measured at a 
certain time. Synchronization of signals is marked by an 
appearance of a horizontal plateau in the phase difference 
across time [5]. To quantify the amount of phase 
synchronization, we need to use an index. In the literature, a 
number of indices called Phase Locking Values (PLV) have 
been used for intracranial and scalp EEG, based on different 
concepts, such as: Mutual Information, Shannon entropy, 
and Mean Phase Coherence [1]-[4]. We have opted to use 
the Mean Phase Coherence. The PLV is calculated as 
follows: 

1. Estimate the instantaneous phases of two signals 
using the Hilbert transform. 

2. Find the phase difference for two signals across 
time. 

3. Calculate the PLV value. 
The instantaneous phase of a signal ( )x t is estimated by 

forming an analytical signal using the Hilbert Transform [6]: 

            ( ) ( ) ( )A t x t ix t= + ,                              (1) 

where the imaginary part ( )x t  is the Hilbert transform of  

( )x t  ( P being the Cauchy principle value): 

                         ( ) ( )1 x
x t P d

t
τ

τ
π τ

+∞
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=
−∫ .                         (2) 

The instantaneous phase is the ‘unfolded’ angle of the 
analytic signal, which is given by: 

                         ( ) ( )
( )

arctan
x t

t
x t

φ = .                                (3) 

The phase synchronization is defined as the locking of the 
phases of two oscillating systems a and b: 

                     ( ) ( )a bn t m t constφ φ− = .                           (4) 
In this case, as we aim to measure the synchronization 

between signals from within the same physiological system 
(i.e. active brain regions), we assume that the phase locking 
ratio of n:m=1:1 as per [1] and using this bivariate data  
calculate the PLV using: 
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where 1
t∆  is the sampling rate of the time series of length 

N. This can be expanded by Euler’s formula as   
 

 

(6)                         

From the above we can see that PLV is a normalized value, 
where a perfect synchronization corresponds to a value of 
one and no synchronization a value of zero. Here it should 
be noted that EEG signals are usually broadband (1-100Hz) 
and Hilbert Transform may not be able to correctly estimate 
the instantaneous phase of broadband signals (which is an 
ongoing research problem). This raises concern if the 
broadband phase synchronization analysis may mislead 
interpretation of the results. 

C. Phase Locking Statistics  
Phase Locking Statistics (PLS) is a statistical test to 

differentiate significant PLV values against background 
fluctuations [2],[3]. It tests the null hypothesis H0 that the 
signals are not phase synchronized. It is based on a bootstrap 
technique which uses surrogate series [2],[3]. We use ‘shift 
surrogates’ as opposed to ‘shuffled surrogates’ as they 
preserve the inherent autocorrelations of the EEG signals 
and only destroys the cross-correlations [2]. 100 shift 
surrogates were generated by time shifting one series 
relative to the other by random lags and wrapping the extra 
values to the end. The PLV calculated between two signals 
was considered significant if the value was greater than two 
Standard Deviations from the mean PLV calculated on the 
surrogates. 

III. METHOD 

A. Epileptiform Data 
We studied multi-channel ictal scalp EEG recordings of 

two patients (four seizures and twenty interictal background 
EEG recordings each) who were undergoing continuous 
scalp EEG monitoring for possible epileptic surgery. The 
EEG was in the form of segments of two minutes with gaps 
of fifteen minutes, throughout the day and night. The data 
was recorded using twenty-five electrodes placed on the 
scalp according to the International 10-20 electrode 
placement system, with reference FCz. The data was 
sampled at 200 Hz and digitally stored at 12 bit resolution. 
The interictal recordings consist of 120 seconds of non-ictal 
EEG, away from the seizures. The seizure recordings consist 
of some pre-ictal periods and are of variable lengths from 
120 seconds to 300 seconds. We analyzed the data of each 
patient separately using a moving window technique with a 
window length of 600 samples (3 sec). 

B. Time-Frequency Evolution of Phase Synchronization 
in EEG signals and Independent Components 
FastICA was used to generate independent components 

(IC’s) of the multivariate EEG signals. The EEG signals and 
the IC’s were filtered in different frequency bands (1-20 Hz, 
20-40 Hz, 40-60 Hz and 60-80 Hz) using a finite impulse 
response filter. The time-frequency evolution of phase 
synchronization was investigated on the multivariate EEG 
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signals and the corresponding IC’s by calculating the PLV 
for each frequency band across time for all combinations of 
EEG electrodes and IC’s. To apply the analysis to the 
problem of seizure onset detection, we partially isolate 
signals of interest in a particular spatial area (near 
epileptogenic focal area) with the help of spatially 
constrained ICA. The procedure followed for the selection of 
constraints has been explained in the following section. 

C. Selection of Constraints  
Constraints were selected using a template EEG data 

segment of the patient that exhibited sufficient pre-ictal and 
ictal periods (about 100 seconds each). IC’s were estimated 
for this segment using FastICA and the topographies were 
plotted from the mixing matrix A. Then the PLV was 
calculated for all combinations of IC’s. The ICs that showed 
maximum change at seizure onset (in a frequency band) 
were selected and their topographies were used as 
constraints. This in effect depicted that there was maximum 
change observed in phase synchrony between these spatial 
areas. The spatially constrained sources were found as 
explained in Theory section, for interictal and ictal data. 
These were then used to estimate the phase synchrony 
evolution over time across all frequency bands to assess if 
these areas (spatially) got involved before and at seizure 
onset. 

IV. RESULTS 
Discrepancy was seen between the broadband and the 

narrowband phase synchrony results for the spatially 
constrained IC’s in case of both interictal and ictal data. This 
has been shown by an example as applied to a patient’s ictal 
and interictal EEG data. The template used for estimating 
the spatial constraints and the constraint topographies that 
were selected have been shown in Fig. 1. The IC’s that were 
found to show a prominent demarcation in the PLV levels at 
seizure onset appeared to be present only in the high 
frequency band. These topographies were then used as 
spatial constraints for estimating two spatially constrained 
sources on the patient’s interictal and ictal data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1  Plot of ictal EEG used as template to derive the topography 
constraints (only a section has been shown here) and the selected 
topographies, to be used as constraints.  
 
 

A. Narrowband vs. Broadband Phase Synchronization  
The time-frequency evolution of the phase 

synchronization for the estimated IC’s has been shown in 
Fig. 2 (upper plot) and the broadband phase synchronization 
for the same has been shown in Fig. 2 (lower plot). From 
Fig. 2 we can see that all the narrowband phase synchrony 
results do not match the broadband phase synchrony results.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Plot of time-frequency evolution of phase synchrony for spatially 
constrained IC’s of ictal data (upper). Plot of broad band phase synchrony 
for the same signals (lower). Differences can be seen in the time window of 
50-100 sec. Broadband PLV shows a lower value while narrow band PLV 
shows a higher value in band 1 and 4. 

 
In Fig. 3 and Fig. 4 we compare the phase synchronization 

in broadband and a narrow frequency band in interictal and 
ictal data. The narrowband (60-80 Hz) selected for this 
example is for clarity and is the one that shows maximum 
difference between broadband and narrowband PLV’s. Fig. 
3 shows that in interictal segments the narrowband PLV 
remains consistently significant with a stable low value of 
PLV while the broadband PLV for the same interictal data is 
either at a higher or lower level and sometimes becomes 
non-significant. In Fig. 4, where the same is repeated for 
ictal data, narrowband phase synchrony is seen to reduce 
prominently to non-significant levels or 0.1 prior to the 
seizure onset and thereafter increase to higher levels of 0.7-
0.8 at seizure onset. While with broadband PLV we do not 
see such a demarcated change in the amount of phase 
synchrony when evolving from interictal to ictal zone.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3  Plots of inter-ictal PLV for narrow band (60-80 Hz) (solid) and 
broad band (dotted) at various times (01:30 – 23:30). Horizontal lines 
indicate corresponding PLS significance levels.   
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Fig. 4   Plots of ictal narrow band (60-80 Hz) (solid) and broad band 
(dotted) phase synchrony. Horizontal lines show PLV levels for narrow 
band (dotted) and broad band (solid). Vertical line indicate seizure onset 

 
Also, in this study it was observed that there was 

inconsistency between the amount of phase synchronization 
seen at different frequency bands between the EEG 
electrodes and the corresponding IC’s (to compare 
combinations of IC’s and EEG electrode signals we use the 
spatial information of the IC’s, i.e. IC’s having the 
topography similar to that of the position of EEG 
electrodes). An example is shown in Fig. 5, where we see 
that the phase synchronization between EEG electrodes F3 
and T3 for an EEG segment shows high phase synchrony in 
low frequency bands and the amount of phase synchrony in 
high frequency bands is comparatively lower. But the 
corresponding combination of IC’s (selected by their 
similarity of topography to the positions of F3 and T3 
electrodes) show high phase synchrony in low frequency 
bands as well as high phase synchrony in high frequency 
bands as opposed to the observation in the corresponding 
EEG electrode combination. This discrepancy may be 
attributed to the overlapping of signals in EEG channels 
which is removed in IC’s. This observation further 
strengthens the concept that ICA demixes the scalp recorded 
data bringing the analysis a step closer to the underlying 
sources and removing the effect of overlapping of signals.  
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 5  Plots of Time Frequency evolution of EEG (F3, T3) and the 
corresponding IC’s (matched to the location of EEG electrodes by their 
corresponding topographies).  

 
With the above study it was also observed that the 60-80 

Hz band was prominent in showing sudden increase in phase 
synchrony at seizure onset. Recent research has indicated 
some correlation of Gamma band (> 60 Hz) activity and 
epileptiform activity using intracranial EEG signals [13]. 
This information is sometimes not observed in the analysis 
of raw EEG signals, which may be due to appearance of 
spurious synchronization resulting from volume conduction 
effects.   

V.  DISCUSSION AND CONCLUSIONS 
In this study the phase synchrony analysis of narrowband 

signals were found to reflect a trend that allowed 
demarcating the start of a seizure while the broadband 
signals failed to consistently reflect such a change. The 
broadband IC phase synchrony appears to depict an average 
of the individual narrowband phase synchronies. Such 
discrepancies can lead to incorrect interpretations in certain 
applications like seizure onset detection, when relying on 
broadband phase synchrony analysis; hence we conclude 
that the use of phase synchronization analysis on broadband 
signals should be performed with caution.  

The observation of the existence of a prominent trend of 
decreasing and increasing phase synchronization in high 
frequency band (Gamma) > 60 Hz, at seizure onset, between 
least independent sources found near the epileptogenic focal 
area might be helpful for seizure prediction. Confirmation 
about the change in this frequency band synchrony prior to a 
seizure onset, (that may help to predict a seizure) will 
require prospective statistical evidence, which was currently 
not possible due to lack of continuous scalp EEG recordings. 
We will be exploring the changes in Gamma band synchrony 
prior to a seizure (including the effect of change in behavior 
or sleep and wake state on the phase synchrony levels prior 
to the seizure onset) further next, in the context of seizure 
prediction. 
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