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Article

Test batteries designed to assess specific cognitive abilities 
are often used in the identification of learning disabilities 
(e.g., Berninger, Abbott, Vermeulen, & Fulton, 2006; Floyd, 
Keith, Taub, & McGrew, 2007). Indeed, some researchers 
suggest that full-scale scores add little predictive power 
beyond that provided by more specific factors (e.g., Hale, 
Fiorello, Kavanagh, Hoeppner, & Gaither, 2001). Measures 
of achievement can be predicted by the results of factor 
analysis that group scales together that assess specific cog-
nitive functions (Evans, Floyd, McGrew, & Leforgee, 
2001). The Woodcock–Johnson (WJ-III) is one of the more 
common test battery used for this purpose (McGrew & 
Wendling, 2010).

In contrast to an emphasis on specific factors, several 
investigators have suggested that test battery interpretation 
should be made primarily on the basis of full-scale scores 
(e.g., Beaujean, Parkin, & Parker, 2014; Canivez, 2013; 
Golay & Lecerf, 2011; Nelson, Canivez, & Watkins, 2013; 
Watkins & Beaujean, 2014). These recommendations are 
based on the results of factor analysis studies that show that 
the general factor, or g, accounts for much more of the com-
mon variance than domain-specific factors.

There are a number of alternative approaches to model-
ing the covariance between tests of cognitive abilities. 
General and specific cognitive ability factors have often 

been conceptualized in terms of higher order models (e.g., 
Carroll, 1993). Higher order models treat the effect of g on 
test performance as being mediated by specific factors 
(Gignac, 2008). More recently, bifactor models that treat g 
and specific factors as independent determinants of behav-
ior have gained popularity (Reise, 2012). Bifactor models 
have been shown to provide better fit of the covariance in 
cognitive test performance than higher order models 
(Beaujean et al., 2014; Gignac & Watkins, 2013; McFarland, 
2013; Valerius & Sparfeldt, 2014). In addition, due to the 
independence of general and specific factors, the relative 
contribution of each to test performance can more readily 
be evaluated.

In comparing higher order models with bifactor models, 
Beaujean et al. (2014) state that when specific cognitive 
abilities are of concern, “the factor model used to represent 
abilities makes a great deal of difference, both conceptually 
and statistically” (p. 791). One reason the factor model is 
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important is that general and specific abilities are con-
founded in higher order models in which the effects of the 
general factor are mediated by the specific factors. The fac-
tor model is also of importance when researchers control for 
g when evaluating the impact of specific abilities (e.g., 
Vugs, Cuperus, Hendriks, & Verhoeven, 2013). Likewise, 
as already discussed, some researchers suggest that test bat-
teries should be interpreted primarily in terms of g. 
However, others suggest that g is of little relevance to the 
diagnosis of specific learning disabilities (e.g., Hale et al., 
2001). The relative importance of general and specific fac-
tors is related to the relative amount of variance accounted 
for by g and specific factors, which is model-dependent.

Murray and Johnson (2013) have questioned the wisdom 
of comparing bifactor and higher order models on the basis 
of model fit alone. Based on both logic and simulations, 
they suggest that there is an inherent statistical bias that 
favors the bifactor model. Higher order models can be con-
ceptualized as models in which the ratio of the weights 
between any given specific factor and g is constant (Reise, 
2012). In contrast, bifactor models do not have this con-
straint and hence have more degrees of freedom with which 
to fit the data. As a consequence, bifactor models are more 
complex than higher order models and are thus more prone 
to overfitting (Cudeck & Henly, 1991).

Overfitting occurs when model parameters account for 
chance characteristics of a sample rather than the underly-
ing relationships they are intended to model. In statistics 
and machine learning, the problem of overfitting has fre-
quently been dealt with by the use of cross-validation (Arlot 
& Celisse, 2010; Brown, 2000; Mosier, 1951). Cross-
validation has also been recommended for covariance mod-
eling, although it is rarely used (Browne & Cudeck, 1993; 
MacCallum, Roznowski, & Necowitz, 1992). With cross-
validation, the model parameters are estimated with one 
sample (i.e., the training sample) and then these fixed 
parameter estimates are generalized to an independent sam-
ple. Overfitting is thus not an issue in assessing model fit in 
the second (i.e., the test) sample to which the model param-
eters were generalized. Anderson and Gerbing (1988) 
describe this procedure as “the quintessential confirmatory 
analysis” (p. 412).

The present study examined several issues related to 
structural modeling of abilities by the use of simulated data 
as well as analysis of the standardization data from the WJ-III 
(McGrew & Woodcock, 2001). The WJ-III standardization 
data were selected since it is a popular test battery designed 
to assess both general and specific abilities (McGrew & 
Woodcock, 2001), reported to have an age-invariant factor 
structure (Taub & McGrew, 2004) and has been previously 
examined with alternative factor models (e.g., Dombrowski 
& Watkins, 2013; McGrew & Woodcock, 2001). For both 
simulated and empirical data, results were evaluated with 
cross-validation. Several issues were evaluated. Simulation 

results evaluated whether cross-validation dealt with the 
issue of overfitting with bifactor models. Analysis of the 
WJ-III standardization data with cross-validation evaluated 
the relationship between general and specific factors.

Method

Simulations

All simulations were done in SAS with a C++ program used 
to organize the data. The basic model for the kth score on 
the ith test was

 t w a eik ij jk i= +( )∑ .    (1)

where a
jk
 is the magnitude of the jth ability for the kth obser-

vation, and e
i
 is a random test-specific term. The value of w

ij
 

is the weight given a
jk
 on the ith test. The value of a

ij
 was 

unique to each individual within a test battery simulation 
and was drawn from the SAS normal distribution function. 
The value of a

jk
 represents the ability of an individual on 

some hypothetical trait (e.g., an individual’s general intel-
ligence or auditory processing ability), while the value of 
w

ij
 describes the role of these abilities in determining test 

performance (e.g., to what extent a test measures general 
intelligence or auditory processing).

Simulated test batteries consisted of 25 tests, simulated 
with one general factor and five specific factors. These sim-
ulations were based on either a higher order model or a 
bifactor model. In addition, the sample size (i.e., n = 200 or 
2,000) and the amount of test-specific variance (i.e., the 
value of e

i
 being either 2× or 4× the value of the SAS nor-

mal distribution function, often referred to as error) were 
varied. Each of these conditions was simulated 12 times 
with different random values of w

ij
 for each of the multiple 

test battery simulations to extend the generality of findings. 
Each value of w

ij
 was unique to a single test battery simula-

tion, and was drawn from the SAS uniform distribution 
function. Use of a uniform distribution insures that all abili-
ties function in a similar manner within a given test battery 
simulation (i.e., if a given ability has positive effects on one 
test it would be expected to have positive effects on other 
tests). This is a boundary condition for all of the simulations 
conducted in the present study and was more extensively 
investigated by McFarland (2012). These simulations were 
done with SAS (2010) and the resulting data were then ana-
lyzed with the SAS CALIS procedure.

Participant Data

This study used the data reported for the standardization 
sample of the WJ-III (McGrew & Woodcock, 2001). Two 
samples of subjects were constructed consisting of data for 
individuals between 14 and 19 years of age (Table d-5), and 
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individuals between 20 and 39 years of age (Table d-6). 
Two samples of tests were constructed. The first assigned 
WJ-III cognitive tests to the factors that they were associ-
ated with in Table 2-2 of the WJ-III technical manual 
(McGrew & Woodcock, 2001) and hereafter referred to as 
the WJ-III model. The second consisted of the model identi-
fied in Table 7 of Dombrowski and Watkins (2013) and 
hereafter referred to as the Dombrowski model. The 
Dombrowski model is based on a subset of the combined 
WJ-III cognitive and achievement scales that had large 
loadings on a five-factor solution for the WJ-III standard-
ization data from 14 to 19 year olds.

Analyses

Three models were compared for each of the simulated test 
conditions and each of the participant samples. These were 
a higher order model, a correlated factors model, and a 
bifactor model. For simulated data, the structure of the spe-
cific factors used in the models were identical to those used 
to generate the data. For participant data, the structure of the 
specific factors were those in the WJ-III (McGrew & 
Woodcock, 2001) and Dombrowski models (Dombrowski 
& Watkins, 2013).

All analyses were done with the SAS CALIS procedure 
(SAS, 2010) using default settings. All latent factors were set 
equal to 1 (except for those defined by a hierarchical struc-
ture) as recommended by Anderson and Gerbing (1988). Fit 
indices included chi-squared (χ2), Bentler’s comparative fit 
index, the standardized root mean square error, the standard-
ized root mean square residual, and the Akaike information 
criterion. These indices were selected so as to provide a com-
parison with prior studies. These indices differ in how they 
deal with the trade-off between model accuracy and com-
plexity. The fact that there has been a proliferation of such 
indices attests to the difficulty of equating accuracy and com-
plexity. This problem of model evaluation is also dealt with 
by the use of cross-validation (Brown, 2000; Mosier, 1951). 
Cross-validation in the present study used the loadings for 

each factor on each subtest as estimated from the data sets 
used to estimate parameters (training set) and applied to inde-
pendent samples (test sets). Only the scale-specific effects 
(error) were estimated in the evaluation of models with cross-
validation, as is also the case with the NULL model, which 
was also included. This approach is the fixed-structure strat-
egy described by MacCallum, Roznowski, Mar, and Reith 
(1994). With this approach, the number of estimated param-
eters (i.e., model complexity) is identical in fixed-structure, 
cross-validated models.

Results

Average correlations from the various simulation condi-
tions are shown in Table 1. The results of simulations using 
a higher order model to generate test scores are shown in 
Table 2. Single-factor analyses of variance were used to 
compare the fit of each model (higher order, correlated  
factor, and bifactor) for each fit index within each simula-
tion condition. Tukey’s studentized range test was applied 
to all significant effects. The χ2 values for the cross-vali-
dated data (χ2 residual from generalized weights) resulted in 
significantly lower values (i.e., better fit) for the bifactor 
model with all four simulation conditions. The use of the χ2 
residual of the test sample using weights derived from the 
training sample is essentially the cross-validation index dis-
cussed by MacCallum et al. (1994, their Formula 2). Each 
of the other indices indicated that either the correlated fac-
tor or the bifactor model fit the data significantly better, 
with the exception of comparative fit index in the 2×-2,000 
condition, for which the models did not differ significantly. 
Thus, like Murray and Johnson (2013), the present simula-
tions found that these fit indices were biased toward the 
bifactor model. However, cross-validation consistently 
favored the true higher order model in these comparisons.

The results of simulations using a bifactor model to gen-
erate test scores are shown in Table 3. All of the fit indices 
indicated that the bifactor model used to generate the data 
was also the best fitting model, with the exception of AIG 

Table 1. Summary of Average Correlations Produced in Each Simulations.

Error n Model Mean r Minimum r Maximum r

2× 200 Higher order 0.503 0.257 0.796
2× 2,000 Higher order 0.461 0.264 0.768
4× 200 Higher order 0.229 −0.024 0.498
4× 2,000 Higher order 0.224 0.084 0.460
2× 200 Bifactor 0.305 0.036 0.648
2× 2,000 Bifactor 0.297 0.126 0.610
4× 200 Bifactor 0.126 −0.104 0.374
4× 2,000 Bifactor 0.122 0.021 0.293

Note. Averages were computed by first taking Fisher’s z transformation, averaging, and then converting the average back to Pearson’s r values. Model 
refers to the model used to simulate test scores.
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and the cross-validated χ2 in the 4× error, n = 200 condition. 
Thus, when the data were simulated with a bifactor model 
the same bifactor model provided a better fit except when 
error was high and the sample size was low. This finding is 
consistent with the observations of Cudeck and Henly 
(1991) that fit indices may be biased toward simple models 
when sample sizes are small, even when complex models 
may provide a better fit in the entire population. Overall, 
cross-validation with large populations would appear to be 
advantageous when practical.

Table 4 shows the average of the results of correlating 
the general and specific factors used to generate the simu-
lated bifactor data with the factor scores extracted with the 
structural models based on the default maximum-likelihood 
method. As can be seen in Table 4, the largest correlations 
are on the diagonal, as would be expected if the extracted 
factors were related to the generating factors. However, 

there is considerable off-diagonal variance, particularly for 
the extracted general factor and the generating specific fac-
tors. This indicates that the extracted factors contain a con-
siderable amount of variance related to all of the generating 
sources of variance. This is unlikely to be due to chance as 
the sample size for these simulations are large (i.e.,  
n = 2,000). Thus, although the source factors used to gener-
ate the simulated data were orthogonal, the resulting model 
factors were composites of multiple sources.

The results of evaluating variations on the structural 
model presented in Table 2-2 of the WJ-III test manual on 
two samples from the standardization data (McGrew & 
Woodcock, 2001) are presented in Table 5. The original 
model was compared with models that used the same spe-
cific factors but dealt with the general factor either by 
allowing the specific factors to be correlated or by use of a 
bifactor model. As can be seen in Table 4, the bifactor model 

Table 3. Summary of Mean Values for the Various Fit Indices for Data Generated With a Bifactor Model.

Error n Model χ2 train CFI RMSEA SRMR AIC χ2 test

2× 200 Hier 345.548b 0.9616b 0.0378b 0.0600b 465.548b 368.773a

2× 200 Corr 338.480b 0.9649b 0.0358b 0.0572b 458.480b 389.167b

2× 200 Bi-F 279.870a 0.9846a 0.0221a 0.0440a 429.870a 353.653a

2× 2,000 Hier 721.82b 0.9780b 0.0291b 0.0378b 841.82b 776.93b

2× 2,000 Corr 714.78b 0.9784b 0.0288b 0.0373b 834.78b 796.41b

2× 2,000 Bi-F 264.64a 0.9990a 0.0052a 0.0139a 414.64a 365.57a

4× 200 Hier 309.830c 0.9097c 0.0276b 0.0602c 429.830b 332.325a

4× 200 Corr 302.310b 0.9229b 0.0252ab 0.0586b 422.310a 352.342b

4× 200 Bi-F 279.447a 0.9380a 0.0222a 0.0553a 429.448b 356.843b

4× 2,000 Hier 354.072b 0.9812b 0.0129b 0.0223b 474.072b 405.423b

4× 2,000 Corr 348.355b 0.9823b 0.0124b 0.0220b 468.355b 423.589b

4× 2,000 Bi-F 265.045a 0.9959a 0.0054a 0.0174a 415.045a 367.185a

Note. CFI = comparative fit index; SRMR = standardized root mean square residual; RMSEA = root mean square error; AIG = akaike information 
criterion; Bi-F = bifactor; Corr = correlated; Hier = hierarchical. Means with the same superscript are not different.

Table 2. Summary of Mean Values for the Various Fit indices for Data Generated With a Hierarchical Model.

Error n Model χ2 train CFI RMSEA SRMR AIC χ2 test

2× 200 Hier 302.084c 0.9884b 0.0247b 0.0383c 422.084b 322.971a

2× 200 Corr 295.154b 0.9904a 0.0221a 0.0357b 415.154a 342.828b

2× 200 Bi-F 281.395a 0.9898a 0.0228ab 0.0331a 431.396c 351.823b

2× 2,000 Hier 285.306c 0.9988 0.0057b 0.0124c 405.306b 331.578a

2× 2,000 Corr 278.021b 0.9995 0.0043a 0.0115b 398.021a 351.078b

2× 2,000 Bi-F 263.956a 0.9994 0.0049ab 0.0106a 413.956c 362.820c

4× 200 Hier 302.689c 0.9612b 0.0246b 0.0518c 422.689b 323.878a

4× 200 Corr 295.257b 0.9676a 0.0218a 0.0506b 415.257a 343.534b

4× 200 Bi-F 280.739a 0.9677a 0.0228a 0.0486a 430.739c 355.523c

4× 2,000 Hier 287.609c 0.9969b 0.0057b 0.0166c 407.609b 332.497a

4× 2,000 Corr 281.734b 0.9977ab 0.0050a 0.0163b 401.734a 350.582b

4× 2,000 Bi-F 264.606a 0.9979a 0.0049a 0.0153a 414.606c 365.109c

Note. CFI = comparative fit index; SRMR = standardized root mean square residual; RMSEA = root mean square error; AIG = akaike information 
criterion; Bi-F = bifactor; Corr = correlated; Hier = hierarchical. Means with the same superscript are not different.
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provided the best fit considering all fit indices as well as 
with cross-validation.

The results of evaluating variations on the model derived 
from Table 7 in Dombrowski and Watkins (2013) are pre-
sented in Table 6. Again, the original model was compared 
with models that used the same specific factors but dealt 
with the general factor either by allowing the specific fac-
tors to be correlated or by use of a bifactor model. As can be 
seen in Table 4, the bifactor model provided the best fit for 
all fit indices and for the cross-validation data.

Table 7 presents the bifactor models from Tables 5 and 
6 along with models that consist of either just the general 
factor or just the five specific factors. Based on a com-
parison with the null model, the amount of shared and 
unique variance accounted for by each model is also pre-
sented in Table 7. For the models based on Table 2-2 of 
the WJ-III manual, the five specific factors alone account 
for more variance than the single general factor alone. 
This is true for both training and test sets. For the models 
based on Table 5 of Dombrowski and Watkins (2013), the 
single general factor alone accounts for more variance 

than the five specific factors alone. This is true for both 
training and test sets. For both training and test data sets, 
there is a large component that is shared. Indeed, the 
shared component is larger than either of the unique com-
ponents in both test data sets. This is analogous to regres-
sion problems where correlated predictors result in a 
situation where assigning the shared variance to specific 
variables is ambiguous and requires assumptions about 
causality (Overall & Spiegel, 1969).

Discussion

Simulation results showed that cross-validation with an 
independent data set was more successful in identifying the 
model that was used to generate test scores than were sev-
eral fit indices. An exception is the case for complex models 
that are evaluated with small samples. Evaluation of two 
different partitions of the WJ-III test battery showed that 
bifactor models provided better fit than hierarchical or cor-
related factor models. This was true considering both fit 
indices and cross-validation. General and specific factors 

Table 4. Average Correlations of Generative Variables (Sg and S1 Through S5) With Factor Scores Obtained From the Structural 
Models (Fg and F1 Through F5). (Bifactor, n = 2,000, e = 4×).

Sg S1 S2 S3 S4 S5

Fg 0.8120 0.1874 0.2067 0.2352 0.2206 0.1597
F1 0.1285 0.5859 0.0973 0.0994 0.0900 0.0479
F2 0.1607 0.0772 0.5776 0.0823 0.1010 0.0632
F3 0.1454 0.0863 0.0972 0.5493 0.0939 0.0685
F4 0.1667 0.0844 0.0841 0.0892 0.5882 0.0798
F5 0.1185 0.0525 0.1078 0.0830 0.0651 0.6334

Table 5. WJ-III Models Trained on 16- to 19-Year Data and Generalized to 20- to 39-Year Data.

Model df χ2 GFI AGFI RMSEA Generalized χ2 Generalized GFI

WJ-III 155 1132.1320 0.9210 0.8930 0.0697 1486.4009 0.8776
WJ-III correlated 148 1026.5278 0.9282 0.8981 0.0676 1326.4369 0.8917
WJ-III bifactor 149 809.3914 0.9405 0.9161 0.0548 1278.9827 0.8921

Note. WJ-III = Woodcock–Johnson-III; df = degrees of freedom; GFI = goodness-of-fit index; AGFI = adjusted goodness-of-fit index; RMSEA = root 
mean square error. WJ-III model is from manual.

Table 6. Variations on the Model Derived From Table 5 in Dombrowski and Watkins (2013) Trained on 16- to 19-Year Data and 
Generalized to 20- to 39-Year Data From the WJ-III Standardization Sample.

Model df χ2 GFI AGFI RMSEA Generalized χ2 Generalized GFI

Dombrowski higher order 264 3866.1714 0.8098 0.7659 0.0997 4106.5324 0.7684
Dombrowski correlated 264 3823.8530 0.8131 0.7699 0.1019 4123.2148 0.7641
Dombrowski bifactor 249 2641.0400 0.8524 0.8073 0.0860 2795.9331 0.8216

Note. WJ-III = Woodcock–Johnson-III; df = degrees of freedom; GFI = goodness-of-fit index; AGFI = adjusted goodness-of-fit index; RMSEA = root 
mean square error. WJ-III model is from manual.
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shared a considerable amount of variance as evaluated by 
using the bifactor models to partition variance.

In the present study, models were compared in terms of 
generalization of the parameters estimated from the 14- to 
19-year old samples to the 20- to 39-year old sample. This 
represents what Mosier (1951) referred to as validity gener-
alization since the new samples represent different popula-
tions rather than simply an additional sample from the same 
population. The generalization of the bifactor models to 
data from a new population provides strong evidence that 
the superior fit of these models is not due to overfitting. In 
addition, models that generalize more broadly are arguably 
more useful.

Murray and Johnson (2013) have suggested that there is 
an inherent statistical bias that favors the bifactor model 
over hierarchical models when considering only fit indices. 
They base this conclusion in part on the fact that bifactor 
models have more degrees of freedom with which to fit 
“unmodeled complexity.” Murray and Johnson (2013) also 
present the results of simulations that support this conclu-
sion. However, they only evaluated simulations based on 
data generated by hierarchical models. Murray and Johnson 
(2013) suggest that unmodeled complexity is due to the fact 
that psychometric models of human cognitive ability repre-
sent simplifications of its true structure. They further sug-
gest that although this unmodeled complexity may be large, 
any one aspect of it may be too small to merit inclusion in 
the model, or it may be due to sampling fluctuations that 
give rise to chance intercorrelations. The issues discussed 
by Murray and Johnson (2013) involve both theoretical 
considerations and statistical methodology. The theoretical 
issues are debatable, such as whether models of human abil-
ities should be viewed as “correct” or simply useful (e.g., 
McFarland, 2014). The statistical issue of overfitting due to 
capitalization of chance variance can be dealt with by cross-
validation. As shown in the present series of simulations, 
given a large sample size, cross-validation can identify the 
best model. Indeed, with small sample sizes there may at 
times be a bias against complexity (Cudeck & Henly, 1991). 
This is illustrated by the results from the present study 

where data generated using a bifactor model was better 
accounted for by a hierarchical model in simulations with 
the smaller sample size.

The view that a single general factor is the major contri-
bution to cognitive test scores is based in part on the results 
of factor analysis (Canivez, 2013; Dombrowski & Watkins, 
2013). As shown in the present study, based on the bifactor 
model, there is considerable overlap in the variance that can 
be accounted for by a general factor and several specific 
factors. Assigning this common variance to either the gen-
eral factor or the specific factors requires adoption of some 
model that has causal implications. The issue of common 
predicted variance in structural modeling is analogous to 
the problem of collinear predictors in multiple regression. 
Hale, Fiorello, Kavanagh, Holdnack, and Aloe (2007) have 
shown that the order of entry of correlated variables in hier-
archical regression has a marked effect on the assignment of 
variance to general and specific factors in predicting 
achievement from tests of abilities. They suggest entering 
specific factors first. Based on the principal of parsimony, 
Canivez (2013) rejected this suggestion and considered an 
alternative that assigns the maximum amount of shared 
variance to a general factor. However, parsimony is not the 
only issue to consider since more complex models may be 
appropriate if they have greater utility. Partitioning the vari-
ance predicted by correlated variables is problematic, par-
ticularly when, as in the Hale et al. (2007) case, the Wechsler 
Intelligence Scale for Children–Fourth edition general fac-
tor is a weighted composite of the four specific factors. One 
advantage of the bifactor model in such cases is that the 
general and specific factors can be modeled with factor cor-
relations set to zero (as was done in the present study). 
Thus, use of factor scores derived from bifactor models to 
predict achievement should be less affected by problems of 
collinearity.

It is a common practice to adjust or control for general 
abilities when evaluating measures of specific abilities. For 
example, Vugs et al. (2013) included only studies using sub-
jects with normal nonverbal intelligence in a meta-analysis of 
the effects of visual working memory on specific language 

Table 7. Bifactor Decomposition.

Model WJ-III train WJ-III test Dombrowski train Dombrowski test

NULL 12071.2177 12951.4009 25345.9122 23653.0977
Bifactor 809.3914 1278.9827 2641.0400 2795.9331
One General 4150.6537 4596.0680 8937.6412 8881.5995
Five Specific 4616.1208 5145.9108 6827.5445 6689.7358
General alone 3806.7294 3866.9281 4186.5045 3893.8027
Specific alone 3341.2623 3317.0853 6296.6012 6085.6664
Shared 2495.0518 4488.4048 12221.7665 10877.6955

Note. WJ-III = Woodcock–Johnson-III. One General is the difference between the full bifactor model and the general factor omitted. Five Specific is the 
difference between the full bifactor model and the 5 specific factors omitted. Shared is the difference between the NULL model and the bifactor model 
less the independent effects of the 1 and 5 factors.
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impairment. Vaessen, Gerretsen, and Blomert (2009) 
included verbal IQ scores in a hierarchical regression step 
prior to evaluating the effects of phonological awareness and 
rapid automatized naming on reading and spelling. Procedures 
such as these are based on the assumption that the variance 
accounted for by tests of specific abilities should make a con-
tribution beyond that accounted for by general abilities. 
However, this view is by no means universal (e.g., Cahan, 
Fono, & Nirel, 2012; Siegel, 2003).

Using simulations, McFarland (2014) showed that 
cases selected on the basis of low true scores on a specific 
factor could appear to differ mainly on a general factor 
derived from factor analysis when used in hierarchical 
regression. This is due to the fact that the criterion for 
optimizing the weights of the first principal component is 
to maximize the amount of covariance accounted for, 
rather than to detect the “true” structure of individual dif-
ferences. As a result, the first principal component may 
actually contain covariance that was generated by spe-
cific factors (McFarland, 2014). This sort of problem in 
the interpretation of factor analysis has been known for a 
long time (e.g., Overall, 1964). The results presented in 
Table 4 of the current study likewise suggest that factors 
may contain heterogeneous sources of variance. While 
any such result depends on methodology used for factor 
extraction, they do indicate cause for caution in the inter-
pretation of factors.

The results of simulations do not prove that certain 
models are true, they only point to possibilities. Simulations 
based on the premise that most of the variance in test 
scores is due to a general factor show that principal com-
ponents produces the correct result (e.g., Velicer & Fava, 
1998). Simulations based on other assumptions show that 
principal components may not always produce a good 
result (e.g., McFarland, 2012, 2014). The present simula-
tion results also provide some useful suggestions concern-
ing methodology. They show that simple models may have 
an advantage over more complex models when sample 
sizes are small. This may be the case even when the more 
complex model is in fact the true model (i.e., results for 
the large error, small sample size condition in Table 3). 
The present simulation results also show that cross-valida-
tion to new data provides a useful way of evaluating alter-
native models. Although cross-validation has been 
recommended for use in structural equation modeling 
(Browne & Cudeck, 1993; MacCallum et al., 1992) and is 
commonly used in the machine learning community 
(Efron & Gong, 1983), it has received very little attention 
in the psychometric literature. There has been a plethora 
of suggestions for the use of various fit indices that adjust 
for model complexity (e.g., Yuan & Bentler, 1998). Fit 
indices suffer from the problem of determining the trade-
off between goodness-of-fit and complexity. Cross-
validation provides a solution to this problem, provided 

the sample size is sufficient. Furthermore, cross-validation 
provides a means of determining generalizability to sam-
ples that differ from the original training sample.

The results of the present study suggest that there is a 
certain degree of ambiguity in determining the exact amount 
of covariance in test performance accounted for by general 
and specific factors. Since general and specific factors are 
independent in bifactor models, it was possible to evaluate 
the unique contribution of each (Table 7). The results show 
that there is considerable covariance that is not unique to 
either. This issue cannot be resolved solely by analysis of 
the covariance structure of test performance. Other sources 
of information are required, such as that provided by genet-
ics, neurophysiology, and utility in predicting prognosis and 
response to treatment.

Utility in predicting prognosis or treatment response 
might vary with the nature of the constructs that serve as 
predictors as well as those that are predicted. For example, 
if the purpose is to predict prognosis or response to treat-
ment for a specific learning problem, then a construct 
related to a specific ability might be most appropriate. For 
example, Taub, Floyd, Keith, and McGrew (2008) exam-
ined the prediction of mathematics achievement by WJ-III 
cognitive abilities using covariance structural modeling. 
After sequentially eliminating nonsignificant paths between 
abilities and achievement, they found that fluid reasoning, 
crystalized intelligence, and processing speed remained as 
predictors. In contrast, prediction of prognosis related to 
broad areas of functioning or for which there are a limited 
number of validity studies available might best employ a 
more general construct. For example, Strenze (2007) con-
ducted a meta-analysis of studies relating intelligence to 
socioeconomic success and found a positive association 
between the two. In this case, the heterogeneity of indica-
tors might make it difficult to model specific abilities so 
that a general ability construct might be more useful. This 
could be so even if the general construct actually is a com-
posite of several specific abilities.

The ultimate test of utility should be actual empirical 
findings on the validity of the constructs in question. 
Evidence for the validity of a construct should not be lim-
ited to factor analysis of tests purported to measure that 
construct as this evidence is model-dependent. Assertions 
that interpretation of cognitive test batteries should be 
made primarily on the basis of full-scale scores (Canivez, 
2013; Watkins & Beaujean, 2014) are based on specific 
measurement models that have not been compared with 
other possible alternatives. Furthermore, evaluating the 
validity of constructs requires relating these to measures 
of the specific target attributes that are to be predicted. 
Thus, sweeping generalizations about the use of test bat-
teries such as the WJ-III are probably not warranted. 
Rather consideration of evidence for each specific appli-
cation is probably more advisable.
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