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a b s t r a c t

Brain–machine interfaces (BMIs) aim to translate the motor intent of locked-in patients into
neuroprosthetic control commands. Electrocorticographical (ECoG) signals provide promising neural
inputs to BMIs as shown in recent studies. In this paper, we utilize a broadband spectrum above the
fast gamma ranges and systematically study the role of spectral resolution, in which the broadband is
partitioned, on the reconstruction of the patients’ hand trajectories. Traditionally, the power of ECoG
rhythms (<200–300 Hz) has been computed in short duration bins and instantaneously and linearly
mapped to cursor trajectories. Neither time embedding, nor nonlinear mappings have been previously
implemented in ECoG neuroprosthesis. Herein, mapping of neural modulations to goal-oriented motor
behavior is achieved via linear adaptive filters with embedded memory depths and as a novelty
through echo state networks (ESNs), which provide nonlinear mappings without compromising training
complexity or increasing the number of model parameters, with up to 85% correlation. Reconstructed
hand trajectories are analyzed through spatial, spectral and temporal sensitivities. The superiority of
nonlinear mappings in the cases of low spectral resolution and abundance of interictal activity is
discussed.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Collected through subdural electrode grids, ECoG signals are the
cumulative sum of dendritic activity and postsynaptic potentials
from synchronized sources with finer spatial resolution and higher
signal-to-noise ratios compared to EEG recordings (Leuthardt,
Schalk, Moran, & Ojemann, 2006). Most importantly, ECoG signals
yield much broader spectra since the electrode grids are below
the skull and scalp media which act as lowpass filters in EEG
recording techniques (Nunez & Srinivasan, 2005). However, this
advantage of ECoG over EEG has not been exploited in previous
ECoG BMI studies as the clinical recording systems employed
were designed for the collection of EEG at low sampling rates
(<1 kHz). Unlike the implantation of intracortical microelectrode
arrays, which are restricted to limited cases in human subjects
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(Donoghue, Nurmikko, Black, & Hochberg, 2007; Hochberg et al.,
2006; Kennedy, Kirby, Moore, King, & Mallory, 2004), ECoG
has been used extensively in the localization and resection of
epileptogenic focus of humans for decades (Leuthardt et al., 2006).
Electrocorticography (ECoG) provides an intermediate level of

brain activity between intracortical and scalp (EEG) recordings, and
its potential as a BMI input signal has been demonstrated through
hand movement classification (Chin et al., 2007), hand direction
classification (Mehring et al., 2004), and one-dimensional hand
trajectory prediction (Felton, Wilson, Williams, & Garell, 2007;
Leuthardt, Schalk, Wolpaw, Ojemann, & Moran, 2004). ECoG BMIs
that decode two-dimensional hand trajectories have not emerged
until recently due to the many clinical and signal processing
(feature extraction and translation) challenges involved. ECoG
is the spatiotemporal smoothed sum of dendritic activity from
millions of neurons over a pial surface of 1–1.5 cm2 (Freeman,
2006) and thus many of the feature extraction issues arise from
the fact that motor encoding with ECoG is not as straightforward
as firing rates of single unit activities.
Since ECoG signals represent a diverse set of cortical rhythms,

spectral analysis is typically the first level method used to derive
control signals for a neuroprosthesis. For the reconstruction of
movement trajectories there are still many unknown aspects
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of which bands in the available ECoG spectrum are the most
relevant for control. Schalk et al. (2007) studiedmovement-related
spectral changes in seven frequency bands from 8 Hz to 190 Hz,
and amplitude changes in moving averages in raw ECoG in 333
ms windows (yielding a total of 8 features per 64 channels)
and mapped linearly to two-dimensional trajectories with no
further memory depth. The correlation coefficients between the
kinematics and the model outputs for in five cross-validation folds
were between [0.50, 0.81] (with a median of 0.71) and [0.18, 0.80]
(with a median of median 0.51) for the subject with the highest
performance. The sensitive areas were found to be the motor
and pre-motor cortices (Brodmann areas 4 and 6). Pistohl, Ball,
Schulze-Bonhage, Aertsen, and Mehring (2008) lowpass filtered
ECoG signals whichwere already recorded at low sampling rates of
256 Hz or 1024 Hz with 0.75 s windows of Savitsky–Golay filters.
The smoothed signals from all channels formed the measurement
vector at time (t − τ) and the hand kinematics at time t formed
the state vector to be used in a Kalman filter (the optimal value of
τ was found empirically to be 125 ms). Across all trials correlation
coefficients of 0.40±0.1 were attained with two patients that had
coverage over the motor area. In neither of these two-dimensional
studies is the broadband characteristics of ECoG utilized beyond
the fast gamma range, nor have nonlinear translation functions
have been employed. Moreover, time embedding is only facilitated
by the window sizes in which the feature vectors are computed.
However, in animal studies memory depths up to 1 s into the past
have been utilized (Carmena et al., 2003; Wessberg et al., 2000).
In previous studies, we had utilized the broader spectra of

ECoG over EEG and shown presence of motor features in ECoG
recordings from patients tracing two-dimensional trajectories up
to 6 kHz through reconstructed trajectories in coarse spectral
ranges (1–60 Hz, 60–100 Hz, 100–300 Hz, 300 Hz–6 kHz) (Gun-
duz, Ozturk, Sanchez, & Principe, 2007; Sanchez, Gunduz, Car-
ney, & Principe, 2008), as well as in exploratory studies with finer
spectral decomposition (Gunduz, Sanchez, Carney, & Principe, in
preparation). The results of these studies indicated that there is
a sophisticated performance relationship between the total spec-
tral bandwidth, resolution of spectral decomposition used for ex-
tracting control features, and the choice of decoding model (linear
or nonlinear) for translating features into control commands. For
BMIs high-dimensional multiple-input–multiple-output (MIMO)
systems are common and one must balance the number of model
parameters and the optimization of the projection from neural ac-
tivity to behavior. Utilizing broad spectra and embedding more
time samples undoubtedly increases the number of model pa-
rameters. In this paper, we empirically investigate the optimal
ECoG spectral ranges and spectral resolution (number of spectral
bands and their bandwidths) and translation topologies for re-
constructing two-dimensional hand trajectories. Our overall goal
is to find modulations in the minimal configuration of spectral
bands, memory depths on the feature extraction end and the sim-
plest model architectures that could be implemented for real-time
applications.
Optimal spectral resolution in the broad spectrum and optimal

memory depths are found empirically by adaptive linear models
such as Wiener filters (Haykin, 2001), normalized least mean
squares (Haykin, 2001) and gamma filters (Principe, Vries, &
Oliveira, 1993) with tap delay lines (TDLs). These three types of
linear filter provide a simple analytic solution, online feasibility
while compensating for system nonstationarities and decreased
number of model parameters without compromising memory
depth, respectively. Although linear filters have well established,
in low-complexity training methodologies, the reconstructed
trajectories may be suboptimal since the output is limited to
mappings in the input space and the intrinsic neurophysiological
mapping of control features to motor behavior may involve
Table 1
Motor response to electrical stimulation of subdural grids.

Patient 1 Patient 2

Right hand 22, 28 Right hand 2,3
Right wrist 23, 24, 30 Right arm 14, 15
Right forearm 22, 30
Right bicep 29
Right sensory arm 27

nonlinear translations (Gunduz et al., 2007). Again in our
preliminary studies with low spectral resolution, we reported
higher performance results in reconstruction of two-dimensional
trajectories with nonlinear projections (Gunduz et al., 2007).
Therefore, herein, we also study modeling hand movements
from spectral ECoG features using artificial neural networks,
specifically echo state networks (ESNs) (Jaeger, 2001) and leaky
echo state networks (Rao et al., 2005). These neural networks
were chosen over time-delay neural networks (TDNNs) due
to the reduced number of parameters by embedding memory
through recurrencies. Moreover, ESNs have training complexities
equivalent toWiener filters which do not require backpropagation
through time. Performance of the linear and nonlinear filters are
compared based on reconstructionmetrics, spectral resolution and
presence of interictal artifacts.

2. Materials

The subjects volunteering in the behavioral experiments were
being monitored for the treatment of intractable complex partial
epilepsy at Shands Hospital at the University of Florida. Patient
1 was implanted with a 6 × 6 subdural grid and Patient 2 was
implanted with a 4×8 grid, both over left fronto-temporal regions
covering the PMd, M1, PP motor cortices. The grids consisted of
a 1.5 mm thick silastic sheet embedded with platinum-iridium
electrodes of 4 mm diameter, 2.3 mm diameter exposed surface
and 1 cm center-to-center distances. Electrical stimulation of
the subdural grids (Uematsu et al., 1992) further guided the
localization of the primary motor cortex (for further details see
Sanchez et al. (2008)). Motor responses from the stimulation,
using the enumeration convention in Fig. 1 are provided in
Table 1. Both patients executed the tasks with their right hands.
The experimental paradigms were approved by the University of
Florida Institutional Review Board.1
For our behavioral experiments, a separate 32 channel system2

capable of recording ECoG at a sampling rate of 12 kHz and 16 bits
of resolution was set up due to the limited bandwidth of the
system available in the clinic for epilepsy monitoring. The desired
behavioral trajectories were generated by a desktop computer
running Matlab v7 which communicated with a bank of DSPs
(Tucker–Davis Pentusa base-station) processing the amplified
ECoG signals. The desired trajectories were sent to a second
computer monitor placed in front of the patients. Behavioral
trajectory recordings were also stored with a shared time clock on
the Pentusa system. (For further details on the signal acquisition
system please refer to Gunduz et al. (in preparation).)
Patients were asked to trace a predefined cursor trajectory

presented on an LCD screen with an active area of 20 ×
30 cm with their right index finger. Snapshots of the screen as
observed by the patients during experimentation are presented
in Fig. 2. The paradigm consists of a center-out cursor control
task (Georgopoulus, Kalaska, Caminiti, & Massey, 1982) and a

1 http://irb.ufl.edu/.
2 Activity from electrodes 33–36 of the implanted 6 × 6 grids of Patient 1 were
not recorded.

http://irb.ufl.edu/
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Fig. 1. Motor responses to electrical stimulation superimposed on the subdural electrode grids implanted in Patient 1 (on the left) and Patient 2 (on the right) with the
central sulcus as reference.
Fig. 2. Behavioral trajectories on a 20× 30 cm screen. Center-out trajectory is shown on the left and the target selection task is shown on the right.
Table 2
ECoG spectral frequency bands.

Spectral bands with n = 32 (Hz) n = 16 (Hz) n = 8 (Hz)

8–10 8–12 8–18
10–12
12–15 12–18
15–18
18–23 18–28 18–42
23–28
28–34 28–42
34–42
42–52 42–63 42–96
52–63
63–88 63–106
88–96
96–118 96–145 96–219
118–145
145–178 145–219
178–219
219–270 219–331 219–501
270–331
331–408 331–501
408–501
501–616 501–758 501–1147
616–758
758–932 758–1147
932–1147
1147–1410 1147–1734 1147–2623
1410–1734
1734–2133 1734–2623
2133–2623
2623–3226 2623–3967 2623–6110
3226–3967
3967–4879 3967–6110
4879–6110

target selection task (Desmurget, Pelisson, Rossetti, & Prablanc,
1998) repeated consecutively five times. These behaviors mimic a
computer user’s selection of an icon on the screen. All behavioral
tasks were acquired concurrently with the ECoG activity and
further downsampled to 10 Hz.
3. Methods

For a systematic analysis, the broadband spectrum is decom-
posed into non-overlapping intervals of equal bandwidth in the
logarithmic frequency domain through a bank of constant-Q filters
which yield narrow bandwidths for slower central frequencies and
wider passbands for faster central frequencies, mimicking natural
brain rhythms. The time-frequency domain properties of constant-
Q filters, for example, yield a reasonable model for cochlear pre-
processing (Smaragdis, 2001). The logarithmic spectral range from
8 Hz to 6 kHz is uniformly divided into n = 32, 16, 8 bands as
shown in Table 2 for empirical spectral resolution analysis (see
Gunduz et al. (in preparation) for details on the selection of the
number of passbands and Q -filter parameters). The modulation
of ECoG components related to movement can be captured by
the power of bandpass filtered ECoG signals computed in non-
overlapping 100 ms time bins as follows:

xkj (tn) =
∫ tn+1

tn
V 2j,k(t)dt (1)

where Vj,k is the filtered ECoG amplitude signal in frequency band
k on channel j, and tn+1 = tn + 100 ms. The ECoG features are
labeled as xkj (t), where j = 1, 2, . . . , 32 indicates the electrode
number as given in Fig. 1. For a systematic study of these features
through event-related spectral, crosscorrelation, tuning and source
separation analyses, please refer to Gunduz et al. (in preparation).
In the following subsections we describe in detail how the

linear and nonlinear filters were implemented as well as the why
these filters were chosen in particular. Sensitivity analysis, or the
contribution of the spatial and spectral features, are provided and
discussed for all filters along with the performance results. The
improved performance is tested by taking the Wiener filter with
the fewest number of spectral bands andmemory depth resolution
as a basis.
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3.1. Linear mapping

We design linear models to map the extracted features from
ECoG recordings to the position of the cursor on the screen which
the patients are tracing with their right index fingers. The desired
signals, donated by dX (t) and dY (t), are the horizontal (x-axis) and
vertical (y-axis) positions of the cursor (and thus the position of the
right index finger of the patient) on the 20×30 cmdisplaywith the
origin of the coordinate system at the center of the screen. Finally,
the model outputs are given by yX (t) and yY (t).
With adaptive linear filters the hand/cursor position at any

given time is modeled through a function of the short-term history
of the ECoG signal. Such a dynamical model requires a systemwith
sufficientmemory for a proper functionalmapping from the neural
modulations to the motor output. With the addition of tap delay
lines (TDLs) at each channel, the number of filter parameters (the
size of the weight matrix) becomes the product of the number of
channels, M = 32, the number of output dimensions, C = 2, and
the memory depth of the TDL, L, which is determined empirically.
The TDL outputs are translated into the cursor coordinate system
by means of the weight matrix, w, and linear combiners. This
operation is mathematically described below:

yc(t) =
n∑
k=1

L−1∑
i=0

M∑
j=1

xkj (t − i)w
k
c(i, j)+ b

k
c (2)

where c denotes one of the two output dimensions (horizontal,
X- or vertical, Y-), wkc(i, j) is the (i, j)th entry of the weight matrix
mapping activity in the kth band to the cth dimension and bkc is the
estimation bias of the model which can be dropped if the inputs
and desired signal are centered around their mean (Kim et al.,
2006).
First, we employ a Wiener filter with ridge regression (Kim,

2005). The Wiener–Hopf equation (Haykin, 2001) is the analytical
solution for minimization of the mean-squared error:

wc = (R+ δI)−1 · Pc (3)

where Pc is the L × 1 crosscorrelation vector between the ECoG
activity and the trajectory in the cth dimension and R is the
autocorrelation matrix of all ECoG activity, composed of L × L
correlation matrices between each feature (channel power in a
certain band) with the autocorrelation matrices of the individual
features aligned at the diagonal in blocks and is not necessarily
symmetric. Hence, with inadequate data lengths or noisy data,
R may be estimated poorly and be close to singular with very
high condition numbers (highly correlated input channels may
especially cause the weight matrix to have an artificially large
variance). δ is the ridge regression regularization term which
conditions the inverse and is equivalent to solving a constrained
least squares, i.e. minimizing theMSEwith the constraint: ‖w‖2 ≤
ρ. Practically, δ is selected by a desirable value for the input signal-
to-noise ratio (SNR) estimated by:

SNR ≈
tr[R]
δ
. (4)

We set the desired SNR to 30 dB and empirically compute the trace
of the covariance matrix and determine δ (Kim, 2005).
The Wiener filter provides the optimal analytic solution for

stationary systems, however, the brain is a nonstationary dynamic
system that generates different neural responses to the same
stimulus. Normalized least mean squares (NLMS) is an online
gradient descent algorithm which minimizes the instantaneous
squared error, e2(n), at a rate normalized by the power in the input
u(t) y(t)z–1μ

1–μ

Σ

Fig. 3. The leaky integrator.
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Fig. 4. Block diagram representation of a general linear filter. The gamma filter is
implemented by substituting the leaky integrator in the transfer functions, G(z).
Note that G(z) = z−1 reduces the structure to a tap-delay-line.

tap vector in order to contend with this problem (Haykin, 2001).
The weight updates are formalized as:

w(n+ 1) = w(n)+
η

M∑
j=1

∥∥xj(n)∥∥2 + γ e(n)x(n) (5)

where xj(n) =
[
xj(n) xj(n− 1) · · · xj(n− L+ 1)

]
is the

input tap vector at channel j and η is the learning rate or step size
which adjusts the speed of convergence of the algorithm. γ is a
small constant which prevents divergence in case of very small
input signals.
As in the case with Wiener filters, the NLMS weights can have

high variance due to correlated input channels. NLMS with weight
decay aims to lower weight variance by placing an upper bound
on the sum of weight magnitudes. The gradient descent update
equation for the weights then becomes:

w(n+ 1) = w(n)+
η

M∑
j=1

∥∥xj(n)∥∥2 + γ e(n)x(n)− δw(n). (6)

All threemodels thus far, are finite impulse response filters and
their memory depths are coupled to the filter orders. For example,
for L taps, M channels, n bands, and C output dimensions would
require L×M×n×C parameters. The final linear filter we adopt is
the gamma filter which decouples memory depth from filter order
with restricted feedback (Principe et al., 1993). In other words,
equal memory depths can be achieved with fewer model weights
through leaky integrators depicted in Fig. 3 with the following
transfer function:

G(z) =
µ

z − (1− µ)
(7)

where (1−µ) is the gain in the feedback loop. The memory depth
of a gamma filter is DK = K

µ
(i.e. can be adjusted by varyingµ). The

system equations for the variable shown in 4 are as follows:

Y (z) =
K∑
k=0

wkXk(z) (8)

Xk(z) = G(z)Xk−1(z), k = 1, 2, . . . , K
X0(z) = X(z), k = 1, 2, . . . , K
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Table 3
Filter performance comparisons for Patient 1.

n Filter L # of param. rX rY MSEX MSEY

32 Wiener 8 8192 0.49± 0.15 0.86± 0.11 0.94± 0.64 0.36± 0.18
NLMS 14 14336 (+1) 0.55± 0.21 0.87± 0.17 0.83± 0.50 0.34± 0.20
Weight decay 14 14336 (+3) 0.45± 0.19 0.87± 0.14 0.85± 0.56 0.36± 0.15
Gamma 8 8192 (+1) 0.33± 0.29 0.81± 0.22 0.82± 0.46 0.31± 0.16

16 Wiener 14 7168 0.55± 0.21 0.87± 0.17 0.83± 0.50 0.34± 0.20
NLMS 25 12800 (+1) 0.64± 0.19 0.82± 0.25 0.81± 0.43 0.34± 0.24
Weight decay 25 12800 (+3) 0.63± 0.21 0.80± 0.29 0.87± 0.59 0.36± 0.23
Gamma 8 4096 (+1) 0.37± 0.31 0.81± 0.23 0.82± 0.38 0.34± 0.18

8 Wiener 8 2048 0.52± 0.25 0.87± 0.18 0.84± 0.58 0.36± 0.23
NLMS 8 2048 (+1) 0.52± 0.25 0.86± 0.18 0.86± 0.59 0.35± 0.26
Weight decay 8 2048 (+3) 0.44± 0.23 0.87± 0.21 0.90± 0.64 0.39± 0.22
Gamma 8 2048 (+1) 0.37± 0.22 0.80± 0.27 0.84± 0.47 0.35± 0.23
Table 4
Filter performance comparisons for Patient 2.

n Filter L # of param. rX rY MSEX MSEY

32 Wiener 8 8192 0.40± 0.21 0.65± 0.21 1.09± 1.12 0.67± 0.27
NLMS 14 14336 (+1) 0.52± 0.20 0.77± 0.16 1.07± 0.94 0.63± 0.30
Weight decay 14 14336 (+3) 0.53± 0.21 0.77± 0.16 1.05± 0.95 0.66± 0.29
Gamma 8 8192 (+1) 0.54± 0.31 0.76± 0.25 1.15± 1.27 0.59± 0.22

16 Wiener 14 7168 0.47± 0.22 0.78± 0.15 1.08± 0.99 0.64± 0.26
NLMS 14 7168 (+1) 0.51± 0.22 0.77± 0.16 1.07± 0.92 0.58± 0.26
Weight decay 14 7168(+3) 0.58± 0.23 0.77± 0.19 1.01± 0.95 0.67± 0.26
Gamma 8 4096 (+1) 0.54± 0.31 0.76± 0.25 1.15± 1.27 0.59± 0.22

8 Wiener 8 2048 0.56± 0.21 0.76± 0.28 0.98± 1.01 0.65± 0.22
NLMS 25 6400 (+1) 0.52± 0.22 0.71± 0.24 0.99± 0.93 0.63± 0.23
Weight decay 25 6400 (+3) 0.53± 0.22 0.71± 0.23 0.98± 0.98 0.59± 0.26
Gamma 8 2048 (+1) 0.59± 0.27 0.72± 0.26 0.95± 1.16 0.55± 0.24
which yield the following system transfer function:

H(z) =
Y (z)
X(z)

=

K∑
k=0

wk (G(z))k . (9)

The system is stable when the pole lies inside the unit circle, i.e. for
0 < µ < 2. For µ = 1 the system reduces to a tap delay line.
For µ < 1 additional memory depth is supplied for low frequency
components at the expense of thehigh frequency components. This
would be desirable in our filter design as the hand trajectories os-
cillate at low frequencies (refer to Gunduz et al. (in preparation)).

3.1.1. Comparison of linear filters
Patient 1 performed five trials of center-out task followed by

target selection in 3.87 min from which the first three trials is
used for training and the remaining trials are used for testing the
models. Patient 2 performed four trials in 4.65 min of which the
first 3.5 min were used in model training. The performance of the
models are quantified in each dimension (horizontal and vertical)
by Pearson’s r which indicates the degree of linear dependence
between the reconstructed and the actual hand trajectories, and
by the normalized mean squared error (MSE). Both of the above
measures are computed over non-overlappingwindows of 20 s and
themean and standard deviations of thesemeasures on the test set
are reported as the performance statistics.
Over four choices of linear filters, three choices of spectral

resolution and memory depths varying from 800 ms to 2.5 s,
t-tests with comparison to the lowest order Wiener filter3 did not
statistically identify the best combination, i.e. the performances
were found to be statistically equivalent, attributable to high
standard deviations in the performance metrics. For each filter the

3 A Wiener filter of order L = 8 in n = 8 spectral bands is the simplest linear
filter design.
performance results with the bestmean value and lowest standard
deviation are reported in Tables 3 and 4. The output trajectories of
the Wiener filters in Tables 3 and 4 are plotted in Figs. 5 and 6, for
Patients 1 and 2, respectively.

3.1.2. Sensitivity analysis
Given the wide spectrum of ECoG used in these studies and the

fine resolution of the decomposition, we seek to determine the
ranking of the important electrode locations and spectral bands
in terms of their contribution to behavior. To quantify the most
important control signals, a sensitivity analysis was performed
(Sanchez, Carmena, Lebedev, Nicolelis, & Harris, 2003). Themagni-
tude of weights corresponding to channels and spectral bands can
be used as a sensitivity measure since the outputs are directly re-
lated to the input taps through the weight function if themodeling
error is sufficiently small and is mathematically defined as:

Skj =
1
2L

∑
c=X,Y

L−1∑
i=0

|wkc(i, j)|. (10)

We further average the sensitivities across frequency bands (over
k) to attain spatial sensitivity and across electrode grids (over j) to
attain spectral sensitivity. These measures are presented in Figs. 7
and 8 for Patients 1 and 2, respectively. The spatial sensitivity of
the n = 32 bands is widespread with high localizations in the PMd
and M1 areas. Three of Patient 1’s M1 electrodes for which hand,
wrist, forearm and bicep responses to electrical stimulation were
observed are revealed to have high sensitivities.With Patient 2, the
M1 electrode for which a hand response was observed is identified
as sensitive.

3.2. Nonlinear mapping

ECoG is the sum of dendritic activity of many sources pro-
pagated to the subdural surface, those modulating the motor
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Fig. 5. Reconstructed trajectories from Wiener filters for Patient 1 (in blue)
projected on the cursor trajectories (in red) with (a) n = 32, (b) n = 16, (c) n = 8
bands. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

behavior and extraneous activity, as well as acquisition noise.
Therefore, with linear modeling, reconstructed trajectories are
restricted to be a combination of the motor control features and
irrelevant activity riding on them.With nonlinear translations, the
noise within ECoG BMI features and themotor control features can
be projected into different areas of the output space.
Time delay neural networks (TDNNs), the most common neural

architecture for dynamicalmodeling, have been used in BMI exper-
iments (Kim, 2005) and offer a nonlinear mapping through hidden
processing elements. However, the number of parameters of the
model scales the high dimensional input and thus creates prob-
lems with model generalization. Moreover, the size of the training
data required for good approximation increases with the number
of parameters. To overcome the problem of model order, recurrent
5 cm
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Fig. 6. Reconstructed trajectories from Wiener filters for Patient 2 (in blue)
projected on the cursor trajectories (in red) with (a) n = 32, (b) n = 16, (c) n = 8
bands. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

neural networks (RNNs) have been implemented in BMIs (Sanchez
et al., submitted for publication) as they employ only current data
samples and defer the memory structure to the hidden, recur-
rent layer instead of time-embedding. Various algorithms, such
as backpropagation through time and real-time recurrent learning
(Williams& Zipser, 1989), have been proposed to train RNNs; how-
ever, these algorithms suffer from computational complexity, re-
sulting in slow training and possibly instability (Haykin, 1998). For
real-time clinical applications, models of low order that are easy to
train with low memory requirements are desirable.

3.2.1. Echo state networks
For BMIs, the best compromise of training, computational

complexity, nonlinearity, and dynamics can be achieved by
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echo state networks (ESNs). ESNs are recurrent network (RNN)
paradigms which address the difficulties with RNN training
(Ozturk, Xu, & Principe, 2007). ESNs possess a large recurrent
topology of nonlinear processing elements (PEs) which constitutes
a ‘‘reservoir of rich dynamics’’ (Jaeger & Haas, 2004) and contain
information about the history of input and output patterns when
properly dimensioned (Jaeger, 2001). The outputs of these internal
PEs (the echo states) are fed to a memoryless but adaptive
readout network, which is generally linear, to produce the network
output. The advantageous property of ESN is that only the linear
memoryless readout is trained with a Wiener filter, whereas
the recurrent topology W has fixed connection weights. This
reduces the training complexity to simple linear regression while
preserving the recurrent topology. Moreover, by integrating leaky
neurons in the ESN structure, the memory depth of the system is
increased without increasing filter orders (Gunduz et al., 2007).
Fig. 9 depicts an ESN withM input channels, N internal PEs and

C = 2 output units. The input units, internal PEs, and output units
at time n are donated by u(n) =

[
u1(n) u2(n) · · · uM(n)

]
,

x(n) =
[
x1(n) x2(n) · · · xN(n)

]
, and y(n) =

[
yX (n) yY (n)

]
,

respectively. The weights are given by an N × M matrix Win
=

(winij ) for connections between the input and the states, by anN×N
matrix W = (wij) for connections between the PEs, by an L × N
matrixWout

= (woutij ) for connections from PEs to the output units,
by an N × L matrix Wback

= (wbackij ) for the connections that
project back from the output to the internal PEs, by an L×Mmatrix
Winout for connections from input units to output units, and by an
L× LmatrixWoutout for connections between output units (Jaeger,
2001). The activation of the internal PEs is updated according to:

x(n) = f (Winu(n)+Wx(n− 1)+Wbacky(n− 1)) (11)
where f = (f1, f2, . . . , fN) are the internal unit’s activation
functions.
Alternatively, each PE can be implementedwith a leaky integra-

tor neuron with leakage parameterµ, decay rate α and the follow-
ing update equation:
x(n) = (1− µα)x(n)+ µf (Winu(n)+Wx(n− 1)

+WbackyC (n− 1)). (12)
The leaky neuron implementation utilizes the gamma delay opera-
tor in the recurrencies and is particularly useful when larger mem-
ory depths are required. Herein, for the sake of simplicityWback is
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set to zero for both architectures. The output from the readout net-
work is computed according to:

yC (n) = f out(Wout
C x(n)+Winoutu(n)+Woutouty(n− 1)) (13)

where f out = (f out1 , f out2 , . . . , f outN ) are the output unit’s nonlin-
ear functions. Generally, the feedback loops fromoutput-to-output
and output-to-input are not connected and the readout is chosen
to be linear (i.e. f out is identity), in which case the optimal output
weight matrix,Wout

C , can computed using the Wiener solution.
Two basic reservoir properties have to be satisfied: the input

forgetting and state forgetting properties which state that the
reservoir must asymptotically forget the input history and the
initial state, respectively. It has been shown in Jaeger (2001) that
these two conditions are equivalent and both can be satisfied
through the echo state condition of the spectral radius4 of the
reservoir weight matrix being less than unity, i.e. ‖W‖ < 1.
This condition states that the dynamics of the ESN is uniquely
controlled by the recent input values and the effect of initial states

4 The spectral radius of a matrix is the largest magnitude of its eigenvalues.
Linear 
MapperWin

Winout Wback

Wback

Wout

Woutout

W

yY

yX

dY

d

Fig. 9. Block diagram of an Echo state network.

vanishes. For the leaky neuron case, it is required that ‖µW+ (1−
µα)W‖ be less than unity (Jaeger & Haas, 2004).
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Table 5
ESN performance results for Patient 1.

n N µ ‖W‖ c rX rY MSEX MSEY

32 500 0.4 0.9 0.01 0.33± 0.25 0.85± 0.17 0.98± 0.54 0.27± 0.16
2500 0.3 0.9 0.01 0.43± 0.30 0.85± 0.13 0.92± 0.57 0.57± 0.29

16 500 0.3 0.9 0.01 0.54± 0.28 0.82± 0.21 0.90± 0.43 0.43± 0.36
2500 0.3 0.9 0.01 0.53± 0.22 0.83± 0.19 0.84± 0.39 0.28± 0.18

8 500 0.2 0.9 0.1 0.51± 0.26 0.85± 0.18 0.95± 0.55 0.30± 0.16
1000 0.8 0.9 0.01 0.39± 0.29 0.85± 0.14 0.99± 0.59 0.31± 0.16
Table 6
ESN performance results for Patient 2.

n N µ ‖W‖ c rX rY MSEX MSEY

32 250 0.2 0.9 0.01 0.41± 0.28 0.74± 0.22 1.19± 1.36 0.48± 0.27
1000 0.2 0.9 0.01 0.41± 0.25 0.71± 0.21 1.20± 1.30 0.48± 0.26

16 1000 0.1 0.9 0.1 0.44± 0.28 0.75± 0.26 1.22± 1.37 0.43± 0.24
2000 0.1 0.9 0.01 0.56± 0.24 0.81± 0.24 1.12± 1.42 0.46± 0.18

8 500 0.1 0.9 0.1 0.61± 0.28 0.80± 0.25 1.16± 1.40 0.35± 0.23
1000 0.1 0.9 0.1 0.55± 0.28 0.76± 0.28 0.99± 1.17 0.38± 0.22
In addition to the echo state conditions on the reservoir ma-
trix, Ozturk et al. (2007) proposed uniform reservoir pole dis-
tributions covering the frequency spectrum optimally. Uniformly
distributedpoleswithin the unit circle provide uniformcoverage of
time constants of the underlying system as uniformly distributed
phases create filters with different center frequencies and inner
versus poles closer to the unit circle provide large frequency sup-
port versus narrowbandpass filters (Ozturk et al., 2007). Uniformly
distributed poles within the unit circle can be attained by itera-
tively maximizing the entropy of the distribution of randomly ini-
tialized all-pole filters as described in Erdogmus, Hild, and Principe
(2003). The reservoir matrix,W can then be designed based on the
coefficients of the characteristic polynomial with the direct canon-
ical structure that guarantees sparseness (Ozturk et al., 2007):

W =


−a1 −a2 · · · −aN−1 −aN
1 0 · · · 0 0
0 1 · · · 0 0
· · · · · · · · · · · · · · ·

0 0 · · · 1 0

 (14)

where the coefficients of the characteristic polynomial, ai, are
attained from the uniformly distributed poles, i.e. the eigenvalues
of the reservoir matrix.

3.2.2. Echo state networks for ECoG BMIs
For the application of ESNs to our BMI problem, we first ini-

tialize the input matrix Win with uniformly distributed random
numbers scaled between [−0.05, 0.05]. These boundary values
are chosen such that for the largest spectral radius, r = 0.9, the
states are not overly saturated. The nonlinearity in the reservoir
is chosen to be the hyperbolic tangent function, f (x) = tanh(x).
The parameters that are varied are the number of echo states,
N = {250, 500, 1000, 2000, 2500}, the reservoir spectral radius,
r = {0.5, 0.7, 0.9} and the leakage parameter µ = {0.1, 0.2, . . . ,
1.0} (where µ = 1 corresponds to the regular/non-leaky ESN).
Due to the large number of states and the minor devia-

tions from uniform distribution due to details of entropy es-
timation (Erdogmus et al., 2003), reservoir matrices formed of
elements that take on the values {0,−1, 1} with probabilities
p, (1 − p)/2, (1 − p)/2 respectively, provide similar close-to-
uniform pole distributions within the unit circle when W is nor-
malized by its the maximum eigenvalue and scaled by the de-
sired spectral radius. The probability p represents the sparse-
ness of the reservoir matrix. For the experiments herein, we
set p = 0.95.
The first second of the states is discarded as transient activity
before attaining the least square solution for the output weights,
Wout
C . Due to random initializations of the input and reservoir

matrices, fifteen Monte Carlo simulations were run for each set
of parameters. The ESNs are trained on the same training sets as
the linear filters. Performance results from selected simulations for
both patients are presented in Tables 5 and 6, respectively.
Overall, the leaky ESN, which adds memory depths to the

model, yielded better performance than the regular ESN architec-
ture. The spectral radius of 0.9,which provides the highest variance
in the states, also provided better performance across all parame-
ters and both patients. As in the case of linear models, the vertical
trajectory reconstruction performance is far better that the hori-
zontal case. Exemplary trajectories of the reconstructed trajecto-
ries are depicted in Figs. 10 and 11.

3.2.3. Sensitivity analysis
Comparing the spectral and spatial sensitivities of linear and

nonlinear models can provide insight to the differences in the
projection space formed by each model. For the nonlinear models,
we study the rate of changes in the model outputs as the
modulation of channels varies over time. Due to the hidden layer,
we apply the chain rule to form this relationship:

∂y(n)
∂u(n)

=
∂y(n)
∂x(n)

∂x(n)
∂u(n)

= (Wout
C )

TDnWin (15)

∂y(n)
∂u(n− 1)

= (Wout
C )

TDnWTDn−1Win (16)

∂y(n)
∂u(n−∆n)

= (Wout
C )

TDn

(
∆n∏
i=1

WTDn−i

)
Win (17)

where Dn = diag
[
f ′(z1(n)) f ′(z2(n)) · · · f ′(zN(n))

]
and z(n) =

Winu(n) + Wx(n − 1). This yields an instantaneous sensitivity
of the output to one of the inputs. The temporal decay of
inputs is plotted in Fig. 12. Experimentally, we determine the
sensitivity depth to be around 2 s. Hence at each time stamp
the temporal sensitivity of the output to an input is computed
as the averages of the instantaneous sensitivities over 3 s (an
additional second guarantees decayed sensitivities). We further
average across passbands and channels to attain the spatial and
spectral sensitivities of the recurrent network. These measures are
presented in Figs. 13 and 14. For Patient 1, the spatial sensitivity
of the n = 32 bands is widespread with high localizations in
the PMd and M1 areas. Just like in the Wiener filter case, with
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Fig. 10. Reconstructed trajectories from Wiener filters for Patient 1 (in blue)
projected on the cursor trajectories (in red) with (a) n = 32, (b) n = 16, (c) n = 8
bands with N = 500 states. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

a lower number of bands, we have narrower spatial sensitivities.
Moreover, the spatial sensitivities of the ESNs and Wiener filter
overlap. In the case of spectral sensitivities, ESNs and the Wiener
filters identify the same spectral ranges as the most sensitive.
Similar observations can bemadewith Patient 2. Spatial sensitivity
is widespread in the case n = 32 with high positive and negative
sensitivities overlappingwith those of theWiener filter. Areaswith
high spatial sensitivities become narrower with n = 16, 8 bands.
Finally, the same sensitive spectral ranges as the Wiener filter are
captured.
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Fig. 11. Reconstructed trajectories from ESNs for Patient 2 (in blue) projected on
the cursor trajectories (in red) with (a) n = 32, (b) n = 16, (c) n = 8 bands with
N = 1000 states. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

4. Discussion

In this study we showed the feasibility of reconstructing of
two-dimensional hand trajectories with high resolution broad-
band ECoG via linear and nonlinear models with embedded mem-
ory depths. Three avenues for are explored for maximal decoding
performance. First,we varied how finelywedivided the ECoG spec-
trum. Second, we vary how much memory, or time embedding,
is employed by the decoding models. Third, we provided a com-
parison on linear and nonlinear decoding models. Overall, this pa-
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Fig. 12. Sensitivity at time t for channel 1 of Patient 1 with n = 32 bands as a
function of∆.

per presents a systematic analysis of the bounds on the required
complexity of ECoG decoders and provides much needed studies
on ECoG spectral range, spectral decomposition and nonlinear BMI
projections.
The following subsections summarize our findings, mainly

the spectral and spatial contributions and present comparison of
reconstruction performance across trajectory axes and patients,
as well as an insight to how the significance of the results were
verified.

4.1. Spectral resolution of broadband ECoG features

Spectral sensitivity analyses demonstrate the presence ofmotor
control features in ECoG up to 6 kHz in Fig. 7(d)–(f). Hence, ECoG
signal acquisition systems should utilize higher sampling rates
than those clinically used for EEG. Extracting features in this vast
input space, however, has to be systematically facilitated, which
arises the question of resolution in the spectral decomposition.
We reconstructed trajectories from features at three different lev-
els of spectral resolution. As there were no significant differences
in performance, we can conclude that the lowest resolution level
at which the well-known neurophysiological rhythms are main-
tained (n = 8) is the optimal resolution as itminimizes the number
of parameters involved in the models. Furthermore, well known
neural rhythms over the motor cortex (such as mu, beta, gamma,
fast gamma) are captured within one passband with n = 8 bands
which were otherwise split with higher resolution. This supports
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Fig. 13. Spatial and spectral sensitivities of ESNs with N = 500 states for Patient 1. (a) Spatial contribution of 32 channels across n = 32 passbands, (b) Spectral sensitivities
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the empirical finding that n = 8 Q -bands yield the optimal spec-
tral resolution for the decomposition of the broadband spectrum
between 8 Hz–6 kHz. Further merging these bands, leads to de-
teriorated reconstruction performances as previously reported in
Sanchez et al. (2008).
Again from Fig. 7(d)–(f), we observe that when the number of

spectral bands were reduced from 32 to 16 and then to 8, contri-
butions from some of the passbands are lost. However, these losses
are compensated by putting more emphasis on the important spa-
tiotemporal features that were preserved. This can explain the
narrower spatial sensitivity localizations in Fig. 7(a)–(c). Similar
observations are made with the nonlinear spectral sensitivities,
with fewer bands, we have narrower spatial sensitivities (see
Fig. 13).

4.2. Spatial contributions of broadband ECoG

The most sensitive channels identified with linear sensitivity
analysis not only capture the electrodes over the responsive
electrodes, but they are also in accord with those found to be
highly correlated to behavior, extracted through source separation
and that are directionally tuned to trajectories in Gunduz et al.
(in preparation). For Patient 1, the nonlinear spatial sensitivity of
the n = 32 bands is widespread with high localizations in the
PMd and M1 areas. Moreover, the spatial sensitivities of ESNs and
Wiener filter overlap (Figs. 7 and 13). Similar observations can be
made with Patient 2. Spatial sensitivity is widespread in the case
n = 32 with high positive and negative sensitivities overlapping
with those of the Wiener filter (8 and 14). However, we must note
that the nonlinear sensitivities are initialization dependent and
slightly alter from one simulation to the other.

4.3. Nonlinear mapping through ESNs

For Patient 1, the nonlinear recurrent architecture has not
provided a statistically significance over the linear methods. This
may be due to the fact that itwas possible to find a projection to the
low dimensional trajectories from the very high dimensional input
space. However, in a previous study (Gunduz et al., 2007) in which
we had coarsely divided the broadband spectrum into four bands
between: 1–60 Hz, 60–100 Hz, 100–300 Hz and 300 Hz–6 kHz,
the ESNs were able to identify the sensitive portions of the highest
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Table 7
Performance comparison of linear and non-linear filters for Patient 1 with n = 4 spectral bands.

Frequency bands Wiener filter ESN Leaky ESN
rX rY rX rY rX rY

300–6 kHz 0.39± 0.26 0.48± 0.27 0.50± 0.27 0.61± 0.29 0.49± 0.26 0.63± 0.28
100–300 Hz 0.34± 0.21 0.35± 0.25 0.33± 0.22 0.50± 0.27 0.36± 0.26 0.52± 0.27
60–100 Hz 0.35± 0.24 0.41± 0.22 0.37± 0.25 0.39± 0.23 0.43± 0.25 0.45± 0.26
1–60 Hz 0.33± 0.16 0.41± 0.25 0.39± 0.26 0.43± 0.26 0.41± 0.25 0.44± 0.26
frequency band and yielded statistically significant reconstruction
performance (refer to Table 7). In other words, ESNs were able to
prune the features that contributed to the reconstruction of the
trajectories in a coarse spectral resolution much better than the
linear filters. As the performance of the linear models and ESNs
is statistically equivalent for both the maximal resolution of n =
32 and minimal resolution of n = 8 in our current study, we
conclude that the higher bands do not require further splitting. The
equivalence of performance in the current study can be attributed
to the fine spectral resolution of the current feature sets.
On the other hand, for Patient 2, t-tests reveal an improvement

in the MSE values of the vertical reconstruction over the linear
filters at a significance level of 0.05, for all three choices of number
of spectral bands. This result may be a reflection of the interictal
activity in Patient 2. The interictal activity in Patient 1 consists of
quasi-periodic spikes (see Gunduz, Sanchez, and Principe (2008)
and the linear filters may have been able to compensate for
such artifacts. On the other, the interictal artifacts observed with
Patient 2 are spontaneous bursty activities. The nonlinear filters
may have been able to mitigate the effects of this sort of artifact.
Overall, we can conclude that nonlinear models perform better in
the undesired cases of low spectral resolution and abundance of
random interictal activity.

4.4. Reconstruction from a vast feature space

Despite the vast amount of extracted features, the designed
linear and nonlinear filters were able to capture the features that
had proved to be highly correlated with behavior through the
earlier analyses (Gunduz et al., in preparation). Due to the dynamic,
nonstationary nature of neural modulations, these results are in
fact encouraging because in a closed-loop systemusersmaybe able
to modulate a band with more ease over another, or the sensitive
spectral bands may change from session to session, or the spatial
sensitivity might change from task to task. Therefore, instead of
performing subspace projection or feature selection, having the
luxury of feeding every band and every channelwould prove useful
in practice.

4.5. Comparison of reconstruction across dimensions and subjects

We cannot ignore mentioning the performance difference
between the vertical and horizontal axes of the trajectory in
all models. In Gunduz et al. (in preparation), we show through
crosscorrelation analysis that the horizontal trajectory is less
correlated with the ECoG activity for both patients. This may be
related to the low deviation of motion from the origin in the
horizontal direction. Especially in the target selection task, the span
of the vertical axis is much larger. Such differences in performance
across two dimensions were also reported by Schalk et al. (2007).
In future studies, experiments will be designed to allow for equal
variance and symmetric stretch in both dimensions.
It is also possible that the coverage of the electrodes capturing

neural representation is better in one direction of movement
than the other. As listed in Table 1, Patient 1 responded to
more electrodes with more muscles sets in the right arm when
electrically stimulated, compared to Patient 2. Also, in Gunduz
et al. (2008) we show that the interictal activity in Patient 1
is quasiperiodic and more localized which may be overcome
through linear filters, whereas the interictal activity of Patient 2
is bursty and spread across the whole electrode grid, affecting the
reconstruction performance. In either case, the results of this study
several of the challenges in ECoG BMI modeling and provides a
methodology to appropriately select ECoG neural input features
and model topologies to contend with clinical neuroprosthetic
signals.

4.6. Verification of contribution from high spectral features

Verification of the contribution of the high spectral features
(300 Hz–6 kHz) to the performance is important as these findings
were not reported in previous literature and due to concerns of
signal-to-noise ratios at such high frequencies.5First, an event-
related spectral analysis was performed by comparing the spectra
during movement and at rest conditions. An increase in power in
the high frequency bands that were found to be important in the
sensitivity analyses was observed during task execution versus the
rest state (for plots see Gunduz et al. (in preparation)). Second,
surrogate datasets were created by randomizing the phase of the
raw ECoG recordings while preserving the Fourier amplitudes and
hence the spectra (Prichard& Theiler, 1994). If similar performance
results were to be found with the surrogates, then the results
would be superficial and attributable to chance. However, as
was reported in our previous studies (Sanchez et al., 2008),
the performance results suffer immensely with the surrogate
data. When the power of both the original and surrogate data
highpass filtered above 300 Hz are fed into the Wiener filter, the
respective Pearson’s r values were 0.48 ± 0.27 and 0.09 ± 0.29
for vertical trajectory reconstruction. This shows that in fact the
reconstruction performance of the high power components are
well above the chance levels attained with the surrogates.6
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