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Abstract

People affected by severe neuro-degenerative diseases (e.g., late-stage amyotrophic lateral 

sclerosis (ALS) or locked-in syndrome) eventually lose all muscular control. Thus, they cannot 

use traditional assistive communication devices that depend on muscle control, or brain-computer 

interfaces (BCIs) that depend on the ability to control gaze. While auditory and tactile BCIs can 

provide communication to such individuals, their use typically entails an artificial mapping 

between the stimulus and the communication intent. This makes these BCIs difficult to learn and 

use.

In this study, we investigated the use of selective auditory attention to natural speech as an avenue 

for BCI communication. In this approach, the user communicates by directing his/her attention to 

one of two simultaneously presented speakers. We used electrocorticographic (ECoG) signals in 

the gamma band (70–170 Hz) to infer the identity of attended speaker, thereby removing the need 

to learn such an artificial mapping.

Our results from twelve human subjects show that a single cortical location over superior temporal 

gyrus or pre-motor cortex is typically sufficient to identify the attended speaker within 10 s and 

with 77% accuracy (50% accuracy due to chance). These results lay the groundwork for future 

studies that may determine the real-time performance of BCIs based on selective auditory 

attention to speech.
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1. Introduction

Communication is an essential part of being human. It allows us to interact with each other, 

to establish relationships, and to express needs and desires. This fundamental human ability 

can become compromised in people affected by paralysis, as they are no longer able to 

control the muscles that allow us to gesture or speak. Conventional assistive devices (e.g., 

eye trackers or tongue/cheek switches) re-establish communication, but generally rely on 

some residual muscle control. In contrast, brain-computer interfaces (BCIs) re-establish 

communication by using brain signals, effectively circumventing muscular pathways [1]. 

However, BCIs still depend on perceptual modalities, such as auditory, tactile or, most 

frequently, visual perception, for stimulation or feedback.

In one common BCI approach called the P300 matrix speller, the user communicates by 

directing attention to one of many visual stimuli. These systems are interesting in part 

because they preserve the identity between the stimulus (e.g., a highlighted ‘A’) and the 

symbol the user wants to communicate (e.g., the letter ‘A’). Unfortunately, recent studies 

have shown that the communication performance of the matrix speller depends considerably 

on the ability to control eye gaze [2, 3], which is lost or diminished in people affected by 

severe neuro-degenerative diseases (e.g., late-stage amyotrophic lateral sclerosis (ALS) or 

locked-in syndrome).

This important issue has led to an increased interest in BCI paradigms that use non-visual 

sensory modalities, such as auditory [4–8] or tactile stimulation ([9, 10]; see [11] for 

review). In these paradigms, the user selectively attends to one of multiple auditory or tactile 

stimuli. Each attended stimulus elicits event-related potentials (ERPs) that are different from 

those elicited by unattended stimuli. This difference in evoked responses allows the BCI 

system to infer the attended stimulus. Nevertheless, to use this effect for BCI 

communication, the user still has to learn a relatively artificial mapping between a stimulus 

(e.g., a particular but arbitrary sound) and a communication output (e.g., a particular but 

arbitrary letter or word). This mapping is simple when there are only few possible outputs 

(e.g., a yes or no command). Unfortunately, when the number of possible outputs is larger, 

such as with a spelling device, this mapping is not only arbitrary but also complex. Thus, 

such BCI systems are cumbersome to learn and use. One way to address this issue is to 

exploit the natural human ability to selectively attend to one of several speakers in a 

‘cocktail party’ environment. Using this approach, a BCI could learn which speaker a 

subject is attending to, or which speech stimulus represents the intention of the subject, 

simply by the subject paying attention to one of several speech stimuli.

There are two avenues to identify the attended speech stimulus. In the first avenue, speech 

stimuli are designed (e.g., altered and broken up [12]) such that they elicit a particular and 

discriminable evoked response to identify the attended speech stimulus. However, such 

altered speech stimuli are difficult to understand, which makes such a BCI system difficult 

to use. More importantly, this approach does not scale well beyond two simultaneously 

presented speech stimuli. In the second avenue, the BCI detects the specific details of the 

attended speech stimulus (e.g., its spectrotemporal structure) in the neural response. The 

spectrotemporal structure of speech is of particular utility in this context, because it results 

Dijkstra et al. Page 2

Brain Comput Interfaces (Abingdon). Author manuscript; available in PMC 2016 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from the combination of linguistic elements at different levels (e.g., phonemes, syllables, 

words and phrases) that give speech a variation in sound intensity over time. The integrity of 

this amplitude variation (or envelope) is necessary to understand speech [13].

While evoked responses can readily be detected in scalp-recorded electroencephalography 

(EEG), electrocorticography (ECoG) is better suited to capture the detailed spectrotemporal 

structure of neurological processes relating to speech. Of particulate note, it provides ready 

access to signals in the broadband gamma (70–170 Hz) range, which have been shown to be 

a reliable indicator of local cortical population activity [14] and which cannot readily be 

detected in scalp-recorded EEG [15]. In fact, recent studies using subdurally recorded 

electrocorticography (ECoG) have shown that indeed, ECoG signals in the high gamma 

band and at specific cortical locations (e.g., superior temporal gyrus, STG) track the 

envelope of perceived speech [16–20].

These findings have recently been extended to simultaneously presented streams of speech, 

i.e., a cocktail party situation in ECoG [21, 22] and EEG [23]. These studies found that the 

neural tracking of speech envelope is more pronounced for the attended stimulus than for the 

unattended stimulus. This finding has led to an emerging interest in determining the 

usefulness of this effect in the BCI context [24].

In the present study, we set out to fully characterize the ECoG correlates of attended/

unattended speech and to determine the potential communication performance of a cocktail 

party-based BCI. To do this, we recorded ECoG signals from twelve human subjects while 

they selectively attended to one of two simultaneously presented speech stimuli. Our results 

show that ECoG responses from a single cortical location over STG or pre-motor cortex is 

typically sufficient to identify attended speech within 5 s of selective auditory attention with 

an accuracy of at least 70%. By using multiple cortical locations, this performance can be 

improved to at least 81%. With additional real-time validation of this approach, our work 

could lay the basis for a BCI that would allow people to communicate their intent simply by 

attending to different simultaneously presented auditory stimuli.

2. Methods

2.1. Subjects

We recruited twelve human subjects who underwent temporary placement of subdural 

electrodes as part of their clinical treatment for epilepsy. This clinical treatment included the 

localization of epileptogenic zones and their delineation from functional cortical areas.

The subjects had 57–133 subdural electrodes implanted over their left or right hemisphere. 

Cortical coverage varied across subjects (Figure 1) and included frontal, temporal, parietal 

and occipital cortical areas. Electrodes consisted of platinum-iridium discs (4 mm in 

diameter, 2.3 mm exposed), embedded in silicon and spaced 6–10 mm apart (Ad-Tech 

Medical Instrument Corp., Racine, WI). We used post-operative radiographs (anterior-

posterior and lateral) and computed tomography (CT) scans to verify the cortical location of 

the electrodes. We then used Curry software (Neuroscan Inc, El Paso, TX) to create subject-

specific 3D cortical brain models from high-resolution pre-operative magnetic resonance 
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imaging (MRI) scans. We co-registered the MRIs by means of the post-operative CT and 

extracted the electrode coordinates according to the Talairach Atlas [25]. These electrode 

coordinates are depicted on Talairach template brains in Figure 1.

The subdural electrodes were implanted for a duration of 5–7 days. During this period, 

subjects volunteered to participate in our study. Both grid placement and duration of clinical 

monitoring were based solely on the requirements of the clinical evaluation. The twelve 

subjects (7 males, 5 females) were 15–60 years old (median 45), with an IQ higher than 75 

(median 95). None of the subjects had a history of hearing impairment. IQ and handedness 

were assessed in a neuropsychological evaluation [26] and language dominance was 

determined through a pre-operative Wada test [27]. The results of this test and additional 

subject information are summarized in Table 1. All subjects provided informed consent, and 

the study was approved by the Institutional Review Board of Albany Medical College.

2.2. Data collection

We recorded ECoG signals from the implanted electrodes using g.USBamp or g.HIamp 

(g.tec, Graz, Austria) amplifier/digitizer systems, which sampled the data at 1200 Hz. 

Control of data acquisition and stimulus presentation were accomplished using the BCI2000 

software platform [28–30]. Clinical monitoring occurred simultaneously by using a 

connector that split the cables coming from the patient into one set that was connected to the 

clinical monitoring system and another set that was connected to the amplifiers. This 

ensured that clinical data collection was not compromised at any time. Two 

electrocorticographically silent electrodes (i.e., locations that were not identified as eloquent 

cortex by electrocortical stimulation mapping) served as electrical ground and reference, 

respectively.

2.3. Stimuli and task

The subjects’ task was to selectively attend to one of two simultaneously presented speakers 

(see diagram in Figure 2A). The two speakers were John F. Kennedy and Barack Obama, 

each delivering his inauguration address. Thus, both speeches featured similar linguistic 

features, but were uncorrelated in their sound intensities (r = −0.02, p = 0.9). To simulate a 

cocktail party situation, we mixed the two (monaural) speeches into a binaural presentation. 

This allowed us to manipulate the aural location of each speaker. The speech stream that 

was presented in each ear contained 20% : 80% of the volume of one speaker and 80% : 

20% of the other, respectively. We broke these combined streams into segments of 15–25 s 

in length, which resulted in a total of 10 segments of 187 s combined length.

Throughout the experiment, we presented each segment four times through in-ear 

monitoring earphones. Over these four presentations, we permuted the aural location (i.e., 

left and right) and the identity (i.e., JFK and Obama) of the attended speaker. In other words, 

over these four trials, the subjects had to attend to each of the two speakers at each of the 

two aural locations.

Each trial began with an auditory cue that indicated the ear to which the subject should 

attend. For the purposes of this study, we complemented this auditory cue with a visual cue 

that indicated the identity and aural location (e.g., ‘JFK in LEFT ear’). The visual cue 
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remained on the screen throughout the trial. Each trial consisted of a 4 s cue and a 15–25 s 

stimulus, and was followed by a 5 s inter-stimulus period. This resulted in a total of 40 trials 

(i.e., 10 segments, each presented 4 times) of 12.5 min total length that were presented in a 

counter-balanced order. These 40 trials were divided into 5 blocks of 8 trials each with a 3 

min break between each block.

2.4. Features

The data consisted of the ECoG signals and the corresponding attended and unattended 

speech streams as shown in Figure 2B. From these data, we extracted the high gamma band 

envelope at each cortical location and the envelopes of the covertly attended and unattended 

speech (i.e., JFK and Obama). From these signal envelopes, we extracted two sets of 

features that reflected the neural tracking of the attended or unattended speech, respectively. 

For this, we correlated the high gamma band envelope at each cortical location, once with 

the attended and once with the unattended speech envelope. This resulted in one Spearman's 

r-value for each feature set, each cortical location and each trial. An example of this is 

shown in Figure 2C.

2.4.1. Signal processing—We first pre-processed the ECoG signals from the 58–133 

channels to remove noise and common mode activity. To do this, we high-pass filtered the 

signals at 0.5 Hz and re-referenced them to a common average reference that we composed 

from only those 58–133 channels for which the 60 Hz line noise was within 1.5 standard 

deviations of the average. Finally, we used a notch filter to remove any remaining 60 Hz line 

noise.

We then extracted the signal envelope in the high gamma band using these pre-processed 

ECoG signals. To do this, we applied a 70–170 Hz Butterworth filter and then extracted the 

envelope of the filtered signals using the Hilbert transform. As low frequency components 

dominate the ECoG signal [31], the utilized Butterworth filter featured a high attenuation in 

the stopbands (i.e., 18th order, 30dB attenuation below 64 Hz and above 200 Hz). We low-

pass filtered the resulting signal envelope at 6 Hz for anti-aliasing while retaining the 

temporal information at the syllabic level [32]. Finally, to reduce the computational effort, 

we decimated the sampling rate of the signal by a factor of 10, to 120 Hz.

For each auditory stimulus, we extracted the time course of the sound intensity, i.e., the 

envelope of the signal waveform in the speech band (80–6000 Hz). To do this, we applied a 

80–6000 Hz Butterworth filter to each audio signal, and then extracted the envelope of the 

filtered signals using the Hilbert transform. The characteristics of the Butterworth filter were 

chosen to ensure that high amplitude low frequency components were sufficiently removed 

(i.e., 10th order, 30dB attenuation below 40 Hz and above 8000 Hz). Finally, we low-pass 

filtered the speech envelopes at 6 Hz and downsampled them to 120 Hz.

2.4.2. Feature extraction—For each of the three signals (i.e., ECoG gamma envelope 

and right/left speech envelope) and each trial, we extracted features that reflected the neural 

tracking of the attended or unattended speech, respectively. We defined neural tracking of 

speech as the correlation between the gamma envelope (of a given cortical location) and the 

speech envelope. We calculated this correlation separately for the attended and unattended 
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speech, thereby obtaining two sets of r-values labeled ‘attended’ and ‘unattended,’ 

respectively.

We expected there to be a delay between the audio presentation and resulting cortical 

processing, i.e., the time from presentation of the audio stimuli to the observation of the 

cortical change. To account for this delay, we measured the neural tracking of the sound 

intensity across different delays (0 to 250 ms, see Figure 3).

On the basis of these results, we selected a delay of 100 ms across all subjects. We corrected 

for this delay by shifting the speech envelopes relative to the ECoG envelopes prior to 

calculating the correlation values.

2.5. Classification

We quantified the extent to which we could identify the attended speech from the extracted 

features in single trials. To do this, we applied two different classification methods on the 

extracted features (i.e., the correlation values). The classifier's goal was to predict the 

identity of the attended stimulus from the neural features. The first method used features 

from a single electrode in a univariate classifier; the second method combined features from 

multiple electrodes in a multivariate regularized logistic classifier. We evaluated the 

classification accuracy on 100 ms to 10 s long trial segments using 10 iterations of a 10-fold 

cross-validation. Finally, we determined the significance of these results using a permutation 

test.

For the univariate classification method, we assumed that in specific single locations the 

neural tracking of attended speech would be more pronounced than that of unattended 

speech. In other words, we assumed that the sign of the difference between two features 

(i.e., the attended and unattended r-values) directly predicted the attended stimulus. We 

applied this classification to all 58-133 cortical locations. In our cross-validation procedure, 

we selected the cortical location for which this assumption was most consistent and 

evaluated its predictive performance.

With the multivariate classifier, we used an elastic net regularization to select a linear 

combination of features from multiple cortical locations to predict the attended stimulus. In 

a nested cross-validation procedure, we determined the parameters of the elastic net feature 

selection (i.e., shrinkage λ = 0.01–0.35, trade-off between lasso and ridge α = 0.5). Our 

main cross-validation procedure then used a logistic regression combined with an the elastic 

net regularization to determine this linear combination (i.e., the 1–76 selected features), and 

to quantify the classifier's predictive performance.

For both classification methods, we used a permutation test to determine the significance of 

the classification accuracy and thus to statistically validate our results. In this permutation 

test, we reversed the speech envelope to remove the temporal relationship between the 

speech and neural envelopes while keeping their autocorrelation intact. To determine the 

distribution of random performance, we repeated this analysis 100 times on data for which 

we shifted the reversed speech envelope by random amounts of time. We then applied the 

feature extraction and classification steps explained above on this permuted data. This 
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resulted in a distribution of classification values for each of the two methods. Finally, we 

determined the likelihood (i.e., the p-value) that our cross-validated performance was 

different from this random performance distribution.

2.5.1. Performance evaluation—We determined the potential communication 

performance of a BCI based on selective auditory attention to speech. To do this, we 

calculated the information transferred in each trial as a function of the classification 

accuracy (P = 0%–100%) and number of simultaneous choices (N = 2) [33]. We then 

calculated the information transfer rate in bits/min as a function of the trial length.

2.5.2. Dependence on length of data—We were interested in determining how 

classification accuracy and information transfer rate depended on the length of the data 

segments. To address this question, we applied the two classification methods to data 

segments of different length (100 ms to 10 s). We extracted these data segments from each 

trial beginning at 2 s into the trial. For each segmentation length, we performed 10 iterations 

of a 10-fold cross-validation. This resulted in 100 cross-validated classification accuracies 

for each subject and segmentation length.

We used a permutation test, described in the previous section, to determine the significance 

of this classification accuracy on 5 s long segments.

2.6. Temporal evolution

We were also interested in determining how the difference between the ‘attended’ and 

‘unattended’ correlation, and thus classification performance, develops during the trial. To 

address this question, we extracted 1 s long segments in increments of 100 ms starting from 

1 s before the onset of each trial (i.e., [−1000–0 ms, −900–100 ms, . . . , 9000–10000 ms]). 

For each of these segments, we extracted the correlation with the ‘attended’ and 

‘unattended’ speech and then applied the univariate classifier as described previously.

3. Results

3.1. Neural correlates of attended and unattended speech

The results in Figure 4 show the neural tracking of the attended and unattended speech in the 

form of an activation index. For each cortical location, and each subject (1–12), this 

activation index expresses the negative logarithm of the p-value (−log(p)) of the correlation 

between the high gamma ECoG envelope and the attended (●, top) or unattended (○, 

bottom) speech envelope. The neural tracking is focused predominantly on areas on or 

around STG (all subjects), but also on discrete areas in superior pre-motor cortex (subjects 

2, 3, 4 and 8).
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3.2. Identification of attended speech

We then determined the extent to which we can identify the attended speech stimulus from 

the ECoG signals in individual trials using 5 s of data. The results are shown in Figure 5A 

and give the single-trial accuracy for each subject and for the two investigated classification 

methods (univariate (blue) and multivariate (orange) regression). The subjects are presented 

in the order of their average classification accuracy; an asterisk indicates significance 

(determined in the permutation test, adjusted for multiple comparisons by using a false 

discovery rate ([34], with a 5% probability that a false discovery is accepted). Figure 5B 

shows the average classification accuracy across subjects for which statistical significance 

was obtained for at least one method (subjects 1–7, from here on referred to as ‘significant 

subjects’). A comparison between the two methods shows that on average, multivariate 

regression results in 11% higher classification accuracy compared to univariate regression 

(81% vs. 70%, paired t-test: p < 0.0003).

To further expand on the results from section 3.1, we averaged the activation index 

topographies across significant and non-significant subjects. These topographies are shown 

in Figure 6. In these results, the significant subjects (Figure 6A) show a stronger and more 

distributed response to the attended (●) than to the unattended speech (○). In contrast, non-

significant subjects (Figure 6B) show only a marginal difference in their response to the 

attended (●) compared to the unattended speech (○).

The results in Figure 7 show the neural tracking measured as the correlation between the 

ECoG envelope (at center frequencies ranging from 2.5 to 250 Hz in steps of 5 Hz) and the 

attended or unattended speech envelope (orange or blue traces, respectively), averaged 

across significant and non-significant subjects. In these results, the significant subjects 

(Figure 7A) show neural tracking of the attended speech that is stronger across all frequency 

bands, especially in the broadband gamma band (70–170 Hz). The tracking shows a negative 

relationship in the low frequency band (10–30 Hz). For the non-significant subjects (Figure 

7B), this negative relationship at low frequencies is not apparent and the tracking of attended 

and unattended speech at higher frequencies is at the same low level.

3.3. Relationship between segment length and classification accuracy

In the previous section, we determined the classification accuracy on 5 s long data segments. 

In this section, we examine the relationship between the segment length and classification 

accuracy. The results in Figure 8 show the classification accuracy for variable segments 

lengths (0.1 to 10 s) for all significant subjects (Figure 8A) and non-significant subjects 

(Figure 8B). For the significant subjects (Figure 8A), accuracy rises steadily and reaches 

86.5% at 10 s. Throughout the investigated segment length, the ~10% advantage of the 

multivariate over the univariate classification method persists. In contrast, classification for 

the non-significant subjects (Figure 8B) stays around chance level for both classification 

methods.

Next, we were interested in determining the effect that this difference in accuracy between 

univariate and multivariate classifiers has on the information throughput of a BCI. To do 

this, we calculated the information transfer rate (ITR) for our significant subject group, 
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omitting any inter-trial period and not accounting for the 2 s tuning-in period that was 

excluded from the classification data. The results in Supplementary Figure S1 show that for 

the multivariate classifier, ITR reaches 6.2 bits/min for 1.5 s long segments. In contrast, the 

univariate classifier achieves 2.6 bits/min for 4 s long segments.

3.4. Effect of ‘tuning in’ on correlation and classification accuracy

In the previous analyses, we focused on determining the classification accuracy that we 

achieved given trial segments of variable length without considering the start point of the 

trial relative to the task. Indeed, we explicitly omitted any potential ‘tuning-in’ period by 

removing the first 2 s of each trial. With the following analyses, we determined the effect 

that tuning in to the attended speech has on the correlation and the classification accuracy 

over the course of the trial.

The results in Figure 9 show the difference between the ‘attended’ and ‘unattended’ 

correlation (9A), as well as the resulting univariate classification accuracy (9B) averaged 

across subjects 1–5.

These results show that it takes ~1 s for a difference between the ‘attended’ and ‘unattended’ 

correlation to develop. Consequently, for the first second, the classification accuracy 

remains around chance level (i.e., 50%). From there on, two effects are visible. First, the 

correlation and classification accuracy show an upward trend. Second, this trend is 

superimposed with cycles of higher and lower correlation and classification accuracy.

4. Discussion

This study shows that it is possible to identify the speaker that a subject selectively attends 

to when he/she is presented with two simultaneously presented speeches. The identification 

accuracy depends on several factors. First, we found that only a subset of our subjects (7/12) 

showed a difference in neural tracking that allowed us to infer the attended speech with 

statistical significance. Second, we found that within this group, generally a single electrode 

is sufficient to identify attended speech within 5 s of selective auditory attention and with 

70% accuracy. Third, using multiple electrodes in a multivariate approach, this performance 

can be improved to an average of 81%. Fourth, this 11% increase in accuracy results in a 

two-fold increase in the Information Transfer Rate (ITR).

Detailed analysis of the ECoG signals indicates that neural tracking of the attended speech is 

stronger and more widely distributed than that of unattended speech. This is in line with a 

previous ECoG study that investigated auditory attention [21]. Furthermore our analyses 

localized the most informative locations to STG and pre-motor cortex. While pre-motor 

cortex locations were found to be informative in only two of twelve subjects, they do echo 

findings of previous studies [17, 18, 35].

4.1. Feasibility as a BCI

The results shown in this paper indicate that the presented method could support BCI 

communication. While being invasive, it may be justified for those affected by severe neuro-

degenerative diseases (e.g., late-stage ALS, locked-in syndrome) who have lost all muscular 
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control and therefore cannot use conventional assistive devices or BCIs that depend on 

visual stimulation or feedback.

Additionally, the results suggest that sufficient communication performance (> 70%, [36]) 

could be achieved with a single electrode placed over STG. This finding is important, 

because placement of ECoG grids as used in this study requires a large craniotomy. In 

contrast, a single electrode could be placed through a burr hole [37]. Furthermore, the 

electrodes in this study were placed subdurally (i.e., the electrodes are placed underneath the 

dura). Penetration of the dura increases the risk of bacterial infection [38–42]. Epidural 

electrodes (i.e., electrodes placed on top of the dura) provide signals of approximately 

comparable fidelity [43, 44]. A single electrode placed epidurally could reduce risk, which 

should make this approach more clinically practical.

Further advances in clinically practical recordings of ECoG signals from multiple cortical 

locations [45, 46] could support an even higher communication performance. Our results 

showed that combining signals from multiple cortical locations results in a two-fold increase 

in the Information Transfer Rate (ITR).

Beyond BCI communication, the presented auditory attention-based approach may 

eventually support the detection of consciousness in comatose and minimally conscious 

patients without them having to learn a complicated task. Currently, communication in such 

populations is accomplished by using a functional magnetic resonance imaging (fMRI) 

approach [47]. In this approach, the patient receives instructions that are intended to activate 

specific brain regions. Over the course of this task, the fMRI BOLD signal measures this 

activity. Activity changes then suggest whether the patient performs the task, and thus 

whether he/she performs activities that typically are associated with consciousness. As this 

approach requires an fMRI scanner, it is not well suited to provide communication on a 

daily basis. If consent can be obtained and the risk of this procedure can be justified, then 

the approach presented in this paper could o er a viable option for communication once the 

level of consciousness has been determined.

4.2. Comparison to other auditory BCIs

The performance obtained in our ECoG study did not reach the communication performance 

reported in some other studies that investigated the use of attention-related EEG responses to 

specifically designed auditory stimuli. For example, Hill et al., [48] achieved an online 

performance of 84.8% for 5 s trials, with an ITR of 4.98 bits/min ± 2.3. In their study, 

subjects attended to one of two concurrent streams of tones. In our study, we obtained a 

performance of 81% and an ITR of 4.2 bits/min ± 2.7 for the significant subjects. Results 

across all of our subjects were lower, with a performance of 70% at 5 s and an ITR of 2.5 

bits/min ± 2.9. This may appear surprising, as ECoG is thought to have a better signal 

fidelity than EEG [15]. This apparent contradiction may be explained by four differences 

between our study and the other studies. First, the two streams of natural speech used in this 

study are similar in many respects (e.g., overlapping spectral representations), and thus 

cannot be expected to result in optimally differing neural responses. Second and similarly, 

because the stimuli are similar, some of our subjects may simply not have been able to 

perform the task properly, which likely explains the difference between significant and non-

Dijkstra et al. Page 10

Brain Comput Interfaces (Abingdon). Author manuscript; available in PMC 2016 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



significant subjects. Third, we were confined to recordings from frontal, parietal, and 

temporal areas within a single hemisphere. In contrast, in these EEG studies, signals were 

recorded from electrodes that fully covered both hemispheres. Fourth, our subjects were 

clinical patients rather than the healthy subjects used in the other studies. In comparison to 

many other auditory BCIs, the present approach has the unique advantage in that it uses 

natural speech without any alteration. This aspect may be particularly relevant for those who 

are already at a stage where learning how to use a BCI has become difficult.

On top of that, our approach may not have fully exploited the communication performance 

that could be obtained by increasing the number of simultaneously presented communication 

options. For two reasons, this is easier for the speech stimuli used here than for the streams 

of relatively artificial stimuli used in other approaches. First, communication based on 

streams of relatively artificial stimuli uses the response to the stimuli (ERPs) to identify the 

attended stream. To preserve the identity between stimulus and ERP, these streams need to 

be without temporal overlap. In contrast, natural speech stimuli can have temporal overlap 

as long as they remain fairly uncorrelated. In fact, while the natural speech stimuli used in 

this study were similar in many respects (e.g., overlapping spectral representations), they 

were fairly uncorrelated (i.e., correlation between sound intensities, r = −0.07). Second, the 

mental effort required to map a stream of relatively artificial stimuli to a communication 

intent limits the number of simultaneously presented streams. In contrast, speech stimuli can 

be identical with the communication intent, effectively removing the need for an otherwise 

needed mapping.

4.3. Comparison to other auditory attention studies

Our results show that using the gamma band to track auditory attention has limitations. First, 

while in our study the correlation between speech and gamma band envelopes reached up to 

0.59 in single trials, the average across all trials never exceeded 0.35 for individual subjects. 

Second, both single-electrode correlation and classification accuracy (univariate and 

multivariate) level off after approximately 5 s. These two observations indicate that the 

gamma band envelope only holds limited information about the neural tracking of auditory 

attention. Other research has suggested that low-frequency amplitude and phase might 

encode additional information about selective auditory attention [21]. Future studies could 

explore whether combining gamma-band and low-frequency features can improve 

classification accuracy. As low-frequency features can be observed in EEG, this could 

eventually lead to a non-invasive BCI that uses auditory attention to natural speech.

In fact, results presented by Horton et al., [24] confirm the viability of alpha in the EEG for 

the identification of the attended speaker. While their study reported alpha amplitude at 

three latencies (90, 200, and 340 ms) to be informative, we found gamma power to be 

informative only at a latency of 100 ms. This may relate to a fundamental difference 

between their EEG study and our ECoG study. As these three latencies relate to the peaks of 

three well known auditory evoked responses [49], the observed alpha signal may represent 

discrete responses to the onset of the attended speech stimulus. In contrast, our results 

together with results from other ECoG studies [16–20] support the notion that the gamma 

band envelope tracks the envelope of perceived speech rather than just its onset.
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4.4. Limitations

While our results indicate that the presented method could support BCI communication, the 

reported performance metrics may have been limited by our study design and the enrolled 

subjects.

For instance, in this study, subjects did not receive feedback on how well they performed the 

task. This is relevant, as many BCI studies have shown that providing feedback ensures that 

the subjects remain attentive to the task and that their performance improves over time [50, 

51]. In addition, the lack of any behavioral verification in this task makes it difficult to 

determine whether the subjects properly attended as instructed. For this reason, we could not 

exclude any subjects or reject any trials on this basis. A similar study that used a behavioral 

verification reported that, on average, ~25% of the trials [22] were not attended. These trials 

then did not exhibit a neural tracking of the attended speech. For our study, this might 

account for the high variability that we saw in the performance across subjects.

One factor that could have made this task more difficult is our selection of the auditory 

stimuli. In our study, we chose speakers with similar linguistic features (i.e., male voices 

with similar cadence). Thus, our subjects could have had difficulties in performing the 

selective auditory attention task. Hence, subject and classification performance may be 

improved with speech stimuli that are have dissimilar linguistic features (e.g., male and 

female voices).

Another aspect that might have affected the subjects’ performance in this study was cortical 

coverage. Grid placement was solely determined by clinical need. As a consequence, 

cortical coverage varied in location and density across subjects. Because there are other 

confounding variables (e.g., behavioral compliance and language dominance), and the low 

number of participants, we could not determine whether certain grid configurations yield 

better performance than others. At the same time, our average topographies (Figure 6) 

clearly show that coverage over STG or pre-motor cortex appears to be essential. This is 

important, as one consideration for our approach in a clinical application is where to implant 

the electrode and how to present the stimuli.

In our analyses, we assumed that the delay between speech stimuli and the elicited neural 

responses is constant across all cortical locations and subjects. However, detailed analysis of 

this delay (see Figure 3) revealed a standard deviation of 58 ms across cortical locations and 

subjects. This suggests that this delay varies across subjects and cortical locations as 

previously shown by Potes et al., [17], who reported a 110 ms delay in the neural tracking 

between STG and pre-motor cortex.

This is relevant, as the presented method depends on the correction of this delay to measure 

the proper correlation between speech stimuli and the neural response. In this initial study, 

we did not perform this correction individually for each cortical location and subject, as we 

wanted to keep the number of parameters as low as possible. Subsequent studies could 

further explore how correcting the delay for each subject and each electrode individually 

could improve communication performance.
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In this study, we were unable to infer the attended speaker in 5 out of 12 human subjects. It 

is currently unclear whether this is because these 5 subjects simply did not or could not 

execute the task, similar to BCI illiteracy [52].

Because of these limitations, future studies are required to compare the presented approach 

with other established BCIs in their e cacy to provide BCI communication to the target 

population, i.e., people affected by severe neuro-degenerative diseases (e.g., late-stage 

amyotrophic lateral sclerosis (ALS) or locked-in syndrome).

5. Conclusion

This study confirms and extends earlier reports that showed that the envelope of an attended 

speech stimulus is preferentially represented in ECoG signals in the high gamma range and 

recorded over STG and a region of superior pre-motor cortex. We used this preferential 

representation of attended stimuli to identify to which speech the subjects attended when 

they were presented with two simultaneous speeches. Thus, our study provides evidence that 

attentional modulation of these neural signals should allow people to indicate a choice in a 

BCI context. At the same time, it is currently unclear whether this approach, which depends 

on invasively recorded ECoG, may have distinct advantages over other auditory attention-

based BCIs that rely on scalp-recorded EEG.

In summary, our study shows that an auditory attention-based BCI that uses simultaneously 

presented natural speech stimuli could provide BCI communication without depending on 

other sensory modalities or a mapping between the stimulus and the communication intent. 

This provides the groundwork for future studies that could explore the practical utility of 

this approach for real-time BCI applications.
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Figure 1. Electrode coverage
Electrode coverage and density varied across subjects. Electrode locations (black dots) 

included frontal, temporal, parietal and occipital cortical areas. Four subjects (4, 6, 8 and 12) 

were implanted with high-density grids (electrodes spaced 6 mm apart).
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Figure 2. Experimental setup and methods
(A) Subjects selectively directed auditory attention to one of two simultaneously presented 

speakers. (B) We extracted the envelope of ECoG signals in the high gamma band, as well 

as the envelopes of the attended and unattended speech stimuli (i.e., JFK and Obama). (C) 
The correlation between the envelopes of the ECoG gamma band and the attended speech 

stimulus, accumulated over time, is markedly larger than the accumulated correlation 

between the envelopes of the ECoG gamma band and the unattended speech stimulus.
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Figure 3. Lag between speech presentation and neural response
This figure shows the correlation between neural response and the attended speech (green), 

averaged across subjects, for corrected lags between 0 and 250 ms to peak at 100 ms.
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Figure 4. Neural tracking of attended (●) and unattended (○) speech
Neural tracking is measured as the correlation between the high gamma ECoG envelope and 

the attended or unattended speech envelope. Color gives the magnitude of this correlation 

expressed as an activation index (−log(p)).
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Figure 5. Classification accuracy to which the attended speech could be identified, using a 
univariate (blue) or multivariate (orange) classification method
(A) Accuracy per subject, sorted by average performance. For subjects 1-7 (‘significant 

subjects’), accuracy is significantly larger than chance for at least one classification method 

(adjusted for multiple comparisons using a false discovery rate with q = 0.05). Significance 

is marked with an asterisk. (B) Average accuracy across subjects for subjects with 

statistically significant performance.
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Figure 6. Neural tracking of attended (●) and unattended (○) speech
Two averages are displayed: (A) Subjects for which performance was significantly better 

than chance for at least one classification method and (B) subjects for which performance 

was at chance level. For the significant subjects, the tracking of the attended speech is both 

stronger and more widely distributed than the tracking of the unattended speech. For the 

non-significant subjects, the overall activation index is smaller. In addition, there is only a 

marginal difference in spatial distribution between attended and unattended stimuli.
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Figure 7. Neural tracking of attended and unattended speech across different frequencies
(A) and (B) show correlation coefficients across different frequencies, averaged across 

subjects, and for attended (orange trace) and unattended speech (blue trace). (A) Subjects for 

which performance was significantly better than chance for at least one classification 

method. (B) Subjects for which performance was at chance level. For the significant 

subjects, the tracking of the attended speech is stronger across all frequency bands, 

especially in the high gamma band (70–170 Hz, gray shaded). The tracking shows a 

negative relationship in the low frequency band (10–30 Hz). For the non-significant 

subjects, this negative relationship at lower frequencies is not apparent and the tracking of 

attended and unattended speech at higher frequencies is at the same low level.
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Figure 8. Accuracy for different segment lengths for univariate (blue) and multivariate methods 
(orange)
The classification accuracy increases steadily with segment length for both classification 

methods. Multivariate classification results in higher average accuracy than univariate 

classification for all segment lengths.
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Figure 9. Effect of ‘tuning-in’ on correlation (A) and classification accuracy (B)
For the first second, the difference between the ‘attended’ and ‘unattended’ correlation 

remains zero resulting in a classification accuracy around chance level (i.e., 50%). 

Subsequently, correlation and classification accuracy trend upwards while being 

superimposed with cycles of higher and lower correlation and classification accuracy.
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Table 1
Subject information

The corresponding electrode locations are shown in Figure 1.

Subject Age Sex Handedness Language dominance Grid hemisphere Number of electrodes

1 49 F Left Left Left 72

2 28 F Right Bilateral Left 120

3 45 M Right Left Left 58

4 54 M Left Left Right 75

5 60 M Right Left Lef 59

6 25 F Right Left Left 98

7 15 F Right N/A Right 71

8 45 M Right N/A Left 81

9 45 M Left Left Left 61

10 28 M Right Left Left 133

11 52 M Left Left Left 64

12 24 F Right Bilateral Left 128
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