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bstract

Electrocorticogram (ECoG) recordings for neuroprosthetics provide a mesoscopic level of abstraction of brain function between microwire
ingle neuron recordings and the electroencephalogram (EEG). Single-trial ECoG neural interfaces require appropriate feature extraction and
ignal processing methods to identify and model in real-time signatures of motor events in spontaneous brain activity. Here, we develop the clinical
xperimental paradigm and analysis tools to record broadband (1 Hz to 6 kHz) ECoG from patients participating in a reaching and pointing task.
otivated by the significant role of amplitude modulated rate coding in extracellular spike based brain–machine interfaces (BMIs), we develop
ethods to quantify spatio-temporal intermittent increased ECoG voltages to determine if they provide viable control inputs for ECoG neural

nterfaces. This study seeks to explore preprocessing modalities that emphasize amplitude modulation across frequencies and channels in the

CoG above the level of noisy background fluctuations in order to derive the commands for complex, continuous control tasks. Preliminary
xperiments show that it is possible to derive online predictive models and spatially localize the generation of commands in the cortex for motor
asks using amplitude modulated ECoG.
 2007 Elsevier B.V. All rights reserved.
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. Introduction

Recent advances in motor neuroprosthetic experimental
esigns will likely offer new rehabilitation options to patients
ho have lost their ability to move due to disease or injury to

he central or peripheral nervous system. The great potential for
irect neural interfaces to aid the disabled has been demonstrated
hrough the control of computer cursors, prosthetic limbs, and
unctional electrical stimulation systems (Scott, 2006; Editorial,

006).

From a methodological perspective, spatial scale has played
n important role in brain–machine interface (BMI) develop-

Abbreviations: ECoG, electrocorticogram; EEG, electroencephalogram;
MI, brain–machine interface; BCI, brain–computer interface; P, posterior pari-
tal cortex; M1, primary motor cortex; PM, premotor cortex; S, somatosensory
ortex
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ent and includes the use of spikes (action potentials – local
o the neuron) (Sanchez et al., 2003a,b; Serruya et al., 2002;
aylor et al., 2002; Wessberg et al., 2000; Nicolelis, 1999),

ocal field potentials (Rickert et al., 2005a,b), electrocorticogram
ECoG) (Leuthardt et al., 2004), and electroencephalogram
EEG) (Pfurtscheller and da Silva, 1999; Wolpaw et al., 2002).
arnessing a sufficient representation from both the inputs

dendritic activity) and outputs (action potentials) of neural
ssemblies seems to be critical for interpreting the intent of the
ndividual. The evidence for BMI control using spontaneous
CoG activity is limited and may not be as direct as micro-
lectrode recordings (Leuthardt et al., 2006; Sanchez et al.,
006), but partial information of natural intent of movement
xists when the spontaneous ECoG is time locked averaged to
he stimulus (Leuthardt et al., 2004; Mehring et al., 2004). Sev-
ral groups have laid a foundation for demonstrating that ECoG

ontains information related to motor tasks both in monkeys and
umans. Of these groups, researchers have begun using ECoG
ecordings from human patients in epilepsy studies and have suc-
essfully demonstrated a motor neuroprosthetic for directional

mailto:jcs77@ufl.edu
dx.doi.org/10.1016/j.jneumeth.2007.04.019
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ursor control tasks using frequency analysis (Leuthardt et al.,
004). Leuthardt and colleagues (Leuthardt et al., 2004; Wolpaw
t al., 2002; McFarland et al., 1997; Vaughan and Wolpaw, 2006;
chalk et al., 2004; Leuthardt et al., 2003) found that ECoG
ignals derived through spectral analysis were associated with
otor and speech imagery and patients could achieve success

ates of 74–100% in a one-dimensional binary task. In other
ork, the relative information in sensorimotor rhythms, slow

ortical potentials, and P300 evoked potentials have been com-
ared for use in motor control using autoregressive modeling
Leuthardt et al., 2006; Leuthardt et al., 2003; Heldman et al.,
006). Aertsen and colleagues have used information theoretic
pproaches for extracting motor commands and compared the
esults to directional tuning (Mehring et al., 2003a,b; Riehle et
l., 1997; Wennekers et al., 2003; Aertsen et al., 2003; Rickert
t al., 2005a,b). These results demonstrate the proof-of-concept
hat ECoG can provide viable control signals for rehabili-
ative neuroprosthetics. The main methodology employed in
urrent ECoG BMIs is analysis of event related potentials (ERP)
Makeig, 1993; Lutzenberger et al., 1992; Johnson et al., 1977).
RP methods focus on extracting binary classification features

or the studied stimuli which are each used in controlling a
imension of neuroprosthetic movement. While the use of ERPs
ave been shown for cursor control, the instantaneous tracking of
ontinuous movement trajectories could benefit from additional
nformation contained in the ECoG. The hypothesis of this paper
s that there is an increased frequency dependent spatial neu-
omodulation correlated with movement that can be extracted
rom the spontaneous ECoG. The next obvious step for test-
ng this realization of an ECoG BMI is therefore to develop
nd validate new experimental paradigms and signal processing
ethodologies for real-time neural prosthetics (Andersen et al.,

004).
A natural question that will be pursued in this paper is to find

ut if one can obtain descriptors of movement intent directly
rom ECoG activity that leverages concepts used in microscopic
pproaches. With this we mean to develop online signal pro-
essing algorithms that extract real-time signatures from the
pontaneous neuromodulation activity. Unfortunately, very little
s known about what spatio-temporal information is accessible in
he spontaneous background activity, which normally is referred
s “EEG/ECoG noise”. In order to investigate this question,
wo fundamental requirements seem necessary: experimentation
ith cooperative subjects to obtain feedback and signal process-

ng methodologies that can find descriptors that modulate with
he motor behavior. In this work, we develop an experimen-
al paradigm and analysis tools to use the electrocorticogram
ECoG) in a motor control experimental paradigm that can pro-
ide a means of communication for paralyzed patients. Since
t is well known that amplitude modulation plays a key role in
oth neuronal activation and rate coding, seeking spatial pattern
lassification and temporally intermittent population synchro-
ization/depolarization may be a good starting choice. This

tudy seeks to explore preprocessing modalities that emphasize
CoG amplitude modulation above the noise level and back-
round fluctuations in order to derive the commands for complex
otor control tasks (reaching and grasping). We propose to use

n
(

a

ence Methods  167 (2008) 63–81

imultaneous feature detection and model optimization to guide
he selection of neural potentials that modulate in response to

otor tasks. High resolution signal analysis (12 kHz sampling)
ith human ECoG electrode arrays will provide the experi-
ental paradigm and broadband spectra to derive amplitude
odulations for learning the relationship between the generation

f ECoG potentials and hand/arm movement. We will present
echniques to spatially localize the potentials most related to the
ehavioral tasks and compare them with traditional techniques
sed for analyzing ECoG.

. Materials and methods

.1. Preliminary studies

The success of ECoG BMIs relies heavily upon the abil-
ty to extract features from neural activity related to goal
irected behavior. Theoretical analyses outlined by Freeman
Freeman, 1975; Freeman, 2000; Freeman, 2004a; Freeman,
004b; Freeman, 2005; Freeman, 2006) and Nunez (Nunez,
981; Nunez, 1989; Nunez, 1995) have identified the utility of
CoG potentials and attempts to explain how to extract the rele-
ant modulation of neural assemblies. Closely spaced subdural
lectrodes have been reported to measure the spatially averaged
ioelectrical activity of an area much smaller than several square
entimeters (Pfurtscheller et al., 2003). The production of poten-
ials is due to the superposition of many aligned and synchronous
ipole sources (Nunez, 1981). The coactivation of sources is
elated to neural “synchrony” and is used to describe the ampli-
ude modulations in extracellular recordings that occur during
tate changes (Pfurtscheller and da Silva, 1999). The fluctuating
ortical potentials have been associated with traveling waves of
ocal dendritic and axonal potentials (Thatcher et al., 1986). The
esults in (Thatcher et al., 1986) indicate that at least two sep-
rate sources of signal coherence are produced either through
he action of short length axonal connections or the action of
ong distance connections. Synchronous activity can occur at
ifferent spatial scales and over time lags (Nunez, 1981) which
equires wide spatial sampling of the cortex and analysis over
ne temporal scales. The ability to detect and localize the meso-
copic neuronal activation (cumulative sum of EPSPs/IPSPs and
ction potentials across the ensemble) from ECoG electrodes is
ependent upon an empirical inverse power relation (log power
ecreases by “1/fb”, b ∼ 2 ± 1) (Freeman and van Dijk, 1987;
arrie et al., 1996). The biophysical attenuation properties of

he neural media make the detection of fast, amplitude modula-
ion (<1 ms) in ionic concentration difficult to detect. The power
pectrum of an extracellular potential depends upon the size of
he cortical column (or dipole layer) sampled. The size of the
ctivated column should be proportional to the spatial scale of
he recording electrode to minimize the dynamic functional rela-
ionships between the observed power spectrum and that of the
issue itself (Nunez, 1981). For ECoG, it is estimated that 105
eurons are contributing to the extracellular potential variations
Abeles, 1982).

The origin of the state of electrophysiological oscillations
mong neurons likely depends on the density of negative feed-
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ig. 1. (A) Spectra of human ECoG recordings from this study averaged over 1
rend. (B) In vivo placement of the electrode grid in a 3 cm × 3 cm area of corte

ack connections between excitatory and inhibitory nodes, the
atio of short to long connections, and the magnitude of the back-
round noise. Here understanding the role of noise is critical for
ccurately extracting the oscillations among neurons. To eluci-
ate this relationship, we present in Fig. 1A the power spectra1

PSD) for real human ECoG recordings (details will be described
n the next section) in log–log coordinates. Here, the slope of the
urve indicates the well-known power–law relationship of scale
ree networks and is very telling of the relationships between
ntentional oscillations and noise (Freeman, 2005; Freeman,
006). The slope of the PSD in subjects at rest is known to range
etween α = −2 and −3. In this case, the patient was engaged
n a behavioral task where arousal brings peaks above the linear
lope of −1 to −2. The significance of the unique spectral peaks
s well as the decreasing slope at frequencies above 3 kHz is dif-
cult to assess from spectral analysis alone and hence motivates

he use of behavioral experiments in the following sections.

.2. Patients

The subjects participating in the neuroprosthetic study were
ndergoing extraoperative subdural grid evaluation for the treat-

ent of intractable complex partial epilepsy at Shands Hospital

t the University of Florida. Both patients involved in the study
ere right-handed females. Patient 1 was 14 years old while
atient 2 was 15 years old. All experimental protocols were

1 The FFT was computed with 2048 points and was averaged over 10 windows
f 10 s in duration.
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dows 10 s in length. Plotted in log–log coordinates, the data demonstrates a 1/f
the relative electrode, gyri, sulci, and vasculature relationships.

pproved by the University of Florida IRB. Prior to ECoG subdu-
al electrode implantation, both patients underwent a presurgical
ork-up that included scalp EEG, formal neuropsychological

esting, and MRI. The patients’ motor capacities were verified
o be in a normal range as verified through neuropsychological
esting. In addition, motor functions were verified to be nonfo-
al by the absence of motor or sensory deficits on neurological
xamination. It is important to note here that while epileptic
atients presented with intact motor functions, the disease can
nfluence brain function for BMI studies designed in this manner
s has been discussed in other studies (Leuthardt et al., 2004;
ehring et al., 2004).
As a part of the standard of care, the patients were implanted

ith subdural grid electrodes. The surgical implantation of the
lectrode grids was performed according to established proto-
ols (Lesser et al., 1990) and the grids consisted of a 1.5 mm
hick silastic sheet embedded with platinum–iridium electrodes
4 mm diameter with 2.3 mm diameter exposed surface) spaced
t 1-cm center-to-center distances. A picture of the implanted
rid on a 3 cm × 3 cm surface of cortex is presented in Fig. 1B.
ere, we can observe the size relationships between the effec-

ive electrode diameter, spacing, and orientation with respect to
yri, sulci, and vasculature both on the cortex and in the sulci.
he approximate electrode position and numbering as indicated
y the surgeon at the time of surgery is presented in Fig. 2A for
atient 1 and 2B for Patient 2. The location of the electrode grids

as also evaluated using MRI (1.5 T) under the guidance of a
oard certified radiologist. In Fig. 2C and D, the post-operative
1 weighted images are shown for each of the patients in this
tudy. The method of defining the anatomical location of the
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Fig. 2. Summary of the grid localization. (A and B) Electrode placement and numbering for Patient 1 and Patient 2 as indicated by the surgeon. (C and D) Anatomical
l board
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ocalization of grid electrodes via T1 MR imaging. Under the guidance of a
dentification of anatomical landmarks such as the pre-central and post-central

rid consisted of first identifying the post-central gyrus working
rom the midline and then following it to the central sulcus. With
hese landmarks, the grid electrodes were identified and labeled
n the images and markers were applied. The relative positions of
he electrodes with respect to the central sulcus and surrounding
yri allowed association of the electrodes with either premotor
PM), primary motor (M1), somatosensory (S), and posterior
arietal (PP) cortices. We would like to note here that due to
he clinical imaging protocol the slice thickness is large (5 mm
hickness and a skip of 2.5 mm) and did not always provide
he best imaging orientation (as with Patient 2) for localization.
herefore, multiple images were required to completely localize

he grid with respect to the central sulcus as shown by the partial

abeling of the grid in each image.

The patients involved in this study were fully recovered
rom the grid electrode implantation surgery within 48 h post-
urgery and were fully alert and attentive at the time of testing.

h
P
F
w

certified radiologist, the location of the grid electrodes was determined by
nd the central sulcus.

uring their epilepsy work-up, the patients were tapered from
heir presurgical anticonvulsant medications (topirimate, oxcar-
azepine) to facilitate seizure evaluation. When the behavioral
asks were performed, the patients were seizure free for at least
h prior to testing. The location of the primary motor cortex
as also determined by evoked potentials and direct electrical

timulation of the subdural grids. The well-known stimula-
ion paradigm (Jasper and Penfield, 1954) consisted of biphasic
aves with pulse duration 0.3 ms, a pulse train of 2–5 s, at a rate
0 Hz. The stimulus intensity began at 2 mA and increased by
or 2 mA increments. Motor responses from the stimulation,

sing the numbering convention in Fig. 2A and B, for Patient
were derived from electrodes (22, 28 – wrist), (23, 24, 30 –
and), (22, 30 – forearm), (29 – bicep), (27 – sensory arm), while
atient 2 responded with electrodes (2, 3 – hand), (14, 15 – arm).
or the purposes of this study, the seizure focus for each patient
as determined to be far from the motor region of interest.
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Fig. 3. Behavioral trajectories which consisted of a center-out reaching task
and a target selection task (pointing) in 20 cm × 30 cm work area (x – horiz.,
y – vert.). The patients were cued to follow with their index finger a prede-
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.3. Behavioral task

The behavioral task used in this neuroprosthetic design is
ocused on arm reaching and pointing. For paralyzed patients,
eaching and pointing offers two critical functions of the motor
ystem: reaching enables one to extend the ranges of goals avail-
ble while pointing enables one to communicate which goal
s of interest (Shadmehr and Wise, 2005). This behavior for
ommunication and control places emphasis on the neural deci-
ion making process that controls the motor exploration of a
atient’s environment and the visual feedback of the result-
ng movements. The visuomotor behavior presented here will
equire motor commands that orient a patient’s arm and loco-
otion toward a visual input. This behavior is also known as
standard sensorimotor approach mapping (Wise et al., 1996).

n this first step in extracting ECoG commands for neuropros-
hetics, the standard sensorimotor approach provides a simple
asis of investigation compared to more complicated transfor-
ational or guess-guided movements. To execute and acquire

he behavior described here, the patients were cued to follow
ith their index finger a predefined cursor trajectory presented
n an LCD screen with an active area of (20 cm × 30 cm). The
rajectory in Fig. 3 consisted of two components: a commonly
sed center-out cursor control task (Georgopoulos et al., 1982)
nd a target selection (Desmurget et al., 1998) task. The center-
ut task consisted of smoothly varying trajectories that formed a
attern extending from the center to predefined locations (invis-
ble to the patient) at the edges of the work area. For the target
election task, color-coded targets are arranged in a sequence at
he top of the screen and the patient was required to move to each
f them. This behavior mimics a computer user’s movement to
elect an icon on the screen. In a single session, the patients were
equired to repeat the entire task six times. In the center-out task,
he cursor moves from the center of the screen to each of the cor-
ers and mid-sides as shown in Fig. 3 (actual trajectory). This is
mmediately followed by the target selection in which the cur-
or reaches to each of the five horizontally aligned targets once
nd returns to its initial position in between targets. This entire
rajectory was repeated for each trial. For the patients presented
ere, Patient 1 was able to complete the tasks at a speed that
as 15% faster Patient 2. All behavioral tasks were acquired

oncurrently with the recording of neuronal modulations from
he implanted ECoG grids.

.4. Recording methodology

The extraction of communication and control features from
CoG within a brain–machine interface (BMI) paradigm is facil-

tated by the ability to continuously time synchronize neuronal
odulation with known variables in the external environment.
ere, the experimenter can gain an advantage by directly

orrelating internal neural representations with well defined
ehavioral tasks. However, the well controlled experimental

aradigms that monitor and synchronize neural activity with
ehavior in the laboratory are difficult to replicate in the clinical
nvironment. The first priority is always patient care; there-
ore, all monitoring equipment is tailored for clinical evaluation,

a
c
p
a

ned cursor trajectory presented on an LCD screen. The trajectory consisted of
wo components: a commonly used center-out cursor control task and a target
election task. The targets are arranged in a sequence at the top of the screen.

n this case, of epilepsy which may not be suited to evalu-
te the host of available control signals that can be extracted
rom ECoG. Moreover, in addition to the standard electrophysi-
logical equipment, a variety of other monitoring devices (pulse
ximeter, etc.) can contribute noise sources.

To overcome these challenges of the clinical environment, we
esigned a recording paradigm shown in Fig. 4 that augments the
linical monitoring systems during the duration of the experi-
ents presented here with larger bandwidth amplifiers, but from
hich the conventional ECoG can be recovered with the same

linical quality. The choice of a broader bandwidth was moti-
ated by theoretical studies of biophysical limits of frequency
esolution which implies that potentials up to 10 kHz are observ-
ble in ECoG (Nunez, 1981). Working from left to right in the
iagram, a custom cable was designed to interface the clinical
d-Tech (Racine, Wisconsin) electrodes with the biopotential
mplifiers. To minimize noise contamination encountered in the
linical environment, the amplifiers were placed close to the
atients head by minimizing the custom cable length. Next, the
mplified and digitized neuronal activity is sent optically to a
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Fig. 4. Schematic of the recording methodology. The goal is to simultaneously record ECoG potentials (up to the biophysical limit of frequency resolution) and
behavior. Working from left to right, a custom cable was designed to interface the clinical Ad-Tech electrodes with the biopotential amplifiers. To minimize noise
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ncountered in the clinical environment, the amplifiers were placed close to the
ank of DSPs that preprocess (filter) the data. The data is then sent via a gigabi
hrough a Matlab ActiveX interface. Finally, the desired trajectories were sent t

ank of DSPs that preprocess (filter) the data and time syn-
hronize it with the behavioral trajectories. In the multi-DSP
rchitecture, each DSP could be assigned a particular task to dis-
ribute the processing. A desktop computer (Dell XPS, Pentium
, 3 GHz, 2 GB RAM, 1 TB Hard disk, RAID 5 configuration)
unning Matlab v7 was generating the desired behavioral tra-
ectories and communicating with the bank of DSPs through
ctiveX commands. The data was then sent via a bi-directional
igabit PCI interface between the recording computer which was
toring data and generating the desired behavior while commu-
icating with the DSPs. Finally, the desired trajectories were sent
o a second computer monitor placed in front of the patient. The
atient was then cued to follow the cursor trajectory with their
ndex finger. During the task, the recordings were supported by a
ull clinical staff including a board certified neurologist and the
echnicians of Shands Hospital Epilepsy Monitoring Unit. This
tep ensures that the qualified personnel are present to monitor
he patient during the study in compliance with the “standard of
are” of epilepsy practice. The clinical epilepsy monitoring team
ad full access to the ECoG monitoring system in conjunction
ith video surveillance to ensure patient safety.

.5. Electrophysiological data collection

Multichannel subdural potentials were collected syn-
hronously while the patients were engaged in the behavioral
ask. Neuronal activity from the electrodes indicated by the
ashed boxes in Fig. 2A and B were recorded using a Tucker-
avis (Alachua, Florida) Pentusa neural recording system

ampling at 12,207 Hz which is half of the native DSP clock,
4,414. 1 Hz. The neural recording system used in this study
s capable of recording from 32 electrodes simultaneously.
he sampling rate was determined using information from the
reliminary studies which describes the biophysical limits of

ubdural neural recording. The potentials from the sampled cor-
ical areas were digitized with 16 bits of resolution and bandpass
ltered from 1 to 6 kHz which represents the Nyquist frequency.
ehavioral trajectory recordings were also stored with a shared

a
4
w
p

ts head. Next the amplified and digitized neuronal activity is sent optically to a
interface to the recording computer which was generating the desired behavior
cond computer monitor placed in front of the patient.

ime clock and sampled at 381.5 Hz on the Pentusa system using
ctiveX controls described in 3.1.3 which were also sent to the
atient display system shown in Fig. 4.

Representative recordings from the neuroprosthetic exper-
mental paradigm are presented in Fig. 5. Time-synchronized
CoG and behavioral recordings from Patient 1 are plotted
ver a 5 s duration. The first subplot contains a segment of the
enter-out trajectory in (x, y) coordinates where the center of the
creen is located at (0, 0) and the excursions range from ±20 cm
n displacement. Subplots two and four present the raw time-
eries with broadband filtering (1 Hz to 6 kHz) recorded from the
CoG grid electrodes. Voltages in the range of ±100 �V were
bserved. Combinations of low-amplitude fast oscillations were
ixed with large amplitude slow and sharp waves. In subplots

hree and five, we present the spectrograms that correspond to
he raw voltage traces. To compute the spectrogram, the raw
CoG recordings were windowed (Hamming) into segments
f 512 points with 50% overlap. Here, the temperature of the
olors (black maximum) corresponds to the FFT magnitude at
ach frequency. To maximize the ability to resolve the peaks of
he spectra over the broad frequency range, the plot has been
rightened and limited from 1 Hz to 4 kHz which contained
he majority of the energy. We observe a 1/f decrease in the

agnitude as the frequency is increased shown by the largest
alues of red at the lower frequency. A second feature that can
e extracted from the spectrograms are the black vertical stripes
hat span the spectrum intermittently. Some of these are related
o the sharp waveform features occurring spontaneously in the
CoG, while others occur synchronously with small amplitude
odulations in the raw traces. A third feature is the horizontal

tripes noted in the record at 12 kHz which corresponds to a
armonic of 60 Hz noise artifact. To summarize, from the spec-
rograms of this short segment of data the majority of the spectral
nergy is indeed at lower frequencies (i.e. <500 Hz) however we

lso observe other high frequency modulations that span up to
kHz. Beyond 4 kHz, the appearance of spectral modulations
as rare. The modulations up to 4 kHz were observed in both
atients.
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Fig. 5. Synchronized ECoG and behavioral recordings from Patient 1 over a 5 s duration. The first subplot contains a segment of the center-out trajectory in x, y
coordinates where the center of the screen is located at (0, 0) and the excursions range from ±20 cm in displacement. Subplots two and four present the raw time-series
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.6. Feature detection and extraction of control signals

.6.1. Energy preprocessing and filtering
Sensorimotor ECoG rhythms have been studied extensively

or assessing cortical activation for both theoretical and empir-
cal reasons. The dynamic representations of information in
istributed cortical neuronal networks have been shown to cor-
elate with a variety of visual, auditory, and motor tasks and
omprise the slow potentials and their sub-bands (1–60 Hz)
Pfurtscheller et al., 2003), gamma band (60–100 Hz) (Engel
nd Singer, 2001), fast gamma band (100–300 Hz) (Sinai et al.,
005) and ensemble depolarization (300–6 kHz) as coined in
Engel et al., 2005). One of the challenges of processing ECoG
ensorimotor rhythms is that it is difficult to extract the rele-
ant information over the noise. An approach to overcoming the
emporal averaging of trials is to build upon the strengths of rate
oding preprocessing that has been used extensively in single-
rial, single-unit BMI experiments (Sanchez et al., 2003a,b). The
ritical advantage of rate coding approaches is that timing infor-
ation in neuronal firing is translated into amplitude information

s represented in bin rates (# of spikes per unit time). Typi-
al firing rates are computed in bins of 100 ms (Sanchez et al.,
003a,b). The goal here is to employ a similar method of pre-

rocessing in ECoG recording where sensorimotor amplitude
odulations within specific bands are converted into “rate-like”

nformation. However, in the case of ECoG the signals of interest
re less specific since the measured signals are the coactivation

t
F
b
f

ltages in the range of ±100 �V were observed. In subplots three and five, we
re of the colors corresponds to the magnitude of the frequency response. Black

f many neural sources spread within a volume of the cortex.
ince the specific relationships between instantaneous ampli-

ude modulations are still largely unknown, we opt to first select
roadband filtering to reduce the influence of strong assump-
ions. In this study, we seek amplitude modulations within the
road categories of modulations defined in the literature con-
isting the slow (1–60 Hz), gamma (60–100 Hz), fast gamma
100–300 Hz), and ensemble (300 Hz to 6 kHz) to determine
ow instantaneous amplitude modulations in each contribute
and reaching and pointing. Therefore, we define the band spe-
ific amplitude modulation as the sum of the power of the ECoG
Worrell et al., 2002) voltage signal in a 100 ms time bin as in
q. (1).

(tn) =
100 ms∑

i=1

v2(tn + i), where tn+1 = tn + 100 ms. (1)

In this paradigm we equally weight positive and negative
olarizations and focus only on the power. Eq. (1) was com-
uted in 100 ms non-overlapping windows for each electrode
ver the entire dataset in each of the bands that were pre-
rocessed using equiripple FIR filters adjusted for the group
elay. Representative traces of the filtered amplitude modula-

ions (AM) time synchronized with behavior are presented in
ig. 6. The amplitude modulations separated into four frequency
ands decrease in magnitude with increasing frequency (2 orders
rom 60 to 100 Hz and 1 order from 300 to 6 kHz). Qualitatively,



70 J.C. Sanchez et al. / Journal of Neuroscience Methods  167 (2008) 63–81

Fig. 6. Preprocessing of the raw voltage ECoG recordings via Eq. (2) yielded the traces in subplots 2–5. The amplitude modulations are separated into four frequency
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W = R−1P = E(xT x)
−1

E(xT d) (3)
ands. Qualitatively, the correlation of the AM patterns with the behavior wer
100–300 Hz, 300–6 kHz).

he integrated amplitude modulations of the higher frequen-
ies (100–300 Hz, 300–6 kHz) produce waveforms (non-zero)
hat correlate well with the desired signal when viewed over a
ime span of 5 s. These waveforms are smoother than the lower
requencies (1–100 Hz) which produce spiky waveforms that
eviate from zero.

.6.2. Modeling
Now that the fundamental properties of the experimental

aradigm and the raw ECoG have been characterized, we will
ddress the extraction of control features from the preprocessed
M data on a single-trial basis. The methodology to achieve such
goal is to adapt a linear (or nonlinear (Sanchez et al., 2002))
odel to the data during the trials, where the input is the multi-

hannel amplitude modulated ECoG, and the desired response
s the motor control task. Effectively, we are doing identification
f the system that transforms in real time the ECoG signals to
ovement. The advantage of this technique is that it does not

equire averaging, and the trained model is capable of control-
ing directly the interface. The disadvantage is that it is still a
black box” model in the sense that without further analysis we
o not know what features are relevant; however we will explore
he implications of the features in the next section.

To construct the mapping between AM ECoG neuronal mod-
lation and behavior, a linear adaptive finite impulse response
FIR) filter topology in Fig. 7 was trained using the Wiener solu-

ion (Haykin, 1996). The topology contains 32 inputs (ECoG
hannels), 25 tap-delays (optimized to find the best generaliza-
ion), and two outputs and was trained with 4 min (2400 samples)
f ECoG and behavioral recordings. The Wiener filter utilizes

F
t
a

erved to increase with the frequency as shown in the higher frequency bands

he most recent 2.5 s of neural activity to compute each out-
ut which was optimized by scanning tap-delays from 5 to 30
o construct the best performance. The inputs and desired sig-
als used for this topology were normalized to zero mean and
nit variance. The vector form of this operation is given by (2)
Sanchez et al., 2003a,b). The optimal MSE solution is given by
3), where d is the hand trajectory. The testing output trajectories
generated on 1.5 min of novel data) of the trained model using
he Wiener solution are presented in Fig. 8. Here, a separate

odel is created for each frequency band. The trajectories are
resented for both x (horizontal) and y (vertical) position and
elocity.
ig. 7. Finite impulse response (FIR) filter topology. Here, the variable x refers
o the preprocessed neural inputs while y1(t) and y2(t) represent the horizontal
nd vertical axes of the movement trajectory.
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Fig. 8. Representative movement trajectories (red – actual, blue – reconstruction) over a duration of 1 min. Here, time is represented on the x-axis while displacement
is on the y-axis. Note that the correlation in the trajectories varies as a function of time and frequency.
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. Results
To test the ability of the model to reconstruct the trajectory
rom the amplitude modulated communication and control sig-
als extracted from the ECoG, the model weights were fixed
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Fig. 9. Testing cross-correlation between actual hand positions a
ence Methods  167 (2008) 63–81

nd novel neuronal recordings (2 min – 1200 samples) were pre-

ented. The amount of variance in the desired trajectory that was
xplained by the output of the model was computed using the
orrelation coefficient (Pearson’s r) and is presented in Fig. 9
or the same segments as in Fig. 8. Here, the variation in the

nd model outputs plotted over time using sliding windows.
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Table 1
Correlation coefficients for broadband performance

Frequency bands Patient 1 Patient 2

X-pos CC Y-pos CC X-pos CC
(p < 0.01)

Y-pos CC
(p < 0.01)

X-pos CC Y-pos CC X-pos CC
(p < 0.01)

Y-pos CC
(p < 0.01)

1–60 Hz 0.33 ± 0.16 0.41 ± 0.25 0.50 0.59 0.39 ± 0.24 0.42 ± 0.24 0.59 0.59
60–100 Hz 0.35 ± 0.24 0.41 ± 0.22 0.56 0.58 0.36 ± 0.22 0.37 ± 0.24 0.55 0.58

100–300 Hz 0.34 ± 0.21 0.35 ± 0.25 0.51 0.55 0.38 ± 0.23 0.37 ± 0.25 0.57 0.60
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00–6 kHz 0.39 ± 0.26 0.48 ± 0.27 0.60 0.60

orrelation between the model output and the desired trajec-
ory computed using overlapping windows of 20 s (sliding in
00 ms steps) is plotted over time. The results show that there
re specific instances of high correlation (above 0.90) indicating
local, task dependent nature of the data. On average for both
atients, the output of the model was most correlated with the
-coordinate for all frequency bands. The trajectories produced
y Patient 1 contained less variance than Patient 2 which may be
ue to better control with more widespread hand and arm repre-
entation as determined through microstimulation. Performance
ended to increase with frequency band in the y-coordinate direc-
ion for both patients. In contrast, the x-coordinate was not
redicted as well for all bands; however lower frequencies pro-
uced higher correlations for this coordinate. The correlation
uantification presented here in conjunction with the represen-
ative traces presented in Fig. 8 show that continuous tracking
f the hand position using amplitude modulated ECoG can be
chieved. However, the trajectories are still highly variable in
egions of the movement and improvements in signal process-
ng methodologies are needed for tracking cortical and temporal
erformance variations.

For statistical validation and comparison with other work, we
resent the average correlation coefficient between the model
utput trajectories and the known hand positions in Table 1. To
ost accurately interpret the performance of the decoding in

ach frequency band, Fig. 9 should be compared against Table 1
o give context of temporal variation to the static values. Here,
t is important to note that compared to other work in ECoG
MIs (CC ranging from 0.40 to 0.85) the correlations are com-
uted at all points in time without any trajectory segmentation;

herefore, we observe mean correlation values with significant
ariations. This correlation metric is focusing on the fact that
ach frequency band is specializing in particular temporal seg-

t
(
l

able 2
orrelation coefficients for surrogate datasets

requency bands Patient 1

Xsurr-pos CC Ysurr-pos CC Xsurr-pos CC
(p < 0.01)

Ysurr-pos
(p < 0.01)

1–60 Hz a0.00 ± 0.23 a0.02 ± 0.25 0.24 0.13
60–100 Hz a0.04 ± 0.35 a0.10 ± 0.20 0.21 0.35
00–300 Hz a0.02 ± 0.29 a0.07 ± 0.28 0.07 0.07
00–6 kHz a0.08 ± 0.32 a0.09 ± 0.29 0.18 0.26

a Indicates that the surrogates failed a two-sample K-S test with p < 0.01
0.42 ± 0.26 0.45 ± 0.25 0.62 0.61

ents of the trajectory and may not be suitable for the entire
rajectory. To determine the confidence level of the model’s
rajectory reconstruction in each band, we computed the sig-
ificance of each windowed correlation. The mean correlation
t a significance level of p < 0.01 is also reported which indicates
hat for the segments that were constructed well there is a signif-
cant relationship between the amplitude modulation regression
nd the hand trajectory. We note that the results presented here
or natural continuous trajectories are comparable to results pre-
ented for target selection tasks of shorter duration (<5 s trials)
nder directional control (Leuthardt et al., 2004; Mehring et al.,
004). While there is still considerable room for improvement,
his performance encourages studies for instantaneous cursor
ontrol using amplitude modulations from a broad spectrum of
CoG frequency bands. To compare the performance results
ith what could be expected by chance we created surrogate
atasets (Prichard and Theiler, 1994) by randomizing the phase
n the frequency domain of the raw ECoG recordings. The surro-
ate data was then bandpass filtered in the four prescribed bands
nd the power was computed as in Section 2.6.1. The models
ere retrained, tested, and the corresponding surrogate corre-

ation coefficient values presented in Table 2 indicate that the
erformance of the original patient amplitude modulated data
roduced trajectory reconstructions above the chance level of
he surrogates. We compared the correlation distributions from
he surrogate models with the models trained with the original
ata using a two-sample Kolmogorov–Smirnov (K–S) test. In
ll cases, the surrogates failed the K–S test indicating with over
9% confidence that the two samples are not from the same
istribution. As a second level of validation, we also computed

he dependence of correlation on the highest frequency band
300–6 kHz). Since this band is the least studied in the ECoG
iterature, we demonstrate here the relevance of the upper cutoff

Patient 2

CC Xsurr-pos CC Ysurr-pos CC Xsurr-pos CC
(p < 0.01)

Ysurr-pos CC
(p < 0.01)

a0.08 ± 0.38 a0.09 ± 0.49 0.21 0.28
a0.08 ± 0.35 a0.10 ± 0.49 0.13 0.28
a0.10 ± 0.37 a0.07 ± 0.45 0.29 0.15
a0.08 ± 0.43 a0.08 ± 0.43 0.09 0.18
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Table 3
Correlation coefficients for frequencies above 300 Hz

Frequency bands Patient 1 Patient 2

X-pos CC Y-pos CC X-pos CC
(p < 0.01)

Y-pos CC
(p < 0.01)

X-pos CC Y-pos CC X-pos CC
(p < 0.01)

Y-pos CC
(p < 0.01)

300–1 kHz 0.28 ± 0.17 0.41 ± 0.21 0.52 0.58 0.35 ± 0.20 0.45 ± 0.25 0.53 0.61
300–2 kHz 0.37 ± 0.27 0.35 ± 0.25 0.62 0.59 0.41 ± 0.25 0.32 ± 0.20 0.61 0.53
3
3
3

l
o
o
1

F
c

00–3 kHz 0.41 ± 0.28 0.40 ± 0.24 0.61 0.57
00–4 kHz 0.44 ± 0.24 0.46 ± 0.23 0.61 0.59
00–5 kHz 0.35 ± 0.22 0.46 ± 0.27 0.55 0.65
imit. As in the other modeling results produced by the meth-
ds in Section 2.6.1, for Table 3 we adjusted the upper limit
f the bandpass filter from 1 to 6 kHz iteratively in steps of
kHz. This analysis produces incremental increases in corre-

l
y
c
t

ig. 10. Normalized tuning curves of eight electrodes that span the two dimensional
oordinates of the electrodes across a 6 × 6 grid are given. (1, 1) corresponds to the l
0.32 ± 0.22 0.37 ± 0.23 0.55 0.56
0.40 ± 0.24 0.40 ± 0.22 0.59 0.57
0.34 ± 0.23 0.38 ± 0.22 0.57 0.56
ation throughout the entire band. Increases in either the x- or
-coordinate indicate again the strong dependence of the spe-
ific frequencies for reconstruction temporal segments of the
rajectory.

hand movement space with 45◦ resolution in the 1–60 Hz frequency band. The
eft bottom corner.
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.1. Physiologic analysis of results

.1.1. Directional tuning
Classically, a single motor neuron’s physiologic response to

behavioral task has been described using directional tuning
urves. As originally derived from a standard center-out task by
eorgopoulos et al. (1982), the tuning curve relates the mean
f movement-related cell activity to movement direction. The
referred direction of a neuron, measured in degrees, is the direc-
ion which yields the maximal firing response over many trials.

eighing the preferred directions with the neural activities in

he population gives a resultant direction vector called the “pop-
lation vector” which has been shown to be correlated with the
ctual movement direction (Georgopoulos et al., 1986). Here,
he directional tuning of the ECoG AM signatures are computed

w
a
n
p

tinued ).

Heldman et al., 2006; Rickert et al., 2005a,b; Mehring et al.,
003a,b); however, the interpretation is potentially very different
han the classical view since the ECoG is measuring an aggre-
ate of neuronal potentials. To measure the tuning performance
f the ECoG AM signatures, the Tuning depth will be defined
s the difference between maximum and minimum tuning over
he hand movement space for a channel (greater depths imply
etter performance).

Herein, we analyze the tuning of the AM ECoG recordings
o the hand movement direction in the selected frequency bands.
he space of hand movement direction ranging from 0◦ to 360◦

as divided into 8 bins with 45◦ of resolution. Initial tuning

nalysis indicated an interference amongst neighboring chan-
els or interference from a common noise source due to common
eaks in the tuning curves. Compared to adaptive filtering, tun-
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Fig. 11. Tuning depth of electrodes as a function of physical placement and frequency bands. The dotted white line indicates the location of the central sulcus as
determined using MRI.
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ng analysis does not have the ability to minimize the effects of
oise. This problem was overcome by spatially filtering the elec-
rode recordings with Laplacian filters, which subtract a quarter
f the four neighborhoods of an electrode recording from itself
Gonzalez and Woods, 2002). This suppresses the common trend
n neighboring electrodes and emphasizes the individual features
f an electrode. After spatial filtering, the two-dimensional hand
irection space is spanned for each frequency band, i.e. at least
ne electrode is tuned to the center of each 45◦ bin. Fig. 10 shows
epresentative tuning curves for Patient 1 in the four frequency
ands that span the whole space. The tuning curves were normal-
zed by the standard deviation of the power across the channels
or spatial comparison and the calculated tuning depths are pre-
ented in Fig. 11 across the different frequency bands for the two
atients studied here. To provide context to the images, we have
uperimposed the position of the central sulcus as determined
hrough analysis of the MR images (Mehring et al., 2004). For
atient 1, the highest tuning depth in the primary motor area that
as mapped with electrical stimulation is evident in the highest

wo frequency bands. This may be attributed to the trend that
igh frequency signals are more localized. On the other hand,
or the slowest frequency band, in which synchronous activity
s widespread in larger areas of the cortex, tuned electrodes are
pread all across premotor, somatosensory and primary motor
ortices. In the gamma band, which has been associated with
ognitive temporal binding (Makeig, 1993; Engel and Singer,
001), well-tuned electrodes are mainly localized in the pre-
otor area. For Patient 2, the electrodes to which the patient

esponded to stimulation with her hand (electrodes 2, 3) are
ighly tuned in the highest two frequency bands, whereas elec-
rodes that caused arm response (electrodes 14, 15) are highly
uned in the slow frequency, gamma, and fast gamma bands. The

ost widely spread tuned electrodes across the motor cortex are
vident in the fast gamma band.

While directional tuning provides a useful physiologic inter-
retation, it is subject to two issues when applied to ECoG.
he higher level of abstraction of ECoG signals compared to
ction and local field potentials previously discussed introduces
confound of specificity when using tuning for ECoG. Limited

patial resolution and broad frequency range make decoding of
otor information from ECoG recordings a challenging prob-

em. Since ECoG recordings can be considered as cumulative
ums of neural activity across a population, they yield broader
uning curves as seen in Fig. 11 compared to those of sharply
uned single-unit activities reported in the literature. This phe-
omena was also encountered by Mehring (Mehring et al., 2004)
ho showed that the P1, P2, N1, N2 features of LFPs were

bsent in movement onset averaged ECoG signals. Second, tun-
ng curves may change as a function of the delay used to align
eural activity with the execution of the movement. An optimal
elay time should yield higher tuning depths and would be in
he range of physiological reaction times of the movement. If
he neural activity is delayed more than an acceptable reaction

ime, the preferred direction of the tuning may change as an
rtifact of inaccurate time alignment between the activity and
and movement. In our simulations, we observed changes in the
referred direction across channels and frequency bands when

t
a
a
m

science Methods 167 (2008) 63–81 77

he neural activity was delayed by more than 200 ms. Plotting
uning depths as a function of delay time demonstrated peaks
round 100 ms for the majority of the channels and thus this was
hosen as the time duration we shift the neural activity for align-
ent with the hand movement. (For 10 Hz sampling frequency

his corresponds to a one sample shift).

.1.2. Sensitivity analysis applied to ECoG
Theoretical analysis of the spatio-temporal activation of coor-

inated neural ensembles has attempted to define the regions of
nterest involved in cortical processing however they are subject
o the problems described in Section 3.1.1. Here, we derive the
ctivation directly from the model and experimental ECoG data
s a function of the analyzed frequency band. A sensitivity anal-
sis (Sanchez et al., 2003a,b) can be performed by computing
he Jacobian of the output vector with respect to each neuronal
nput i as shown in (4). For a well trained model, this calculation
lso indicates which inputs are most important for modulating
he desired trajectory of the model. Hence, an electrode’s impor-
ance can be determined by simply reading the corresponding
eight value in the trained model, if the input data for every

hannel is power normalized. Since for ECoG data this is not the
ase, the electrode importance is estimated in the vector Wiener
lter by multiplying the absolute value of an electrode’s sen-
itivity with the standard deviation of its amplitude computed
ver the dataset as in (5). To obtain a scalar sensitivity value
or each electrode, the weight values are also averaged over the
wenty-five delays and output dimensions.

∂yj

∂xi

= W25(i−1)+1:25(i−1)+25,j (4)

i = σi

1

2

2∑

j=1

1

25

25∑

k=1

∣∣W10(i−1)+k,j

∣∣ (5)

In Fig. 12, the normalized sensitivity contours are presented
nd spatially arranged to match the electrode grids in Fig. 2A
nd B. Again, to provide context to the images, we have
uperimposed the position of the central sulcus as determined
hrough analysis of the MR images (Mehring et al., 2004). Sev-
ral trends can be observed here. First, we see that for both
atients the bands and the electrodes that best reconstructed the
and trajectory were highly localized in the primary motor and
omatosensory cortices with less activation in the premotor cor-
ex. Both the gamma and high-gamma oscillations produced
imilar activation localized in the premotor cortex. For Patient 1
he gamma activity was more strongly and diffusely represented
n the premotor cortex than Patient 2. The slow potentials pro-
uced diffuse activation broadly across the primary motor cortex
n Patient 1 with smaller activation in premotor while in Patient
the sensitive electrodes were primarily located in premotor and

o a lesser extent in primary motor cortex.
Comparing Figs. 11 and 12 we observe that there is overlap of
he peaks of Wiener filter sensitivity and tuning depth in cortical
reas over the same frequency ranges however the sensitivity
nalysis provides more discrete localization. For Patient 1, the
ost distinct localization is evident for the highest frequency
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Fig. 12. Regions of maximal sensitivity for each band. Significant channels in the gamma and fast gamma bands cluster in the premotor cortex while electrodes in
the ensemble and slow bands are in the primary motor cortex. The dotted white line indicates the location of the central sulcus as determined using MRI.
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ange. For the most sensitive electrode in the Wiener analysis
n this band, we observed that the largest Wiener coefficients
ere for the taps far into the past. This history is not reflected

nto the tuning analysis and hence the sensitivity of that elec-
rode is not reflected into a high tuning depth. In the case of
atient 2 and the gamma band, the two analysis techniques pro-
ided results that are complementary. Wiener sensitivity analysis
mphasizes the importance of the electrodes to which the patient
ielded a hand response, whereas tuning analysis demonstrates
igh tuning for the electrodes to which the patient yielded arm
esponse.

. Discussion

The neuroprosthetic testing design presented here indi-
ates how synergistic development of signal processing tools
ith experimental recording in clinical environments can open
ew possibilities for the advancement of rehabilitative neural
nterfaces. In the clinical setting, the needs of the recording
ardware for diagnosis do not necessarily coincide with the
eeds to expand the spectra of extracted control signals. Clinical
ased neurophysiological methods for analyzing neuromodula-
ion also takes advantage of human interaction and instructed
ehavior to elicit neural activation. Such interaction between
ubject and algorithm development is difficult to achieve in ani-
al paradigms involving operant conditioning. Human-based

losed-loop control studies will likely provide the necessary
otor control task complexity and feedback to assess control

eatures and quantify adaptation of neuromodulation in dynam-
cally changing neurorehabilitation environments.

By overcoming the limitations of human clinical ECoG
ecordings we have taken advantage of the neural ensemble
300 Hz to 6 kHz) activity which provides decoding opportuni-
ies that may form the basis for human ECoG neuroprostheses.
he advancement was made possible through the use of cus-

om amplification and DSP neural recording hardware. While
he external hardware to the patient plays a strong role in the
bility to extract spatially localized and temporally intermittent
ontrol signatures, the scale of the subdural electrodes internal
o the patient also play a role in the ability to resolve control
ommands. Therefore, one should be cautions of the choice of
lectrode technology used in ECoG recording. A systematic and
imultaneous evaluation of ECoG electrode scales is required in
he future.

Defining continuously varying feature vectors from ECoG for
eriving communication and control commands is a significant
hallenge in neuroprosthetic design. Building upon rate coding
heory and observations form visual, auditory, and motor ERD
tudies, this analysis indicated that the computation of “rate-
ike” amplitude modulations provides a viable control parameter
or producing neural interfaces capable of therapeutic perfor-
ance. We would like to present a note of caution here that

nlike rate codes in microelectrode recordings which can be

pecific to a single neuron, the amplitude modulations in ECoG
an be influenced by neuromodulation not related to movement.
or example, in the epileptic patients studied here, interictal
pikes could potentially bias the amplitude modulation. There-

c
E

science Methods 167 (2008) 63–81 79

ore, improvements in techniques for decoupling the relevant
euromodulation from noise is of critical importance.

In terms or sensorimotor rhythms, all frequency bands within
low, gamma, fast-gamma, and ensemble activation produce
ome contribution to the task indicating a mixture of experts
odeling approach using all frequency bands may also improve

erformance. Since each frequency band produces spatially dis-
inct activation, one approach to neuroprosthetic design may be
o tailor the extraction of the potentials to the patient using the
ignal processing techniques described here. The linking of the-
retical analysis of mesoscopic neuronal activation with data
riven signal processing techniques has provided a rich inter-
retation of the underlying physiology and provided insight for
he next steps in neuroprosthetic development.

While the performance of the trajectory reconstruction pro-
ides an indication that we have selected a viable control
arameter, the spatial activation of the amplitude modulations
eveal the different cortical organization during movement at dif-
erent frequency bands. Our working hypothesis is that they are a
ovel window to understand cortical organization during move-
ent in the absence of more specific brain theories, and they

re very useful to also implement neuroprosthetics. The short-
omings are several and need to be improved: (1) The model
ssumes stationarity so there is a lack of temporal resolution in
hese plots; (2) the models are trained with mean square error
o it is only capturing second order statistics of the relationships
etween brain signals and movement; (3) the sensitivity is only
otally reliable for accurate models (i.e. when the modeling error
s small); (4) the number of patients in this study is small (i.e.
his limits our ability to generalize the understanding of cortical
rganization). Nevertheless, methodology presented here pro-
ides a framework which others can apply to many other types
f behavioral studies to try to elucidate generalizations about
eural function.

Here, we have presented a technique based on amplitude
odulation in spontaneous ECoG activity for instantaneous

ursor control using an optimal signal processing perspective.
owever, as shown in this study, the trajectory reconstructions
ften have large variances due to the inability to control in
eal-time the contributions of electrodes containing neuronal
odulation not related to the task. Therefore, the ability to iden-

ify and separate spontaneous spatio-temporal distinct activity
rom noise in real-time is critical to the success of such an
pproach. This study as well as others (Mehring et al., 2004;
euthardt et al., 2003) is seeking to overcome these challenges

o show the great potential for patients to use multiresolution
eural activity to generate natural movements which could be
irectly translated into cursor control. In our next experiments,
e seek to optimally select ECoG electrodes that produce the
ost information for the trajectory reconstruction while finding
projection that decorrelates the noisy channels.
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