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Abstract
The notion that a computer can decode brain signals to infer the intentions of a human and then
enact those intentions directly through a machine is becoming a realistic technical possibility.
These types of devices are known as brain-computer interfaces (BCIs). The evolution of these
neuroprosthetic technologies could have significant implications for patients with motor
disabilities by enhancing their ability to interact and communicate with their environment. The
cortical physiology most investigated and used for device control has been brain signals from the
primary motor cortex. To date, this classic motor physiology has been an effective substrate for
demonstrating the potential efficacy of BCI-based control. However, emerging research now
stands to further enhance our understanding of the cortical physiology underpinning human intent
and provide further signals for more complex brain-derived control. In this review, the authors
report the current status of BCIs and detail the emerging research trends that stand to augment
clinical applications in the future.
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The notion that the brain can be directly accessed to allow a human being to control an
external device with his or her thoughts alone is emerging as a real option in patients with
motor disabilities. This area of study, known as neuroprosthetics, has sought to create
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devices, known as “brain-computer interfaces” (BCIs), that acquire brain signals and
translate them into machine commands such that they reflect the intentions of the user. In
the past 20 years, the field has rapidly progressed from fundamental neuroscientific
discovery to initial translational applications. Examples are seen in the seminal discoveries
by Georgopoulus and colleagues26,27 indicating that neurons in the motor cortex, taken as a
population, can predict the direction and speed of arm movements in monkeys.53 In
subsequent decades, these findings have been translated to increasing levels of brain-derived
control in monkeys and preliminary clinical trials in humans. 32,88 Another example is seen
in Pfurtscheller and colleagues’ work analyzing EEG.57–59 This group was one of the first to
describe the changes in amplitudes in the sensorimotor rhythms associated with motor
movement. As a result, researchers have used these signals to achieve basic levels of control
in humans with ALS and SCI.7,38,104 Early findings have sparked a growing interest within
the neurosurgical community for novel technical approaches in aiding patient populations
for whom treatment options thus far have been limited.

Fundamental to the evolution of neuroprosthetic applications, this brain-derived control is
dependent on our emerging understanding of cortical physiology as it encodes information
about intentions. For “output BCIs,” which allow a user to control an external device (rather
than artificially creating an internal perception), the majority of devices have been based on
the brain signal changes associated with movements of a contralateral limb. As a result, the
most likely candidates to benefit from current BCI platforms are patients whose motor
cortex is intact. Thus, patients with SCIs, neuromuscular disorders, and amputations all
stand to potentially benefit from current approaches.

In recent years, an emerging understanding of the role that cortical plasticity plays in device
control and how cortex encodes motor and nonmotor intentions as well as sensory
perception has led to new insights in brain function and BCI applications. These new
discoveries stand to expand the potential of neuroprosthetics in regard to both control
capability and the patient populations that will be served. In this review, we provided an
overview of current BCI modalities and emerging research on the use of nonmotor areas for
BCI applications, and we assessed their potential clinical impact.

Brain-Computer Interface: Definition and Essential Features
A BCI is a device that can decode human intent from brain activity alone to create an
alternate communication channel for people with severe motor impairments. More
explicitly, a BCI does not require the “brain’s normal output pathways of peripheral nerves
and muscles” to facilitate interaction with one’s environment.102,103 A real-world example
would entail a quadriplegic person controlling a cursor on a screen with signals derived from
individual neurons recorded in primary motor cortex (M1) without the need for overt motor
activity. It is important to emphasize this point: a true BCI creates a completely new output
pathway for the brain.

As a new output pathway, the user must have feedback to improve how they alter their
electrophysiological signals. Similar to the development of a new motor skill (for example,
learning to play tennis), there must be continuous alteration of a person’s neuronal output.
The output should be matched against feedback from the intended actions such that the
person’s output (swinging a tennis racket or altering a brain signal) can be tuned to optimize
his or her performance toward the intended goal (getting the ball over the net or moving a
cursor toward a target). Thus, the brain must change its signals to improve performance, but
the BCI may also be able to adapt to the changing milieu of the user’s brain to further
optimize functioning. This dual adaptation requires a certain level of training and a learning
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curve—both for the user and the computer. The better the computer and the user are able to
adapt, the shorter the training required for control.

There are 4 essential elements to the practical functioning of a BCI platform (Fig. 1): 1)
signal acquisition, the BCI system’s recorded brain signal or information input; 2) signal
processing, the conversion of raw information into a useful device command; 3) device
output, the overt command or control functions administered by the BCI system; and 4)
operating protocol, the manner in which the system is altered and turned on and off. All of
these elements act in concert to manifest the user’s intention to his or her environment.

Signal acquisition is some real-time measurement of the electrophysiological state of the
brain. This measurement of brain activity is usually recorded via electrodes. These
electrodes can be either invasive or noninvasive. The most common types of signals include
EEG, electrical brain activity recorded from the scalp;20,25,60,85,95 ECoG, electrical brain
activity recorded beneath the skull;40,42,73 field potentials, electrodes monitoring brain
activity from within the parenchyma;2 and “single units,” microelectrodes monitoring
individual neuron action potential firing.27,37,39,88 Figure 2 shows the relationship of the
various signal platforms in terms of anatomy and the population sampled. Once acquired,
the signals are then digitized and sent to the BCI system for further interrogation.

In the signal-processing portion of the BCI operation, there are 2 essential functions: feature
extraction and signal translation. The first function extracts significant identifiable
information from the gross signal; the second converts that identifiable information into
device commands. The process of converting raw signal into one that is meaningful requires
a complex array of analyses. These techniques can vary from the assessment of frequency
power spectra, event-related potentials, and cross-correlation coefficients for analysis of
EEG and/or ECoG signals to directional cosine tuning of individual neuron action potentials.
44,53,61 The impetus for these methods is to determine the relationship between an
electrophysiological event and a given cognitive or motor task. For example, after
recordings are made from an ECoG signal, the BCI system must recognize that a signal
alteration has occurred in the electrical rhythm (feature extraction) and then associates that
change with a specific cursor movement (translation). As mentioned above, it is important
for the signal processing to be dynamic such that it can adjust to the changing internal signal
environment of the user. In terms of the actual device output, this overt action is
accomplished by the BCI. As in the previous example, this action can result in moving a
cursor on a screen; other possibilities are choosing letters for communication, controlling a
robotic arm, driving a wheelchair, or controlling some other intrinsic physiological process
such as moving one’s own limb or controlling the bowel and bladder sphincters.41

An important consideration for practical applications is the overall operating protocol, which
refers to the manner in which the user controls how the system functions. The “how”
includes such things as turning the system on or off, controlling what kind of feedback is
provided and how fast, the speed with which the system implements commands, and
switching between various device outputs. These elements are critical for BCI functioning in
the real world application of these devices. In most current research protocols, the
investigator sets these parameters; in other words, the researcher turns the system on and off,
adjusts the speed of interaction, and defines very limited goals and tasks. The user must be
able to do all of these things by her- or himself in an unstructured applied environment.

Current BCI Platforms
Currently, 3 general categories of BCI platforms have been put forward as candidates for
clinical application. These categories are primarily determined by the source from which the
controlling brain signal is derived. The first category utilizes EEG, which measures brain
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signals acquired from the scalp. The second category, referred to as “single-unit systems,”
utilizes intraparenchymal microelectrodes that detect action potential firings of individual
neurons. The third is an intermediate modality in which electrodes acquire signals from the
cortical surface directly (either above or below the dura).

Electroencephalography-Based Systems
Electroencephalography-based BCIs use electrical activity recorded from the scalp.
7,10,20,38,47,49,51,54,62,93,104–106 Most BCI studies in humans have utilized EEG, probably
because this recording method is convenient, safe, and inexpensive. Nonetheless, it has
relatively poor spatial resolution given that a large brain area must be involved to generate
the necessary detectable signals.84 Despite this limitation, signals relevant to BCI research
can still be found in EEG recordings, including modulations of mu (8–12 Hz) or beta (18–25
Hz) rhythms produced by sensorimotor cortex. These rhythms show nonspecific changes
(typically decreases in amplitude) related to movements and movement imagery. They do
not contain specific information about the details of movements such as the position or
velocity of hand movements, which may be an important limitation because signals
associated with specific movement parameters are typically used in BCI systems based on
action potential firing rates. Another issue with EEG recordings is the size of the detected
amplitudes; they are very small, which makes them susceptible to artifacts created by
sources outside the brain such as electromyographic signals produced by muscle
contractions. Despite these potentially limiting issues, EEG-based BCIs have been shown to
support a higher performance than is often assumed, including accurate 2D47,104 and even
3D control of a computer cursor.50 To date, the majority of the clinical applications of BCI
technologies in people with severe motor disabilities have been demonstrated using EEG.
38,56,93 Ultimately, this intrinsic lack of signal robustness may have significant implications
for the chronic application of BCI systems in real-world environments. Brain-computer
interface systems based on EEG typically require substantial training6,104 to achieve
accurate 1D or 2D device control (~ 20 and 50 respective 30-minute training sessions),
although some authors have reported shorter training requirements.10 The shortcomings of
noise sensitivity and prolonged training are fundamental limitations in the scalability of the
widespread clinical application of EEG-based BCIs.

In summary, EEG has been shown to support much higher performance than previously
assumed and is currently the only modality shown to actually help people with paralysis.
However, because of its important limitations, it is not clear to what extent EEG-based BCI
performance, in the laboratory and clinical settings, can be further enhanced.

Single Neuron–Based Systems
From a purely engineering point of view, the optimal method of extracting electrical
information from the brain would be to place a series of small recording electrodes directly
into the cortical layers (1.5–3 mm) to record signals from individual neurons. This
procedure, in essence, is what single-unit action potential BCI systems do, and they have
been very successful for limited time periods in both monkeys14,78,88,94 and humans.32,37

To extract single-unit activity, small microelectrodes having ~ 20-μm-diameter tips are
inserted in the brain parenchyma where relatively large (for example, 300-μV) extracellular
action potentials are recorded from individual neurons from 10 to 100 μm away. These
signals are usually band pass–filtered from 300 to 10,000 Hz and then passed through a
spike discriminator to measure spike time occurrences. The firing rates of individual neurons
are computed in 10- to 20-msec bins and “decoded” to provide a high fidelity prediction to
control either a computer cursor or robot end point kinematics.27,52,97 Given its high spatial
resolution (100 μm) as well as its high temporal resolution (50–100 Hz), this modality
arguably provides the highest level of control in BCI applications.
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Unfortunately, there are 2 major problems with single-unit BCIs. First, the electrodes must
penetrate into the parenchyma where they not only cause local neural and vascular damage,
but also increase the chances for CNS infections.8 Second, single-unit action potential
microelectrodes are very sensitive to encapsulation. The insertion of penetrating devices into
brain parenchyma damages neurons and vasculature, which can initiate a cascade of reactive
cell responses typically characterized by the activation and migration of microglia and
astrocytes toward the implant site.8 The continued presence of devices promotes the
formation of a sheath composed partly of these reactive astrocytes and microglia.64,86 This
reactive sheath can have numerous deleterious effects, including neural cell death and
increased tissue resistance that electrically isolates the device from surrounding neural
tissue. 5,99 Research into novel biomaterial coatings and/or local drug delivery systems that
can reduce the foreign body response to implanted electrodes is ongoing, but we are far from
clinical application as yet.1,79,82 Until these issues are solved, there is little hope of building
a long-term BCI system based on single-unit activity.

Electrocorticography-Based Systems
Over the past 5 years, the use of ECoG as a signal platform for BCI has gained mounting
enthusiasm as a more practical and robust platform for clinical application. As detailed
above, both EEG and single unit–based systems are not optimal for large-scale clinical
application. This limited utilization is due either to prolonged user training and poor signal-
to-noise limitations for EEG, or to an inability to maintain a consistent signal for current
single-unit constructs.8,86,104 Thus, the use of ECoG has been posited to be an ideal tradeoff
for practical implementation.42 Compared with EEG, the signal in ECoG is substantially
more robust. Its magnitude is typically 5 times larger, its spatial resolution is much greater
(0.125 vs 3.0 cm for EEG), and its frequency bandwidth is significantly higher (0–500 vs 0–
40 Hz for EEG).11,25 Of particular note, the access to higher frequency bandwidths carries
particularly useful information amenable to BCI operation. Data from many studies have
demonstrated that different frequency bands carry specific and anatomically distinct
information about cortical processing. The lower-frequency bands known as mu (8–12 Hz)
and beta (18–26 Hz), which are detectable with EEG, are thought to be produced by
thalamocortical circuits and show broad anatomical decreases in amplitude in association
with actual or imagined movements.34,43,61,68 The higher frequencies appreciable only with
ECoG, also known as gamma band activity, are thought to be produced by smaller cortical
assemblies. Gamma activity shows a close correlation with the action potential firing of
tuned cortical neurons in M1 in monkey models.31 Additionally, these high-frequency
changes have been associated with numerous aspects of speech and motor function in
humans.15–17,42,72 Beyond the greater information content, because the ECoG signal is
recorded from larger electrodes that do not penetrate the brain, these constructs should have
a greater likelihood for long-term clinical durability. This expectation of good long-term
stability of ECoG sensors is supported by pathological and clinical evidence. For example,
in cat and dog models, long-term subdural implants have shown minimal cortical or
leptomeningeal tissue reactions while maintaining prolonged electrophysiological recording.
13,45,46,107 In addition, preliminary work in humans has shown stability in using the
implantable NeuroPace device for the purpose of long-term subdural electrode monitoring
for seizure identification and abortion.96

The use of ECoG for BCI applications has been studied primarily in motor-intact patients
with intractable epilepsy requiring invasive monitoring. Similar to EEG-based BCI systems,
the ECoG approach has generally focused on changes in sensorimotor rhythms from motor
cortex. What has been distinct, however, is the access to the higher-frequency gamma
rhythms with ECoG. The utilization of these higher-frequency rhythms has provided a
significant advantage with regard to training requirements and multidimensional control. In
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2004 Leuthardt et al.42 demonstrated the first use of ECoG in closed-loop control in a 1D
cursor control task with minimal training requirements (< 30 minutes). In additional
experiments, the same group of authors and others have demonstrated that specific
frequency alterations encode very specific information about hand and arm movements.
42,63,70,72 In 2006 Leuthardt et al.40 further demonstrated that ECoG control using signals
from the epidural space was also possible. Recently, Schalk et al.74 have demonstrated that
ECoG signals can be used for 2D control. The results showed that the ECoG-based BCI
system’s performance was within the range of that shown before using invasive single-unit
systems. Because the electrode arrays cover broad regions of cortex, several groups have
begun to explore alternate cognitive modalities and their relevant cortical physiologies to
expand BCI device control. Felton et al.21 have shown that sensory imagery, in addition to
motor imagery, can be used for device control. The same group also demonstrated that
auditory cortex could be trained to acquire simple control of a cursor.100 Ramsey et al.67

have shown that higher cognitive functions, such as working memory in dorsolateral
prefrontal cortex, can also be used for effective device operation.

Taken together, these studies show that ECoG signals carry a high level of specific cortical
information and can allow a user to gain control rapidly and effectively. It is worth noting
that these control paradigms have not been extended to motor-impaired patients thus far.
How these cortical signals will be affected in the setting of an SCI or ALS has not been
explicitly tested.

Emerging Research in Cortical Physiology and BCI Implications
As detailed above, from single-cell to macroscopic cortical population recordings, the
majority of brain signals used for BCI control have been based on primary motor cortical
physiology. From an output BCI standpoint, this physiology most clearly and directly
reflects a user’s intentions to interact with the world, namely, to use his or her limbs and
hands to interact with the environment. In several preliminary trials these various
approaches have shown promise for enhancing the lives of patients with SCI and
neuromuscular disorders. Although a superb starting point, there are other
neurophysiological substrates that could further improve or complement existing control
paradigms, allow new forms of control, and expand the range of patient populations that
might benefit from a BCI (Fig. 3).

Ipsilateral Motor Physiology: Potential Applications for Additional Control Signals and
Hemispheric Stroke

To date, BCIs have been put forth as novel engineering approaches to enhance
communication and control in patients who have intact cortex but lack motor control
because of brainstem stroke, SCI, or peripheral neuromuscular dysfunction. With requisite
improvements in performance and robustness, these systems have the potential to help tens
of thousands of motor-disabled patients; however, these approaches offer little hope to the
4.6 million suffering from hemispheric stroke or traumatic brain injury. Hemiparesis is one
of the most common reasons for their disability, and often it is hand function that is left
chronically impaired.29,92 The US health care costs attributable to hemispheric stroke
exceed $29 billion.89 This source of disability is a vastly underserved population in regard to
restorative interventions. The majority of BCI methodologies are based on a functioning
motor cortex capable of controlling the contralateral limb. This exact situation does not exist
in unilateral stroke. As a result, current BCI techniques have a limited potential to impact
functional improvements for the largest motor-disabled population. In recent years, there has
been an evolving appreciation of how ipsilateral motor and motor-related areas participate in
ipsilateral movements in both healthy and stroke-affected patients. These findings have
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prompted further exploration into the underlying cortical physiology as a possible substrate
for neuroprosthetic application.

Currently, how the motor cortex is involved with ipsilateral limb movements in humans
varies depending on whether primary or premotor cortex is considered. For M1, early
evidence has supported the notion that ipsilateral activity is the result of transcallosal
inhibition. Transcranial magnetic stimulation of M1 has shown reduced electromyographic
responses when preceded by a conditioning pulse to the opposite hemisphere.22

Additionally, Newton et al.55 have demonstrated that there is a negative baseline change in
the fMR imaging bold response in M1 associated with ipsilateral movements, and they have
postulated that it represents increased inhibition. Distinct from the inhibition associated with
ipsilateral M1, the premotor cortex appears more involved in the active planning of a given
movement. In healthy persons, fMR imaging shows that there is more robust bilateral
activation of the dorsal premotor cortex with either contralateral or ipsilateral hand
movements.36 Using MEG, Huang et al.33 have demonstrated that ipsilateral premotor areas
have dipole peak latencies that significantly precede contralateral M1 sensorimotor cortex in
performing unilateral finger movements. These findings were posited to support more of a
motor planning role in ipsilateral finger actions.

Until recently, definitive electrophysiological studies to parse out the manner and extent to
which ipsilateral cortex physiologically encodes hand movements have been limited in
humans. Most researchers to date have relied on EEG. Consistent with fMR imaging and
MEG findings that active changes appear to be associated with bilaterally represented motor
planning, ipsilateral hand movements have been shown to induce alterations in cortical
potentials prior to movement, which have been referred to as the “premotor positivity.”80,87

Additionally, spectral analyses of EEG signals have shown low-frequency amplitude
changes associated with various hand and finger movements that are bifrontally located.48

Data in these studies further support the notion that the ipsilateral cortex is likely involved
with the planning of both ipsilateral and contralateral movements. The EEG modality,
however, is limited by poor spatial resolution and restricted spectral bandwidth. Wisneski et
al.101 have used ECoG to more definitively define this physiology in 6 motor-intact patients
undergoing invasive monitoring for seizure localization. Electrocorticographic signals were
recorded while the patients engaged in specific ipsilateral or contralateral hand motor tasks,
including opening and closing the hand and operating a joystick. Spectral changes were
identified with regard to frequency, location, and timing. Data in this study have shown that
ipsilateral hand movements are associated with electrophysiological changes occurring in
lower-frequency spectra (average 37.5 Hz), at distinct anatomical locations (most notably in
premotor cortex), and earlier (by 160 msec) than changes associated with contralateral hand
movements. Given that these cortical changes occurred earlier and were localized
preferentially in premotor cortex as compared with those associated with contralateral
movements, the authors postulated that ipsilateral cortex is more associated with motor
planning than its execution. Additionally, these changes were quite distinct from those
associated with contralateral motor movements, which were more dominantly associated
with higher gamma rhythms (average 106.9 Hz). In a more recent analysis, these low
frequencies associated with joystick movements appeared to have a higher information
content in decoding velocities of joystick movements.3 Thus, the cortical changes associated
with ipsilateral motor movements are not simply nonspecific movement-related alterations
but rather represent specific motor kinematics (that is, the direction of the joystick
movement). Taken together, in healthy motorintact humans, there appears to be cortical
activity ipsilateral to the hand activity that is distinct from activity associated with
contralateral hand movements, associated with planning rather than execution, and encodes
specific information about the motor movement.
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The separable cortical physiology and anatomy that distinguishes ipsilateral and
contralateral hand movements can provide additional signal features for device control.
Thus, in the clinical situations in which the brain is intact and motor output is impaired (for
example, SCI and ALS), these ipsilateral-derived signals can provide an additional
dimension of control that supplements current BCI paradigms. This ipsilateral physiology
may allow a doubling of the degrees of freedom that a user can achieve from an implanted
prosthetic. For example, if one can achieve 2 dimensions of control with contralateral related
physiology (as has been shown74), further control may be supplemented by the addition of
control signals derived from independent ipsilateral signals. These dual physiologies could
allow an additional “click function” superimposed on the 2D movements or could summate
to allow multidimensional control of a more complex machine such as a robotic arm (3D
movement) with a grasper (1D movement). The earliest demonstration of ipsilateral-derived
control was recently documented by Wisneski et al.101 Using ECoG, these authors showed
that control comparable to contralateral-derived control could be achieved by using the
anatomical sites or the lower-frequency amplitude changes distinctive to ipsilateral
movements.

In the setting of stroke, premotor cortex appears to play a role in patients with poor
functional recovery. Functional imaging has shown these severely affected patients to have
increased activity in the premotor regions of their unaffected hemispheres.77,98 The exact
role this activity plays is unclear. It may simply be an indicator of a more severe outcome91

or an adaptive mechanism to optimize an already poor situation.28,36 Note, however, that
transcranial magnetic stimulation suggests that interference with this activity will worsen the
already compromised or negligible function.36 Thus, incomplete recovery and its association
with heightened ipsilateral activation may reflect the upregulation of motor planning with an
inability to execute or actuate the selected motor choice.

Consequently, in the scenario of hemispheric stroke with contralesional premotor
upregulation, a BCI may provide a unique opportunity to help actuate the nascent premotor
commands. By detecting the brain signals associated with these motor choices, the BCI may
convert these signals into machine commands that can control a robotic assist device that
will allow improved hand function (that is, a robotic glove that opens and closes the hand).
The BCI would allow the ipsilateral premotor cortex to bypass the physiological bottleneck
determined by the small and variable percentage of uncrossed motor fibers. This new
methodology would allow the restoration of function in chronically and severely affected
patients for whom methods of rehabilitation have not provided a sufficiently functional
recovery (Fig. 4). In the past year, the first demonstration of this principle of utilizing
ipsilateral motor signals for device control has been demonstrated with MEG in patients
with stroke.12,36

In the future the extent to which ipsilateral cortex encodes complex motor kinematics such
as finger and limb movements remains to be resolved. Additionally, how this ipsilateral
motor encoding is affected by a stroke on the opposite side and whether it will impact brain-
derived device control requires further study. Despite current unknowns, the recent
evolution in the understanding and application of neuroprosthetic methods toward ipsilateral
motor processing provides hope for an alternative nonbiological approach to ameliorating
one of the largest causes of disability in the world. If successful, these techniques could
provide a mechanism by which a BCI could achieve “bisomatic” control—a neuroprosthetic
that can enable a single hemisphere to facilitate control of both sides of the body.

Utilization of Speech for BCI Control
Brain activity associated with speech and/or auditory processing is another possible
candidate for use in BCI applications. Speech processing has been extensively studied using
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different types of neuroimaging (for example, using PET or fMR imaging),
neurophysiological functional mapping (for example, MEG or ECoG), lesional models, or
behavioral studies.15,18,23,65,66,81,90 These and other studies have shown that speech
processing involves a widely distributed network of cortical areas located predominantly in
the temporal perisylvian regions.76,83 In particular, these regions include the Wernicke
center and Broca center. The Wernicke center is located in the posterosuperior temporal lobe
and is thought to be responsible for receptive language; the Broca center is located in the
anterior frontal gyrus and is associated with expressive language.4,23,90 Other findings have
suggested that left premotor cortex also plays a major role in language tasks, in particular for
the planning of articulation and speech production.19,30 Cumulatively, these studies have
revealed at least 4 different components involved in different aspects of speech processing.
The first component consists of the M1 and medial cerebellum, which are involved in
motoric aspects of speech production. The second component consists of anterosuperior
temporal regions, which are activated bilaterally by the auditory stimulation provided by
one’s own vocalizations. The third component, the left posterior temporal regions,
contributes to acoustically based phonological analysis. The fourth and final component, the
left inferior frontal and anterior insular regions, contributes to articulatory-based
phonological analysis.

Given the numerous cortical networks associated with speech and the intuitive nature by
which people regularly imagine speech, both the separable physiology and the cognitive task
of utilizing speech may provide ideal control features that can be used either independently
or as an adjunct to motor-derived control. Some authors have begun to explore the value of
these speech or auditory networks for the purpose of neuroprosthetic applications. A recent
study utilizing fMR imaging has shown that signals from different brain areas allow
categorization into 1 of 2 phonemes.24 Other authors have begun using ECoG. Wilson et al.
100 first demonstrated that auditory cortex could be used for real-time control of a cursor. A
more recent study has shown initial evidence that some phonemes are separable during
actual speech.9 In ongoing studies, we are determining whether groups of spoken or
imagined words—those that contain different phonemes—can be differentiated using ECoG
signals.71,75 In this paradigm, patients are presented with either auditory or visual cues and
are asked to repeat or imagine repeating the presented word. Each word belongs to 1 of 4
phonemic categories. The results of our comprehensive study, which includes 9 participants,
demonstrate that ECoG signals, those in the gamma band in particular, differentiate between
speech or imagined speech and rest. Our data also show that ECoG carries substantial
information about the category of the words, either when the patient is speaking the words
or simply imagining the word.

In summary, researchers are beginning to explore the value of ECoG signals in speech or
auditory cortices for the purpose of BCI applications. The results to date have revealed
preliminary but encouraging evidence that information in these areas could provide signals
that might complement traditional motor-based signals.

Nascent Cortical Plasticity as an Alternative Approach for Acquiring Control Signals
Most authors using cortical activity for BCI control first have the users perform a series of
“open-loop” activities to identify a cognitive action (for example, motor or speech intent)
that maximally affects a given cortical region. For instance, electrodes over the hand area of
motor cortex are best modulated with contralateral finger movements, whereas the Broca
center is best controlled by jaw movements. When applying these techniques in paralyzed
individuals who cannot actively move their limbs, researchers have the patients imagine
moving their affected limb to elicit cortical activations. Once a differential activation is
found, the researchers “close the loop” using this signal and allow the patients to directly
control an artificial device through imagined movements. Through biofeedback the patients
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quickly adapt their neural activity—putatively through neural plasticity—to increase
accuracy and independence among the control channels.42,74

In studies involving nonhuman primates, researchers have not been able to directly instruct a
monkey to imagine moving a limb; thus, to reliably control a BCI without prescreening
requires online adaptation of the decoding algorithm, cortical activity, or both (that is,
coadaptation). For instance, Jarosiewicz and colleagues35 have used bio-feedback to
enhance single-unit BCI control of 3D computer cursors.88 In a 2002 study, Taylor and
colleagues88 first randomized the decoding vectors (that is, preferred directions) and then
allowed the animal to attempt to control the 3D cursor via single-unit activity. By tracking
the errors, the decoding algorithm updated the weights over time to increase accuracy.
Furthermore, the animal modified the firing rates of the cortical neurons controlling the
cursor such that their responses matched the underlying tuning model (that is, they became
more cosine tuned). In a 2008 study, Jarosiewicz and associates35 expanded on this research
by showing that neurons that have had their decoding vectors specifically modified to yield
errors in control will eventually reduce their firing rates to eliminate errors in the population
response (only a subset of the neurons had its decoding vectors modified to yield errors).
Recently, Rouse and colleagues69 have used epidural ECoG recordings in monkeys to
control 2D computer cursors for both point-to-point movements and circular drawing. By
randomly choosing 2 epidural cortical locations spaced several millimeters apart, monkeys
were able to modulate the high gamma band power under these 2 electrodes to control the
horizontal and vertical velocity of the cursor. Using biofeedback solely (that is, no
adaptation in the decoding algorithm), the monkeys were able to train the population of
neurons under each 380-μm micro-ECoG electrode to accurately modulate its high gamma
band activity to control the 2D cursor. Given that the horizontal and vertical dimensions
were controlled by separate electrodes spaced only a few millimeters apart, the initial cursor
movements were highly correlated because of the gamma band correlations in that area.
After a week of training, however, the monkeys learned to independently control the gamma
band activity under each electrode such that the activity completely decorrelated in the
circular drawing task (Fig. 5).

These findings support another route for acquiring signals that can be used for BCI device
control. Instead of identifying and decoding a cortical physiology that reflects an existing
cognitive intention (for example, speech and motor intentions), one can capitalize on the
nascent plastic ability of the brain to alter its own activity based on feedback. This plasticity
allows for any region of the brain to be a potential substrate for signals for neuroprosthetic
control. Preliminary studies utilizing ECoG in invasively monitored humans have shown
that various sites of nonsensorimotor regions can be trained to alter their cortical physiology
to achieve rapid control.100 This notion of direct feedback to a given area of the brain to
create the needed signal output could greatly expand the number of features available for
more complex control. Additionally, because any region of cortex could be a source of
signal for control, this method might have applications in more heterogeneous populations
(for example, brain trauma) in which the implant may need to be tailored to their respective
region of functional and dysfunctional cortex.

Conclusions
The field of neuroprosthetics is growing rapidly. The cortical physiology that underpins the
manner in which a human brain encodes intentions is beginning to be understood and will
have significant impact in augmenting function in those with various forms of motor
disabilities. As research stretches beyond motor physiology, the field of neuroprosthetics
stands to further expand its applications and the diversity of the clinical population served.
Our evolving understanding of cortical physiology—as it relates to ipsilateral limb
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movements, language function, and plasticity—could provide higher levels of complexity in
brain-derived control and extend to populations such as those with hemispheric stroke or
brain trauma, who are not currently helped by existing BCI methodologies. Given the rapid
progression of these technologies over the past 5 years and the concomitant swift ascent of
computer processing speeds, signal analysis techniques, and emerging ideas for novel
biomaterials, neuroprosthetic implants will in the near future be as common as deep brain
stimulators are today. The clinical advent of this technology will usher in a new era of
restorative neurosurgery.

Abbreviations used in this paper

ALS amyotrophic lateral sclerosis

BCI brain-computer interface

ECoG electrocorticography

EEG electroencephalography

fMR functional MR

MEG magnetoencephalography

SCI spinal cord injury
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Fig. 1.
Schematic showing essential features and components of a BCI. There are 4 essential
elements to the practical functioning of a BCI platform: 1) signal acquisition, the BCI
system’s recorded brain signal or information input; 2) signal processing, the conversion of
raw information into a useful device command; 3) device output, the overt command or
control functions administered by the BCI system; and 4) operating protocol, the manner in
which the system is turned on and off and the way in which the user or a technical assistant
adjusts the parameters of the previous 3 steps in converting intentions to machine
commands. All of these elements act in concert to manifest the user’s intention to his or her
environment.
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Fig. 2.
Drawing depicting the signals for BCI and their locations relative to the brain. Three general
categories of signals are used for BCI applications.
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Fig. 3.
Schematic showing a summary of the cortical sites and modalities used for BCI. The 3
fundamental signal modalities currently being explored include EEG, ECoG, and single-unit
systems that record action potential firing from single neurons.
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Fig. 4.
Diagram showing ipsilateral BCI for hemispheric stroke. In the normal physiological
scenario (A) motor planning is represented in both hemispheres and motor execution is
accomplished by the contralateral M1. In the setting of stroke (B), contralateral primary
motor and motor-associated cortex is lost. Premotor cortex ipsilateral to the affected limb is
left unaffected. There is an increase in ipsilateral premotor activity following hemispheric
stroke. Thus, in the scenario of hemispheric stroke with contralesional premotor
upregulation, a BCI can provide a unique opportunity to aid in actuating the nascent
premotor commands. A BCI detects the brain signals associated with these premotor
commands (C) and converts these signals into machine commands that can control a robotic
assist device, which would in turn allow improved hand function (that is, a robotic glove that
opens and closes the hand). The BCI allows the ipsilateral premotor cortex to bypass the
physiological bottleneck determined by the injured contralateral M1 and small, variable
percentage of ipsilateral uncrossed motor fibers.
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Fig. 5.
Utilizing cortical plasticity for device control. To achieve 2D control, the amplitude of the
signal between 65–100 Hz from one epidural ECoG electrode was used as the control for the
horizontal velocity of the cursor, and a separate electrode was used for the vertical velocity
of the cursor. The 2 sites were ~ 1 cm apart. For the monkey to improve his performance in
a circle-drawing task, it must gain independent control of the 2 signals being used for
control. For a perfectly drawn circle, the overall correlation between the 2 signals will be 0.
This decorrelation could be done either indiscriminately across all frequencies or only
within the frequency band being used for control. To examine what actually occurred during
the experiment, the power spectrum was calculated for the 2 recorded signals in 300-msec
nonoverlapping time bins. The correlation between the powers at each given frequency for
the 2 different channels was then calculated for all points in time. Graph showing that the
correlation between the recording sites decreased across most frequencies but most
dramatically between 65–100 Hz. Therefore, these data clearly show that through
biofeedback, motor cortex is quite adaptable to learning and improving BCI control.
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