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Abstract
Brain-computer interface (BCI) technology can provide nonmuscular communication and control to
people who are severely paralyzed. BCIs can use noninvasive or invasive techniques for recording
the brain signals that convey the user’s commands. Although noninvasive BCIs are used for simple
applications, it has frequently been assumed that only invasive BCIs, which use electrodes implanted
in the brain, will be able to provide multidimensional sequential control of a robotic arm or a
neuroprosthesis. The present study shows that a noninvasive BCI using scalp-recorded EEG activity
and an adaptive algorithm can provide people, including people with spinal cord injuries, with two-
dimensional cursor movement and target selection. Multiple targets were presented around the
periphery of a computer screen, with one designated as the correct target. The user’s task was to use
EEG to move a cursor from the center the screen to the correct target and then to use an additional
EEG feature to select the target. If the cursor reached an incorrect target, the user was instructed not
to select it. Thus, this task emulated the key features of mouse operation. The results indicate that
people with severe motor disabilities could use brain signals for sequential multidimensional
movement and selection.

1. Introduction
Brain activity produces electrical signals that are detectable on the scalp, on the cortical surface,
or within the brain. Brain-computer interfaces (BCIs) translate these signals from mere
reflections of brain activity into outputs that communicate the user’s intent without the
participation of peripheral nerves and muscles (Wolpaw et. al., 2002). Because they do not
depend on neuromuscular control, BCIs can provide communication and control for people
with devastating neuromuscular disorders such as amyotrophic lateral sclerosis (ALS),
brainstem stroke, cerebral palsy, and spinal cord injury. The central purpose of BCI research
and development is to enable these users, who may be totally paralyzed ("locked in," unable
even to breath or to move their eyes), to convey their wishes to caregivers, to use word-
processing programs and other software, or even to control a robotic arm or a neuroprosthesis.

BCIs can be either noninvasive or invasive. Present-day noninvasive BCIs derive the user’s
intent from scalp-recorded electroencephalographic (EEG) activity. They are clearly capable
of providing basic communication and control to people with severe disabilities (e.g.,
Birbaumer et. al., 1999; Muller-Putz et. al., 2005; Sellers et al., 2006). Present-day invasive
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BCIs derive the user’s intent from neuronal action potentials or local field potentials recorded
from within the cerebral cortex or from its surface. They have been studied mainly in non-
human primates and to a limited extent in humans (Chapin et. al., 1999; Wessberg et al,
2000; Serruya et al, 2002; Taylor et. al., 2002; Carmena et al, 2003; Pesaran et al, 2002;
Andersen et al, 2004; Leuthart et al, 2004; Hochberg et al, 2006). These invasive BCIs face
substantial technical difficulties and involve clinical risks. Recording electrodes must be
implanted in or on the cortex and function well for long periods, and they risk infection and
other damage to the brain. The drive to develop invasive BCI methods is based in part on the
widespread conviction (Fetz, 1999; Chapin, 2000; Nicolelis, 2001; Konig, and Verschure,
2002; Donoghue, 2002) that only invasive BCIs will be able to provide users with real-time
multidimensional sequential control of a robotic arm or a neuroprosthesis.

Nevertheless, in an early study (Wolpaw and McFarland 1994) we showed that a noninvasive
BCI that uses scalp-recorded EEG activity (i.e., sensorimotor rhythms) can provide humans
with multidimensional movement control. Furthermore, in a recent study (Wolpaw and
McFarland, 2004), we showed that a noninvasive EEG-based BCI that incorporates an adaptive
algorithm and other technical improvements can give humans multidimensional movement
control comparable in movement time, precision, and accuracy to the control achieved by
invasive BCIs in monkeys (Serruya et al, 2002; Taylor et al, 2002; Carmena et al, 2003) or
humans (Hochberg et al., 2006).

In prior multidimensional studies, the BCI user (monkey or human) was presented with a single
target in each trial, and the task was to move the cursor to the target. Thus, an error occurred
only when the trial timed out before the target was reached. This laboratory task is less
demanding than most real-world tasks, in which incorrect selections can occur and have
consequences (e.g., the user selects the wrong letter or icon and must erase it). The present
study emulates the more realistic real-life situation: the user is presented with multiple targets
only one of which is correct, moves the cursor to a target, and then either selects it (if it is the
correct target) or does not select it (if it is not the correct target). In this task, the user’s EEG
provides three distinct control signals: two to simultaneously control vertical and horizontal
movements, respectively; and the third to select or reject a target once it is reached. This task
closely approximates real-world tasks such as using a mouse to move a cursor among the icons
on a screen until it reaches the desired icon, and then pressing the mouse button to select that
icon. The results show that a noninvasive EEG-based BCI can provide people with sequential
as well as multidimensional control.

2. Methods
Our sensorimotor-rhythm-based BCI methodology has been fully described previously
(Wolpaw and McFarland 2004; McFarland et al, 2006b) and is summarized here. The new
procedures relating to sequential operation and target selection are described in detail.

Users
The BCI users were six adults, three women and three men, ages 24–56. Two of the men had
spinal cord injuries (one at T7 and one at C6) and were confined to wheelchairs. All gave
informed consent for the study, which had been reviewed and approved by the New York State
Department of Health Institutional Review Board. Four of these users had no prior BCI
experience. The two users with spinal cord injury had previously participated in other BCI
studies (e.g., Wolpaw and McFarland, 2004; McFarland et al, 2005).
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BCI Training Protocol and Data Collection
The user sat in a reclining chair facing a 51-cm video screen 3 m away, and was asked to remain
motionless during performance. Online operation and data collection were supported by the
general-purpose BCI software platform, BCI2000 (Schalk et al, 2004). Scalp electrodes
recorded 64 channels of EEG (Sharbrough et al., 1991), each referenced to an electrode on the
right ear (amplification 20,000; bandpass 0.1–60 Hz). All 64 channels were digitized at 160
Hz and stored for later analysis. A subset of channels located over sensorimotor cortex (see
Table 1) were used to control online cursor movement and target selection online as described
below. Each user completed 2–3 sessions per week. Each session consisted of eight 3-min runs
separated by 1-min breaks, and each run consisted of 20–30 trials.

The user first learned a one-dimensional vertical cursor movement task in which two targets
appeared, one at the top of the screen and one at the bottom. In each trial, one of the targets
was red (i.e., correct) and one was green (i.e., incorrect). The location of the red target for each
trial was randomly determined. The cursor began in the middle of the screen and moved
vertically until it reached a target, at which point the trial ended. The user’s goal was to move
the cursor to the red target. If it moved to the green target, an error was registered. Vertical
cursor movement was controlled by a combination of sensorimotor-rhythm features as
described below. After learning this vertical movement task, the user learned a comparable
one-dimensional horizontal cursor movement task in which the two targets appeared at the
right and left edges of the screen, and horizontal cursor movement was controlled by a different
combination of sensorimotor-rhythm features. Early in training, users typically employed
motor imagery to control the cursor. As their skill developed, imagery tended to become less
important.

After mastering both one-dimensional tasks, the user employed the two sets of sensorimotor-
rhythm features to control both horizontal and vertical movement simultaneously. Four targets
were presented, one in the middle of each edge of the screen, and the goal was to reach the
single red target while avoiding the three green targets. The location of the red target for each
trial was randomly determined. Targets on the top and bottom edge were 20 % of the screen
in width and 10 % of the screen in height. Targets on the right and left screen edge were 10 %
of the screen in width and 20 % of the screen in height. Thus each target occupied 2% of the
workspace. Once a target was reached, the user employed a third set of sensorimotor-rhythm
features to select the target (if it was red) or to reject it (if it was green). This completed the
trial. (Users were instructed to select the target by imagining grasping it with the his/her right
hand only if it was red.)

Figure 1 illustrates the sequence of events in each trial. First, the four targets appeared. One
sec. later, the cursor appeared in the middle of the screen and began to move both horizontally
and vertically under the control of the user’s EEG. When the cursor made contact with a target,
the cursor and the other targets disappeared and the contacted target turned blue for 1.5 sec.
During this period, the user employed the third set of sensorimotor-rhythm features to select
or not select the target. If the target was selected, it turned yellow for 1 sec. If it was not selected,
it simply disappeared and the screen was blank for 1 sec. The screen was then blank for a 1-
sec. inter-trial period, and the next trial began. Thus, each trial consisted of a 1-sec period
between target appearance and cursor movement, a variable period during which cursor
movement occurred, a 1.5-sec post-movement selection period, a 1-sec post-trial feedback
period, and a 1-sec inter-trial interval.

Control of Cursor Movement
To control each dimension (horizontal or vertical) of cursor movement, two EEG channels
(one over sensorimotor cortex of each hemisphere) were derived from the digitized data
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according to a large (i.e., 6-cm interelectrode distance) Laplacian transform (McFarland et al.,
1997b). The specific channels used for each subject are shown in Table 1. Every 50 msec, the
most recent 400-msec segment from each channel was analyzed by a 16th order autoregressive
algorithm (Marple, 1987) that was used to compute an estimation of the spectrum. Next the
amplitude (i.e., square root of power) was calculated from the spectrum for 3-Hz-wide
sensorimotor-rhythm frequency bands centered between 8 and 26 Hz (most commonly in the
mu (8–12 Hz) or beta (18–26 Hz) frequency range). The amplitudes in these specific frequency
bands from specific EEG channels constituted the signal features that conveyed the user’s
intent. One or more of these features were combined to comprise the control signal (i.e., the
independent variable) in a linear equation that controlled a dimension of cursor movement
(McFarland et. al., 1997a). That is, if ΔV was the vertical cursor movement, Sν was the control
signal for vertical movement, bν was the gain, and aν was the mean of the vertical control signal
for the user’s previous performance (see below),

(1)

was the function that determined each vertical cursor movement. (This form of the linear
equation is used so that a and b can be defined independently of each other.) Similarly, if ΔH
was the horizontal cursor movement,

(2)

was the function that determined horizontal cursor movement. Movements in each dimension
occurred simultaneously 20 times per sec.

For each dimension, the intercept a was defined as the average value of the corresponding
signal, S, for 12 trials consisting of the three most recent trials for each of the four possible
locations of the red target (McFarland et. al., 1997a). Thus, the intercept minimized directional
bias, maximized the influence that the user’s EEG control had on the direction (e.g., upward
or downward) of cursor movement, and helped make all targets equally accessible. The slope
(or gain) b determined the magnitude of the cursor movement for a given value of (S − a). The
slope was automatically selected so as to provide similar horizontal and vertical movement
(i.e., the same aspect ratio as the screen resolution in pixels), and to produce cursor movement
periods that typically lasted 2 to 3 sec.

Control of Target Selection
Like each dimension of cursor movement, target selection was controlled by a linear equation
in which the control signal comprised a weighted combination of sensorimotor-rhythm features
from channels over sensorimotor cortex, usually on the left side. The frequencies and locations
of the features used for each subject are shown in Table 1. If G was the target selection signal,

(3)

was the function that determined target selection. The target was selected when the value of
this function was below zero (i.e., when imagery-related desynchronization occurred), and was
rejected if the value was equal to or greater than zero. The intercept a was defined as the average
value of the control signal over the last 12 trials. The slope b remained at a value of 1 throughout
since the selection was simply determined by whether the value of G was positive or negative.
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Feature Selection and Weights
As noted above, the signal features that controlled cursor movement and target selection were
amplitudes in 3-Hz wide frequency bands with center frequencies between 12 and 30 Hz, and
came from EEG channels located over sensorimotor cortex. C3 and C4 were the most common
channels (Table 1). For each user, channel and frequency selections at the beginning of training
were based on the initial screening data (Wolpaw and McFarland, 1994). As training
progressed, they were modified on the basis of results using a stepwise regression analysis
(McFarland and Wolpaw, 2005). Separate regression equations were evaluated for prediction
of horizontal target position, vertical target position, and target selection. During on-line
performance, feature weights for these three regression equations were updated at the end of
each trial with the LMS algorithm (Hayken, 1996). This continual adaptation used past
performance to optimize the feature weights (Wolpaw and McFarland, 2004).

To assess the potential value of controlling cursor movement with weighted combinations of
mu and beta rhythm amplitudes from channels FC3, FC1, FCz,FC2, FC4,
C3,C1,Cz,C2,C4,CP3,CP1,CPz,CP2, and CP4, we calculated, in offline analyses of the data
from each of the users, the correlations with target location of each amplitude singly and in
weighted combinations using the multiple regression procedure from SAS (SAS Institute Inc).
Parameter estimates were determined using least-squares criteria and the normal equations:

(4)

where X is a m by n matrix formed from the n observations of m predictor variables (i.e., EEG
amplitudes at specific frequencies and locations) and Y is the vector of n values (i.e., target
positions) to be predicted. Solving for b, the vector of feature weights, yields:

(5)

Correlation was expressed as r2, the proportion of the total variance in target location that was
accounted for by the model for the two-sec cursor movement period.

We used the stepwise option as a feature selection heuristic. Briefly, a combination of forward
and backward stepwise regression is implemented. Starting with no initial model terms, the
most statistically significant predictor variable having a p-value < 0.01, is added to the model.
After each new entry to the model, a backward stepwise regression is performed to remove
any variables having p-values > 0.01. This process is repeated until no additional terms satisfy
the entry/removal criteria.

Features that were selected offline by stepwise regression analysis initially were weighted
according to the results of that analysis. Subsequently at the end of each trial the feature weights
were updated using the LMS algorithm (Hayken, 1996) in conjunction with the prediction error
for target position.

For target selection, the initial feature choice was based on evaluation of the user’s EEG during
grasp imagery. Subsequent modifications in the features used and the weights assigned to them
employed the same offline and online protocol described above for cursor movements.

Table 1 shows, for each user’s final sessions, the scalp locations and frequencies of the rhythm
amplitudes used for each of the three control signals (i.e., vertical, horizontal, and target
selection). The final results shown in Table 1, which differ markedly among users, are the
products of the interactions during training between each user’s capacities and the adaptation
produced by the LMS algorithm.
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Evaluation of EMG activity during BCI operation
Following the completion of the primary study, 4 of the 6 users participated in an ancillary
study to assess EMG activity during BCI performance. Both of the users with spinal cord injury
were included in these sessions since their injuries did not preclude control of their hands and
forearms. Six bipolar electrode pairs were placed on the forearm flexors, forearm extensors,
and palm of each arm. For 2–3 standard sessions from each user, EMG activity was recorded
continuously while the user performed the cursor movement/target selection task. Prior to each
of these sessions, the user performed a maximum voluntary contraction (MVC) (i.e., by making
a fist with each hand) to provide a denominator for evaluating EMG amplitude during task
performance.

3. Results
For each user, performance gradually improved over the training sessions as s/he gradually
gained better control over the EEG features (i.e., the rhythm amplitudes) that controlled cursor
movement and target selection, and as the adaptive algorithm gradually adjusted the weights
so as to vest control of cursor movement and target selection in those signal features (i.e.,
amplitudes in specific 3-Hz frequency bands from specific EEG channels) that the user was
best able to control. As previously described (Wolpaw and McFarland, 1994; 2004), users
tended to employ motor imagery to control cursor movements, particularly early in training.
This imagery involved muscle groups not paralyzed in the users with spinal cord injuries. As
noted, four of the six users had no previous BCI training, while two had participated in a variety
of studies. For the present study, following one- dimensional and two-dimensional training,
the users had 14–38 sessions (i.e., 5–15 hrs) of training on the complete move-and-select task.
The data presented here are those of each user’s final three sessions, comprising 484–602 trials
from each of the six users. From these data, we assessed both EEG control and the control of
cursor movement and target selection that the EEG control provided.

EEG Control
We assessed EEG control during cursor movement by spectral and topographical analyses of
the correlations (measured as R2) between the vertical and horizontal locations of the red target
(i.e., the correct target) and the average values for the trial of the vertical and horizontal control
variables (i.e., from Eq. 1 and Eq.2), respectively (Wolpaw and McFarland, 1994;Sheikh et al,
2003). Each variable correlated with its own dimension of target location and showed little
correlation with the other variable’s dimension (Table 2). The users developed two independent
control signals: one for vertical movement and one for horizontal movement.

We assessed EEG control during target selection in an analogous fashion by determining R2

for the correct selection value (coded +1 or −1) and the selection control variable (i.e., from
Eq. 3). For each user, the selection control variable correlated with the correct selection value
(Table 2).

Figure 2 shows for each user the topographies for the correlations (shown as R) between each
of the three target dimensions (i.e., vertical location, horizontal location, and selection) and the
amplitude of the EEG feature that made the largest contribution to the control signal (i.e., Eq.
1, 2, or 3) for that dimension. The correlations are shown as R rather than R2 in order to
distinguish negative and positive correlations. For each signal in each user, control is focused
over sensorimotor cortex. Within each user, the three control signals differ markedly in their
topographies.

Figure 3 shows for User A the equations that provided each control signal and the spectral
properties of that control signal. As indicated in Table 1 and Table 2, for this user vertical and
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horizontal movements were controlled by different and mutually independent combinations of
12-Hz activity over right and left sensorimotor cortices, and target selection was controlled by
15-Hz and 12-Hz activity over left sensorimotor cortex. It is worth noting that the FC1 15-Hz
band had the largest weight in the equation that determined target selection even though, as
Figure 2 shows, this feature did not have the largest univariate R value. Nevertheless, as a result
of the LMS algorithm, it made the largest contribution to the bivariate equation that also
included C3. McFarland et al. (2006a) discusses the complexities of evaluating multivariate
models in BCI research.

The middle of Figure 3 shows, for the three vertical and three horizontal target levels and for
the two selection levels (i.e., Select/Reject), the voltage spectra from which were derived the
control signals (from Eq. 1, Eq.2, Eq.3) and their corresponding R2 spectra. At the bottom of
Figure 3 are samples of EEG from locations that contributed to the three control signals. These
samples are during the cursor movement period for trials in which the target was at the top or
bottom or at the right or left screen edge, and during the target selection period for trials in
which the correct selection choice was “Select” or “Reject.” They illustrate the strong
sensorimotor rhythm control that the user employed to move the cursor to the target and then
to select it. While 12-Hz mu activity changed at both locations with both dimensions of target
location (e.g., Fig. 2 and Fig 3), the adaptive algorithm arrived at feature weights that gave
independent vertical and horizontal control signals (Table 2).

Control of cursor movement and target selection
The EEG control summarized in Table 2 and illustrated in Figure 2 and Figure 3 gave each
user significant cursor movement control. Users A–E reached the correct target in 59–88% of
the trials (with 25% expected by chance); and, once a target was reached, these users correctly
selected or rejected it in 71–91% of the trials (with 50% expected by chance). Every user’s
performances for both cursor movement and target selection were significantly better than
chance (p< 0.0001 by chi-square analysis).

Average cursor trajectories to each target for each user are shown in Figure 4. These trajectories
are averages of individual trials lasting 5 seconds or less that are normalized in terms of the
individual trial duration (i.e., each point is a proportion of the individual trial duration). Figure
5a shows each user’s accuracies for cursor movement, target selection, and their combination.
The percentage for the combination is based on the conditional probability of correct cursor
movement given a selection. This would represent the accuracy of a functioning system where
rejected targets would only reduce speed but not accuracy. Given that no target was selected
it could have been either the correct target or an incorrect target. However this distinction is
not relevant for system performance. Figure 5b shows for each user the percentages for the
three possible trial outcomes: correct target selected; no target selected; or incorrect target
selected. These data make three important points. First, all the users were successful in both
the cursor movement and target selection phases of the task. Second, the levels of performance
on both phases differed markedly across users. (It is worth noting that the performances of the
two users with spinal cord injuries were the first and third best of the six.) Third, the worst
possible target outcome, selection of an incorrect target, occurred rarely in each user. In most
of the trials that were not correct selections, no selection was made. These null trials waste
time, but they do not create errors that then require correction. Thus, they are far preferable to
incorrect selections.

We also examined the average cursor movement time and accuracy of target selection for each
target separately. Across the six users, average movement times were 2.5–3.5 sec. For four of
the six users, selection success did not depend on target location, while two users showed slight
but significant dependence.
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Analysis of concurrent EMG activity
All six users sat quietly during both parts of task and made no overt movements. Figure 6
presents the results of the analysis of forearm and palm EMG during the target-selection period
for the four users who participated in this ancillary study. As Figure 6 shows, EMG was low
in all four users. The correlation between EMG and target type (i.e., correct or incorrect) was
low in Users A and F and substantial in Users B and C. Most importantly, in all four users, the
level of EMG contributed very little to the EEG control. That is, as Figure 6 shows, the R2

value for the correlation between the EEG variable (i.e., from Eq. 3) that controlled target
selection and the correct selection value (coded +1 or −1) was only slightly reduced by
removing the impact of EMG (i.e., by correcting for the variance common to the EEG variable
and the combined activity of all six EMG channels). Thus, in all four users, EMG activity was
low during target selection, and target selection was largely independent of that EMG activity.

4. Discussion
The results and their significance

The results show that people can learn to use scalp-recorded EEG rhythms to move a cursor
in two dimensions to reach a target and then to select the target. Control develops over training
sessions as the user gradually acquires better EEG control and as the BCI system gradually
focuses on those rhythm amplitudes that the user is best able to control. The sequential two-
dimensional movement control and selection demonstrated in this study is a skill that user and
system gradually master together. As control improves, the motor imagery that users typically
employ early in training tends to become less important and performance becomes more
automatic.

As Table 1 shows, for the cursor movement phase of the task, each user acquired control over
two EEG variables (i.e., Eq. 1 and Eq.2), one for horizontal movement and one for vertical
movement. Furthermore, for each variable correlation with the wrong dimension of movement
was very low (The correlation between control channels was rather high in D and F, but this
did not result in the signals being correlated with the wrong target). The achievement of two
independent movement control signals was the result of user training in combination with the
LMS algorithm. Each user also acquired control over a third variable (i.e., Eq. 3) that controlled
the target selection phase.

None of the users displayed overt movements during either part of the task. Analysis of forearm
and hand EMG indicated that subtle changes in muscle activity were not responsible for the
EEG variable that controlled target selection (i.e., Eq. 3). As Figure 6 shows, for all four users
tested, EMG was low during target selection, and the correlation of the EEG target-selection
variable with the correct selection outcome was only slightly reduced when the impact of this
EMG activity was removed. In Users A and F, EMG correlation with the correct outcome was
very low. The EMG correlations found in Users B and C are consistent with previous evidence
that motor imagery (in this case imagery of a grasp response) can affect EMG activity
(Dickstein et al, 2005;Wehner et al, 1984) and spinal stretch reflexes (Bonnet et al, 1997;Li et
al, 2004). Thus, it is likely that the correlations noted in these two users were simply an
additional consequence of the mental imagery that controlled the EEG variable. The crucial
finding is that, in all four users in whom concurrent EMG was studied, the EEG variable
remained highly correlated with the correct selection outcome even after correcting for the
effects of EMG.

This study differs from most previous studies of two-dimensional control in that it provides
multiple possible targets in every trial and thus allows the possibility of an incorrect selection.
In most other studies (Chapin et al, 1999; Wessberg et al, 2000; Taylor et al, 2002; Pesaran et
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al, 2002; Serruya et al, 2002; Wolpaw and McFarland, 2004; Hochberg et al, 2006), only the
correct target appeared on the screen and failure consisted merely of not reaching the trial
within a given time period. A protocol that permits incorrect selections is more realistic, since
most communication and control tasks that are encountered in the real world have the
possibility of errors. For example, typical icon selection tasks based on mouse control permit
selection of the wrong icon. Similarly, reach and grasp tasks permit picking up the wrong
object. Thus, the present work combines our recent advances in multidimensional control
(Wolpaw and McFarland, 2004) with a more realistic user task. Furthermore, the combination
of two sequential control tasks, cursor movement and target selection, greatly reduces the
number of incorrect selections and thereby improves the rapidity of communication.

The move and select function demonstrated here emulates the operation of a standard mouse,
which allows a user to move over an icon and then select it or not select it as appropriate. Thus,
the results represent a key step towards development of EEG control analogous to a computer
mouse that moves among a large number of icons and selects only the desired icon.

Comparison with Previous Invasive and Non-Invasive Studies
Like our recent study of EEG-based two-dimensional movement control (Wolpaw and
McFarland, 2004), most studies of movement control with activity recorded by electrodes
implanted within cortex have used one-target protocols, and thus have not permitted errors
(Chapin et al, 1999; Wessberg et al, 2000; Pesaran et al, 2002; Serruya et al, 2002; Taylor et
al, 2002; Hochberg et al, 2006). An exception is the invasive study of Musallam et al (2004)
which used four targets (but did not have a second, target-selection (i.e., confirmation) phase).
They reported average success rates of 34–75% in three monkeys, a range that is somewhat
lower than the target-hit accuracy range of 59–88% reported here. On the other hand, they
required less time after the initial target view period: 0.1–1.2 sec vs. 2.5–3.5 sec in the present
study.

The only invasive study that has used a two-phase “move and select” protocol similar to that
of the present study is Carmena et al (2003), which trained monkeys to move a cursor in two
dimensions to a single target and then to select, or “grasp,” it. Only one target was presented
in each trial, so that full comparison with the present results is not possible. Carmena et al.
(2003) used larger targets (7.7% of the workspace compared to less than 3% in the present
study, taking into account the size of the target and the size of the cursor), while their movement
times were slightly shorter (2.2–2.7 sec compared to 2.5–3.5 sec in the present study).

The present study applied multiple linear models to EEG features in order to control cursor
movement and target selection. The LMS algorithm continually modified the model parameters
on the basis of past results so as to optimize future performance. In contrast, Carmena et al
(2003) applied multiple linear models to single-neuron activity to control cursor movement
and target selection. Their models were constructed from unit activity recorded during actual
arm and hand movements and then applied in the absence of actual movement. Thus, the
applicability of their approach in people who lack normal movement control is uncertain. The
methodology of the present study, which does not begin from activity recorded during actual
movement, may be more readily transferable to people who are paralyzed. In addition, this
study's noninvasive methodology does not require that electrodes be implanted in the brain.

Several groups have reported studies of sequential one-dimensional control using amplitude
in specific EEG frequency bands. Millan et al (2004) and Pfurtscheller et al (2006) used EEG
to make successive selections in a maze navigation task. Muller and Blankertz (2006) used
EEG signals to make successive selections with a spelling device. Muller-Putz et al (2005)
used EEG to train a user who was quadriplegic to sequentially select different components of
a grasp actuated with the Freehand system (Peckham et al, 2001). In contrast to the present
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study, all of these systems used the same EEG features for each component of the sequential
task and controlled only one dimension at a time.

Potential Improvements
The present study goes beyond previous work to show that people can use EEG features to
produce three different control signals and that these signals can function sequentially as well
as simultaneously. Thus, it is clear that the belief (e.g., Hochberg et al, 2006) that an EEG-
based BCI cannot go beyond two independent channels of control is not correct. The limits of
EEG-based control remain to be defined. It is likely that EEG-based control can be improved
in speed and accuracy, and extended to more independent channels, by further improvements
in signal acquisition and signal processing, in feature selection, and in the adaptive algorithm
that encourages and guides user training and optimizes the translation of the chosen features
into control signals. Recent studies of activity recorded from the cortical surface (i.e.,
electrocorticographic (ECoG) activity) suggest that gamma activity may be particularly useful
for control (Leuthardt et al, 2004; Ball et al, 2004). Lower frequency gamma activity (i.e., 30–
50 Hz) can be detected in EEG, and warrants careful study as a possible source of BCI control
features.

Invasive methods clearly result in a better signal-to-noise ratio than EEG. This may account
for the fact that invasive methods at present may require less training (e.g. Leuthardt et al,
2004). Nevertheless, the control achieved by invasive methods does improve with training (e.g.
Taylor et al, 2002). The training requirements for invasive and non-invasive methods have not
yet been compared in a meaningful fashion. Future developments in signal recording and
analysis for both approaches will affect and clarify their relative advantages and disadvantages.
It is perhaps most probable that each approach will be found most suitable for particular
applications and/or individuals.

5. Conclusions
This study extends the possible applications of non-invasive BCI technology to include
multidimensional movement control and sequential target selection. The results are further
evidence that it may not be necessary to implant electrodes in the brain to achieve control of
complex tasks, and they thereby increase the probability that BCIs will eventually become an
important communication and control option for people with severe motor disabilities.
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Figure 1.
Sequence of events during a trial. A: Four targets are presented simultaneously on the screen.
The red target is correct and the green targets are not. B: One sec later, the cursor appears on
the screen and starts to move under EEG control. C: The cursor approaches a target. D: When
the cursor hits a target, the target turns blue and the other targets disappear. This indicates the
start of the 1.5-sec selection phase. E: If the target is selected, it turns yellow for one sec. If
the target is not selected, it disappears and the screen is blank for one sec. F: A one-sec intertrial
interval precedes the next trial.
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Figure 2.
Topographies for each of the six users (A–F) for the correlations (shown as R) between each
of the three target dimensions (i.e., vertical location (V), horizontal location (H), and selection
(G)) and the amplitude of the EEG feature that made the largest contribution to the control
signal (i.e., provided by Eq. 1, 2, or 3) for that dimension. (The correlations are shown as R
rather than R2 to distinguish negative and positive correlations.) For each signal in each user,
control is focused over sensorimotor cortex. A user’s three topographies usually differ
markedly from each other.
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Figure 3.
Spectral properties of User A’s vertical, horizontal, and selection control signals. From top to
bottom are shown: the equations that defined these signals; the voltage spectra for these control
signals; the R2 spectra corresponding to the voltage spectra; and representative examples of
the time-domain signals from EEG channels that contributed to the control signals. (For the
vertical or horizontal control signal, the two features used were from the same frequency band
of different EEG channels, and the spectra shown are the combination of the two channels. For
the selection control signal, the two features used were from different frequency bands of
different EEG channels, and thus the spectra shown are for only one of the channels.) These
data illustrate the sensorimotor control that enabled the user to move the cursor to the target
and to select the target if it was correct.
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Figure 4.
Average cursor trajectories to each target for each user for all correct cursor movement trials
that reached the target within 5 sec. These trajectories are based on movements normalized by
the duration of individual trials prior to averaging. The + signs delineate successive 10ths of
the trial.
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Figure 5.
Summary of cursor movement and target selection performance for each user. A: Accuracies
for cursor movement (black), target selection (light gray), and their combination (dark gray).
The percentage for the combination is based on the conditional probability of correct cursor
movement given a selection. This illustrates that combining the cursor movement and selection
tasks improved net accuracy in each user. B: The percentage of total trials in which the correct
target was selected (black), no target was selected (light gray), or an incorrect target was
selected (dark gray). In all users, the worst outcome, incorrect selection, is relatively
uncommon, and much less common than the neutral outcome, no selection.
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Figure 6.
Summary of EMG activity and its impact during the target selection phase in each of the four
users tested. A: EMG (as % of maximum voluntary contraction) for the user’s most active
muscle when the target reached was correct (black) or incorrect (gray). B: The corresponding
R2 values for: a multiple regression with all EMG channels (black); a regression with the EEG
control signal (light gray); and a regression with the EEG control signal corrected for the EMG
channels (dark gray). For all users, the EEG control signal correlated with the appropriate
selection outcome and that correlation was largely independent of EMG activity.
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