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Abstract
Brain–computer interfaces (BCIs) can use brain signals from the scalp (EEG), the cortical
surface (ECoG), or within the cortex to restore movement control to people who are paralyzed.
Like muscle-based skills, BCIs’ use requires activity-dependent adaptations in the brain that
maintain stable relationships between the person’s intent and the signals that convey it. This
study shows that humans can learn over a series of training sessions to use EEG for
three-dimensional control. The responsible EEG features are focused topographically on the
scalp and spectrally in specific frequency bands. People acquire simultaneous control of three
independent signals (one for each dimension) and reach targets in a virtual three-dimensional
space. Such BCI control in humans has not been reported previously. The results suggest that
with further development noninvasive EEG-based BCIs might control the complex movements
of robotic arms or neuroprostheses.

S Online supplementary data available from stacks.iop.org/JNE/7/036007/mmedia

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The adult CNS displays a large repertoire of adaptive behavior
acquired through practice, usually referred to as skills. These
skills are normally produced by muscles. In contrast, brain–
computer interfaces (BCIs) enable people to communicate
or to control devices by using brain signals rather than
muscles. Thus, they can help people with devastating
neuromuscular disorders such as amyotrophic lateral sclerosis
(ALS), brainstem stroke, cerebral palsy and spinal cord injury
(Wolpaw and Birbaumer 2006).

Studies to date show that humans and animals can learn to
use electroencephalographic activity (EEG) recorded from the
scalp, electrocorticographic activity (ECoG) recorded from
the cortical surface, or signals recorded within the cortex
(neuronal action potentials or local field potentials (LFPs))
to control the movements of a cursor or other device in one or
two dimensions (Wolpaw et al 1991, 2002, Chapin et al 1999,
Fetz 1999, Serruya et al 2002, Taylor et al 2002, Carmena

1 Author to whom any correspondence should be addressed.

et al 2003, Andersen et al 2004, Wolpaw and McFarland
1994, 2004, Leuthardt et al 2004, Hochberg et al 2006,
Schalk et al 2008, Velliste et al 2008, Ganguly and Carmena
2009). Three-dimensional (3D) control has been reported
only for intracortical signals (i.e. neuronal action potentials)
in monkeys (Taylor et al 2002, Velliste et al 2008).

Both actual movement and movement imagery are
accompanied by changes in the amplitudes of certain EEG
rhythms, specifically 8–12 Hz mu rhythms and 18–30 Hz
beta rhythms. These changes are focused over sensorimotor
cortex (Pfurtscheller et al 2008) in a manner consistent with
the homuncular organization of this cortical region (Woolsey
1958). Thus, in our earlier demonstrations that people
could learn to use EEG for two-dimensional (2D) movement
control, we began the training process by using for control
the mu- and/or beta-rhythms changes normally associated
with left-hand or right-hand movement imagery (Wolpaw and
McFarland 1994, 2004). In the present study, we extended this
strategy to 3D control by beginning the training process from
the mu- and/or beta-rhythm changes normally associated with
left-hand, right-hand or foot movement imagery (Morash et al
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2008, Pfurtscheller et al 2008). The results show that EEG
can support 3D movement control. Thus, they may accelerate
the development of BCIs useful to people with severe motor
disabilities.

2. Methods

The methodology is summarized here. Additional detail is
available elsewhere (Wolpaw and McFarland 2004, McFarland
et al 2006). The BCI users were four adults, one woman
and three men, aged 29–59. One man (user 2) had a spinal
cord injury (T7) and was confined to a wheelchair. Three had
participated in earlier BCI studies (e.g., McFarland et al 2008),
and one had no previous BCI experience. All gave informed
consent for the study, which was reviewed and approved by
the New York State Department of Health Institutional Review
Board.

The BCI user sat in a reclining chair (or in his own
wheelchair) facing a video screen and remained motionless.
BCI operation and data collection were supported by the
general-purpose BCI software platform BCI2000 (Schalk et al
2004) in conjunction with a 64-channel SA Instrumentation
amplifier and a Data Translation DT-3003 64 channel A/D
board. EEG was recorded from 64 scalp locations (Sharbrough
et al 1991) by 9 mm tin electrodes embedded in a cap (Electro-
cap International) and referenced to an electrode on the right
ear, and was digitized at 160 Hz and stored for later analysis.
Each user completed 2–3 sessions/week. A session comprised
eight 3 min runs separated by 1 min breaks and each run
averaged 14–25 trials.

For the first 1–4 sessions (i.e. 8–32 3-min runs totaling
24–96 min), the users practiced 1D control in each dimension
of movement (i.e. vertical, horizontal and depth dimensions;
2–3 runs/session for each dimension). For the next 10–12
sessions (i.e. 80–96 runs totaling 4–5 h), they practiced 2D
control with the three possible pairings of the three dimensions
(i.e. 2–3 runs/session with each pairing). Finally, the users
moved on to full 3D control, and each completed 21–42
sessions (i.e. 168–336 runs totaling 8–17 h) on the standard
3D task (figure 1). Performance on the 3D task improved
steadily as each user gradually gained better control over the
EEG features that controlled cursor movement, and as the
iterative adaptive feature selection and weighting procedures
(see below) progressively modified the set of EEG features
used and adjusted their weights so as to vest control of
cursor movement in those features that the user was best
able to control. Training was continued until the progressive
improvement over sessions was no longer clearly apparent (i.e.
until performance began to asymptote).

To control each dimension of cursor movement
(horizontal, vertical and depth), the digitized data from
three or four electrodes over sensorimotor cortex of both
hemispheres were re-referenced according to a large Laplacian
transform (McFarland et al 1997). Every 50 ms, the
frequency spectrum of the previous 400 ms segment from
each electrode was computed by a 16th-order autoregressive
algorithm (McFarland and Wolpaw 2008). The logarithms
of the amplitudes in specific 3 Hz wide frequency bands

Figure 1. The 3D movement control format. The large screen
image on the left shows the virtual 3D cube with the eight possible
targets in the corners and the cursor in the center. The smaller
screen images show the sequence of steps in one trial: (1) a target
appears; (2) 1 s later the cursor appears and moves in three
dimensions controlled by the user’s EEG activity as described in the
text; (3) the cursor reaches the target; (4) the target turns yellow for
1.5 s; (5) the screen is blank for 1 s and then the next trial begins.
(Step 2 lasts up to 15 s. If the cursor does not reach the target in this
time, the screen goes blank for 1.5 s prior to step 5.)

(center frequencies 10–31 Hz) were the EEG features that
controlled cursor movements. One or more of these features
comprised the control signal (i.e. the independent variable) in a
linear equation that specified cursor movement in a particular
dimension (McFarland et al 2006). That is, if �V was the
vertical cursor movement, Sv was the control signal for vertical
movement, bv was the gain and av was the mean value of Sv

for the user’s previous performance,

�V = bv(Sv − av) (1)

was the function that determined each vertical cursor
movement. Similarly, if �H was the horizontal cursor
movement,

�H = bh(Sh − ah) (2)

was the function that determined horizontal cursor movement.
Finally, if �D was the cursor movement in depth,

�D = bd(Sd − ad) (3)

was the function that determined cursor movement in depth.
Movements in each dimension occurred 20 times s−1.

Initial feature selection was based on a preliminary
screening in which the user imagined specific limb movements
(Wolpaw and McFarland 1994). The user was asked to imagine
left-hand, right-hand or foot movement. The features selected
initially and at each of the periodic reevaluations came from
electrodes located over sensorimotor cortex. Feature selection
was then periodically updated between sessions by a stepwise
multiple regression procedure (SAS Institute Inc.) (Wolpaw
and McFarland 2004). Starting with no initial model terms,
the feature that most reduced the residual variance (i.e. the
variance not accounted for by target location), and did so with
p < 0.01, was added to the model. Additional features were
then added in the same fashion. After each new addition, a
backward stepwise regression removed any variables for which
p was >0.01. This process continued until no further features
satisfied the addition/removal criteria.

The weights assigned to the selected features were
determined by least-squares criteria according to the equation

(X′ X)b = X′Y, (4)
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where X was an m by n matrix formed from the n observations
of m features and Y was the vector of n values (i.e. target
locations). Solving for b, the vector of feature weights gave

b = (X′X)−1X′Y. (5)

Following each of these periodic stepwise regression
analyses, the features selected for each of the three linear
equations were weighted according to its results. Then,
after each trial, the weights assigned to these features were
automatically adjusted by the LMS algorithm (Haykin 1996)
so as to optimize for each dimension the correlation between
target location and cursor position. This continual automatic
adaptation used past performance to optimize the feature
weights (Wolpaw and McFarland 2004).

For the online update of feature weights, a prediction error
was computed for each control signal at the end of each trial:

et = pt − ot , (6)

where pt is the predicted target position on the current trial
based on the current values of the features and ot is the actual
target position on the dimension in question. Then the weights
were updated according to

wit = et rwit−1, (7)

where wit is the weight at the end of the current trial for
the ith feature and r is a constant that determines the rate of
adaptation.

The objective of this feature selection and weighting
process was to minimize, for each dimension, the squared
difference between the actual target position and the cursor
position predicted by the EEG control signals. Both the
stepwise feature selection and online adaptive algorithms used
these same criteria. In summary, to the extent that past
performance predicted future performance, these procedures
served to optimize for each dimension the correlation between
target location and cursor movement (Wolpaw and McFarland
2004).

3. Results

Table 1 shows, for each user’s final training sessions, the
set of EEG features (specific frequency bands from specific
scalp electrodes) that comprised the independent variable for
each of the three linear equations that controlled the three
movement dimensions. These feature sets were the result of
the iterative adaptive interactions over the course of training
between each user’s control capacities and the feature selection
and weighting procedures described in section 2.

As previously noted, each user completed 21–42 3D
sessions, and 3D control gradually improved over these
sessions. Figure 2 shows this gradual improvement (as percent
of trials completed within 7 s) for each user. The data from
the first 21 sessions, for which there were data from all four
users, were evaluated by ANOVA. The effect of sessions was
significant (F = 3.84, p < 0.0001), and thus confirmed that
performance improved with continued practice. Performance
improved as each user gradually gained better control over
the EEG features that controlled cursor movement, and as the
iterative adaptive feature selection and weighting procedures

Figure 2. Percent of trials completed for each user as a function of
sessions. User A is represented by the solid line, user B by the large
dashed line, user C by the small dashed line and user D by the
dotted line. Note each user’s gradual improvement over sessions.

Table 1. The EEG features (specific frequency bands at specific
scalp electrodes) that controlled vertical, horizontal and depth cursor
movements for each user. For each feature, the scalp electrode
(Sharbrough et al 1991) and the center frequency of the 3 Hz wide
frequency band (in parenthesis) are given.

Electrode (frequency)

User Vertical Horizontal Depth

1 Cz (26) C4 (26) C3 (26)
CPz (26)

2 Cz (24) C3 (12) C4 (12)
C4 (12)

3 Cz (19) C3 (10) C3 (10)
Cz (31) C4 (10)

4 Cz (20) C3 (23) C3 (20)
CPz (20) C4 (23) C3 (23)
CPz (29)

(see section 2) periodically modified the set of EEG features
used and adjusted their weights so as to vest control of cursor
movement in those features that the user could best control.
Figure 3 illustrates these progressive changes in user control
and in the features used for control with data from one user at
early, middle and late stages of training.

Using three consecutive 3D sessions at the end of training
(336–608 trials from each user), we assessed EEG control
and the cursor movement control that it provided. We
assessed EEG control by spectral and topographical analyses
of the correlations of the average values for each trial of the
vertical, horizontal and depth control signals with the vertical,
horizontal and depth locations of the target (Wolpaw and
McFarland 1994, 2004). Table 2 gives, for each user, the
correlation of each dimension’s control signal with each of the
three dimensions of target position. As table 2 shows, each
control signal correlated strongly with its own dimension of
target location and showed no or much lower correlations with
the other two signals’ dimensions of target location. Thus,
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Figure 3. Topographies for user 1 at the beginning (sessions 1–3), middle (sessions 10–12) and end (sessions 19–21) of 3D training, for the
correlations at each of the 64 electrodes between the spectral amplitude of the EEG and each dimension of target location. For each
dimension of target location, the topography is for the 3 Hz frequency band centered at 26 Hz that provided that dimension’s online control
signal (i.e. table 1). (The correlations are shown as R rather than R2 to distinguish negative and positive correlations.) ‘X’ indicates the
locations of the electrodes that provided the frequency-band amplitudes that were used online. Note the changes over time in the
topographies and magnitudes of control and in the electrodes used for control. The progressive improvement in performance summarized in
figure 2 is accounted for by the increases in the user’s control in the horizontal and depth dimensions, together with the adaptive algorithm’s
modifications in the electrodes used for control in the vertical and depth dimensions.

Table 2. Correlations (as R2) of the vertical, horizontal and depth control signals (SV , SH , SD) with their appropriate (highlighted) and
inappropriate dimensions of target location (V, H, D). Each control signal is correlated exclusively or most strongly with its own dimension
of target location.

Vertical signal (SV ) Horizontal signal (SH ) Depth signal (SD)

User SV –V SV –H SV –D SH–H SH –V SH –D SD–D SD–V SD–H

1 0.39 0.01 0.00 0.50 0.00 0.00 0.57 0.00 0.00
2 0.29 0.01 0.14 0.37 0.00 0.16 0.16 0.00 0.00
3 0.37 0.03 0.28 0.47 0.09 0.04 0.15 0.04 0.01
4 0.20 0.00 0.03 0.09 0.00 0.01 0.09 0.00 0.00

users developed three independent control signals: one for
each movement dimension.

Across the four users, performance did not correlate
with amount of 3D training. User 1, who achieved the best
control (table 2), had the least number of 3D training sessions
(21 sessions, or 8.4 h). User 4, who achieved the least control,
had 29 3D sessions (11.6 h), while users 2 and 3 had 26 and 42
(10.4 and 16.8 h), respectively. (User 2 was the person with
a spinal cord injury.) Nor did performance correlate clearly
with total amount of BCI training (i.e. including participation
in previous studies). Users 1–4 had total BCI experience of
102, 367, 115 and 57 h, respectively. While the least successful
user had the least experience, the most successful user had less
experience than user 2 or 3. The differences in performance
evident in table 2 may reflect inter-user differences in the
prominence of sensorimotor rhythms in the scalp-recorded
EEG (i.e. differences in signal-to-noise ratio) and/or in the
effectiveness of the interactive adaptations in the algorithm and
the brain over the course of training. Further improvements
of the user-specific adaptations in the feature extraction and

translation procedures might enable more users to achieve
good performance.

To determine whether the users were controlling the three
dimensions simultaneously or sequentially (e.g., moving up,
then right, then forward), we evaluated for the first 0.5 s of each
trial the individual movements in each of the three dimensions
(which occurred every 50 ms) to determine whether a correct
movement (i.e. toward the target) in one dimension affected
the probability that the simultaneous movements in the other
two dimensions were correct. If the users were controlling
the dimensions sequentially (i.e. one at a time), the probability
that a correct movement in one dimension was accompanied
by correct movements in the other two dimensions would be
less than that predicted by simply multiplying the fractions of
all vertical, horizontal and depth movements that were correct
together. This was not the case: the actual probabilities of
simultaneous correct movements were 145%, 164%, 151%
and 181% of their expected values for users 1–4, respectively.
The fact that these probabilities were greater than 100% of
expectation indicates that the users were not simply controlling
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Figure 4. Topographies (nose at top) for each user (1–4) of the correlations for each of the 64 electrodes between the spectral amplitude of
the EEG and each dimension of target location. For each dimension of target location, the topography is for the frequency band that made
the largest contribution to that dimension’s online control signal. (The correlations are shown as R rather than R2 to distinguish negative and
positive correlations.) ‘X’ indicates the locations of the electrodes that provided the frequency-band amplitudes that were used online. The
center frequencies of the 3 Hz frequency bands of each user’s topographies are given in table 1. While the correlations are all focused over
sensorimotor cortex, they differ markedly across users as a result of inter-user differences in the course of the iterative adaptive interaction
between user and system that occurs during training (see section 2). For example, user 1 controlled the three movement dimensions with
26 Hz activity from three different scalp electrodes, while user 3 controlled vertical movement with the left–right difference in 10 Hz
activity, horizontal movement with 19 Hz and 31 Hz activity at the vertex, and depth movement with 10 Hz activity on the left.

one dimension at a time; they were controlling the three
dimensions simultaneously.

Figure 4 shows, for each user, the topographies (nose at
top) of the correlations for each of the 64 electrodes between
the spectral amplitude of the EEG and each dimension of target
location. For each dimension of target location, the topography
is for the frequency band that made the largest contribution
to that dimension’s online control signal. ‘X’ indicates the
locations of the electrodes that provided the frequency-band
amplitudes that were used online. Table 1 gives the frequencies
of the topographies. While the correlations are all focused
over sensorimotor cortex, they differ markedly across users as
a result of the iterative adaptive interactions during training
between the brain and the feature selection and weighting
procedures.

Figure 5 shows user 1’s control in more detail. Figure 5(A)
shows the topographies of the correlations of 26 Hz activity
(table 1) with the three dimensions, with the electrode(s) that
controlled each dimension marked. Figure 5(B) shows the
spectra for the correlations (as R2) between activity at the

electrode that made the largest (or only) contribution to
the control signal for that dimension and the target location
in that dimension. Each feature correlates strongly with its
appropriate dimension of target location and not with the
other dimensions. Figure 5(C) shows single EEG traces
from electrodes used in the vertical, horizontal and depth
control signals for trials in which the target was at the top or
bottom, right or left, or back or front of the cube, respectively
(figure 1). They illustrate the strong EEG feature control the
user employed to move the cursor to the target.

The EEG control summarized in table 2 and illustrated in
figures 4 and 5 gave each user 3D movement control. Users 1–
4 reached the target within the time allowed in 93%, 78%, 76%
and 56% of the trials, respectively, and their median movement
times for these completed trials were 1.6, 2.9, 3.2 and 4.9 s,
respectively. Furthermore, the first of the eight
possible target locations reached by the cursor correlated
strongly with the actual target location (P < 0.0001
by χ2 for each user), indicating that movement was
not random. Supplementary videos S1 and S3
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(A)

(B)

(C)

Figure 5. Topographical and spectral properties of EEG control for
user 1. In this user, movement in each dimension was controlled by
26 Hz activity from specific scalp electrodes (table 1). (A) Scalp
topographies (nose at top) of the correlations of the 26 Hz frequency
band with the vertical, horizontal and depth target locations,
respectively. The electrode(s) that controlled each dimension of
movement are marked. (The correlations are shown as R rather than
R2 in order to distinguish negative and positive correlations.)
(B) Spectra for the correlations (shown as R2) of the activity at the
scalp electrode that made the largest (or only) contribution to the
control signal for each dimension of cursor movement with the three
dimensions of target location. The correlations with the vertical,
horizontal and depth dimensions are red, blue and black lines,
respectively. It is clear that activity at the electrode that provided
each control signal correlated strongly with its appropriate
dimension of target location and did not correlate with the other
dimensions. Furthermore, the correlation was focused in the
appropriate (i.e. in this case, 26 Hz) frequency band. (C) Samples of
EEG activity from single trials. The traces are single 400 ms epochs
of Laplacian-derived EEG from one electrode. On the left are traces
from scalp electrode CPz (the major source of the vertical control
signal) for trials in which the target was at the top or bottom of the
cube. In the middle are traces from electrode C4 (the source of the
horizontal control signal) for trials in which the target was on the
right or left side of the cube. On the right are traces from electrode
C3 (the source of the depth control signal) for trials in which the
target was at the front or back of the cube. They illustrate the
strong 26 Hz control that the user employed to move the cursor to
the target.

(available at stacks.iop.org/JNE/7/036007/mmedia) show
the average trajectory to each target for users 1 and
3, respectively. Supplementary videos S2 and S4
(available at stacks.iop.org/JNE/7/036007/mmedia) show real-
time performance for users 1 and 3, respectively. While both
users have 3D control (i.e. table 2), user 1’s performance is
clearly superior.

An ancillary study started the cursor from locations other
than the center of the cube (i.e. near the corner opposite the
target). In spite of the variable starting points and the greater

distance to the target, the percent of targets reached did not
differ significantly from the percent reached with the standard
(center start) format (p > 0.25 by ANOVA).

We also evaluated forearm and calf EMG activity during
performance. EMG activity was usually well below 10% of
MVC throughout and uncorrelated with target location. In
the few instances in which EMG did correlate with target
location in a particular dimension, the correlation of the EEG
control signal with target location remained significant after
the effect of the EMG correlation was removed. The results
confirmed previous data (e.g., Vaughan et al 1998, Wolpaw and
McFarland 2004) indicating that EEG-based cursor control
does not depend on covert contractions of muscle groups
strongly represented in the sensorimotor cortex areas that
produce the EEG features used for control.

4. Discussion

The results show that people can learn to use scalp-
recorded EEG activity to control three movement dimensions
simultaneously and independently (table 2). This control
develops through training as the user gradually acquires better
control of the EEG features that control movement, and as the
BCI system gradually focuses on those features that the user
can best control. Thus, 3D control is basically a skill (i.e. an
ability acquired through practice (Brown 1993)) that user and
system master together. Users did not have greater difficulty
acquiring control of the second or third dimension than they did
acquiring control of the first dimension. They did need further
practice to control three dimensions simultaneously. As
training proceeded and performance improved, users reported
that the motor imagery they initially employed became less
important and cursor control became more automatic. In this
characteristic, the skill of EEG-based 3D movement control
resembles conventional motor skills, in which training leads
to automaticity and to performance that is less dependent on
attention (Moors and de Houwer 2006).

Given this understanding of 3D control as a skill acquired
through practice, appropriate modifications in the training
protocol might be expected to facilitate learning and improve
final performance. For example, table 2 indicates that
several users were less successful in controlling cursor
movement in the depth dimension than in the horizontal
and vertical dimensions. This difference could be due in
part to the fact that the depth dimension was less salient
in the display that we used (i.e. figure 1, videos 2 and
4 available at stacks.iop.org/JNE/7/036007/mmedia). Thus,
adding binocular cues for depth (e.g. through a stereoscopic
display) might facilitate the user’s acquisition of depth control.

This demonstration of EEG-based 3D movement control
has practical implications. It suggests that, with further
development, EEG-based BCI systems might prove capable
of restoring movement control to people who are paralyzed.

4.1. The factors important for movement control

The factors that determine the control possible with EEG,
ECoG and intracortical BCI methods are as yet unknown.
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Figure 6. Distributions of target-acquisition times (i.e. time from
target appearance to target hit) on a 2D center-out cursor-movement
task for joystick control, EEG-based BCI control, and cortical
neuron-based BCI control. The EEG-based and neuron-based BCIs
perform similarly, and both are slower than and much less consistent
than the joystick. For both BCIs in a substantial number of trials,
the target is not reached even in the 7 s allowed. Such inconsistent
performance is typical of movement control by present-day BCIs,
regardless of what brain signals they use. (The joystick data and
neuron-based BCI data are from Hochberg et al (2006). The
EEG-based BCI data are from Wolpaw and McFarland (2004).)

Many efforts to develop BCI multidimensional movement
control have started from the assumption that high-resolution
signals are essential, and thus they have used intracortical
electrodes to record neuronal action potentials or local field
potentials (Serruya et al 2002, Taylor et al 2002, Carmena
et al 2003, Ganguly and Carmena 2009, Andersen et al 2004,
Hochberg et al 2006, Velliste et al 2008). Intracortical methods
provide the highest resolution signals. At the same time, they
face difficulties in ensuring stable long-term function (Otto
et al 2008), and the information available from neurons may
have inherent limitations (Rokni et al 2007). Furthermore, by
demonstrating EEG-based 3D control in humans, the present
study adds to recent evidence suggesting that signal resolution
may not be the critical limiting factor.

Figure 6 shows the distributions of target-acquisition
times for two studies of center-out 2D control in humans,
one using a cortical neuron-based BCI (Hochberg et al 2006)
and one using an EEG-based BCI (Wolpaw and McFarland
2004). The figure also includes the distribution of times
for conventional muscle-based joystick control. The two
BCIs studies had similar protocols, and they yielded nearly
identical distributions of target-acquisition times. Both are
slower and far less consistent than joystick control. Even
after the considerable BCI training provided in each study,
performance remains inconsistent. Such inconsistency is
typical of BCI studies (e.g., compare supplementary videos 1
and 8 of Hochberg et al (2006)), including the present
one. Indeed, the most striking feature of the comparison in
figure 6 is the close similarity of the two BCI distributions.
This similarity is remarkable, given that one BCI used single-
neuron activity recorded within the cortex while the other
used EEG recorded from the scalp. It suggests that their

inconsistency was not related to signal resolution (which was
high for the neuronal BCI and low for the EEG BCI), but rather
reflects another factor that similarly limits both high-resolution
and low-resolution BCI methods.

Movement control has been traditionally viewed as highly
localized (e.g., Woolsey 1958). However, recent work
indicates that movements are controlled by distributed cortical
networks that include not only primary motor cortex, but other
areas as well (e.g., premotor, prefrontal) (Dum and Strick 2002,
2005, Aflalo and Graziano 2006, Meier et al 2008, Ledberg
et al 2007). These networks appear to function through
synchronous oscillations in their constituent parts (Bullmore
and Sporns 2009, Salinas and Sejnowski 2001, Sejnowski and
Paulsen 2006, Zhang et al 2008). This new understanding
suggests that present-day BCI movement control may be
limited and inconsistent (e.g., figure 6) in large part because it
relies only on signals from a single cortical area. Neuron-based
control has typically focused on neurons from a few cubic
mm of cortex, and has begun by using the neuronal activity
observed during actual movements (e.g., Andersen et al
2004, Hochberg et al 2006, Velliste et al 2008). Similarly,
EEG-based control has focused on rhythms recorded over
sensorimotor cortex, and has begun by using the rhythm
changes observed during movement imagery (e.g., McFarland
et al 2008, Wolpaw and McFarland 1994, 2004).

This new understanding of the highly distributed nature of
motor control suggests that the performance of BCIs, whether
they use EEG, ECoG or intracortical signals, might possibly
be improved by extracting signal features from multiple
cortical areas and using adaptive algorithms similar to that
of the present study to combine them to control movements.
Employing signals from multiple areas might allow BCI
operation to more closely mimic normal neuromuscular
movement control. We speculate that, by eliminating the limit
that may be imposed on BCIs that use only one area, this
approach might allow the control capacities of the different
signal types to be more fully realized and could produce
more reliable performance. Furthermore, identification of the
combinations of areas that perform best could illuminate the
interactions most critical for movement control.

4.2. Development of BCIs to restore movement control

The primary goal of BCI research is to restore communication
and control to people with severe motor disabilities. This
study advances the goal in two ways. First, its demonstration
of EEG-based 3D control suggests that BCIs capable of
controlling neuroprostheses, robotic arms or comparable
devices might not require surgical implantation of recording
electrodes. This work complements and extends the recent
demonstration that an EEG-based BCI can control a sequential
movement-selection (i.e. reach-and-grasp) action (McFarland
et al 2008).

Second, the present demonstration that EEG can support
3D movement control should facilitate evaluation of the
hypothesis that consistency can be improved by using signals
from multiple cortical areas. The inconsistency of the
movement control provided by current BCIs, regardless
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of which signals they use, is probably the single greatest
impediment to their practical use. Unless and until BCI-
based movement control becomes consistent, it will remain
a laboratory curiosity, with little value to people who need to
operate neuroprostheses or robotic devices in their daily lives.
Because EEG is noninvasive, BCI research studies can readily
record EEG from multiple areas and explore the usefulness
of their various combinations. Furthermore, by doing this
they might also suggest promising combinations of areas
for exploration with high-resolution invasive methods. By
demonstrating the potential of EEG-based BCIs, the present
results show that EEG is a valid avenue for studying the value
of combining signals from different areas, and they thereby
encourage such studies.

Efforts to realize the clinical potential of EEG-based
movement control must also address other important issues.
These include the achievement of continuous sequential
control, such as the ability to move to a location, to stay
there while performing another action, to immediately move to
another location, etc. Also important for practical applications
will be development of improved training methods and
better adaptive algorithms to enable most users to attain,
and maintain, good control after relatively brief training.
As hypothesized above, algorithms that use features from
additional brain areas and/or measures of cross-channel
relationships might possibly provide more reliable control
(Varela et al 2001). Such expanded algorithms will need
to incorporate better methods for identifying the most useful
signal features from among a large feature set on the basis
of relatively limited bodies of data (i.e. better regularization
methods). In real-time BCI applications, the data most
useful for selecting signal features are those from very
recent performance, and these data are necessarily limited
in amount. With such limited data, an algorithm that lacks
effective regularization tends to overfit the data from a user’s
recent performance and thus provides parameter values that
are not appropriate for future performance (i.e. they do not
generalize well). While the present study used stepwise
regression methods to select features, alternative procedures
(e.g., Tibshirani 1996, Farquhar 2009, van Gerven 2009) might
prove more effective.

5. Conclusions

By demonstrating that an EEG-based BCI can support 3D
movement, this study shows that high signal resolution is
not essential for complex movement control and suggests
that other factors are more important. We hypothesize
that combinations of signals from multiple cortical areas
might produce more consistent performance. With further
development, it may eventually become possible for people
with severe neuromuscular disorders to operate devices such
as a robotic arm, a motorized wheelchair or a neuroprosthesis
with brain signals recorded from the scalp.
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