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Objective: Patients requiring resective brain surgery often undergo functional brain mapping during periopera-
tive planning to localize expressive language areas. Currently, all established protocols to perform suchmapping
require substantial time and patient participation during verb generation or similar tasks. These issues canmake
languagemapping impractical in certain clinical circumstances (e.g., during awake craniotomies) or with certain
populations (e.g., pediatric patients). Thus, it is important to develop new techniques that reduce mapping time
and the requirement for active patient participation. Several neuroscientific studies reported that the mere audi-
tory presentation of speech stimuli can engage not only receptive but also expressive language areas. Here, we
tested the hypothesis that submission of electrocorticographic (ECoG) recordings during a short speech listening
task to an appropriate analysis procedure can identify eloquent expressive language cortexwithout requiring the
patient to speak.
Methods: Three patients undergoing temporary placement of subdural electrode grids passively listened to
stories while we recorded their ECoG activity. We identified those sites whose activity in the broadband
gamma range (70–170 Hz) changed immediately after presentation of the speech stimuli with respect to a
prestimulus baseline.
Results: Our analyses revealed increased broadband gamma activity at distinct locations in the inferior frontal
cortex, superior temporal gyrus, and/or perisylvian areas in all three patients and premotor and/or supplemen-
tary motor areas in two patients. The sites in the inferior frontal cortex that we identified with our procedure
were either on or immediately adjacent to locations identified using electrical cortical stimulation (ECS)
mapping.
Conclusions: The results of this study provide encouraging preliminary evidence that it may be possible that a
brief and practical protocol can identify expressive language areas without requiring the patient to speak. This
protocol could provide the clinician with a map of expressive language cortex within a few minutes. This may
be useful as an adjunct to ECS interrogation or as an alternative to mapping using functional magnetic resonance
imaging (fMRI). In conclusion, with further development and validation inmore subjects, the approach present-
ed here could help in identifying expressive language areas in situationswhere patients cannot speak in response
to task instructions.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Language is crucial for meaningful interaction and communication.
Key language abilities, such as perception and production, are governed
by multiple regions in the brain. These abilities can quickly become
jeopardized in people with brain tumors, epilepsy, or other structural
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abnormalities. Many of these patients require resection of pathological
tissue near eloquent language areas to prolong or improve quality of
life. Inevitably, such resection carries inherent risks to language
function. Thus, functional language mapping for precise localization of
eloquent language areas is necessary for achieving optimal surgical
outcomes in such patients.

Functional language mapping for perioperative planning in
individual patients is of utmost importance given the high variability
in structural anatomyand function across individuals [1].Most typically,
languagemapping is achieved using electrical cortical stimulation (ECS)
mapping.While ECS iswidely considered the gold standard [1,2], it does
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Table 1
Clinical profiles of the 3 patients. “LL” reflects language lateralization.

Subject Age Sex Handedness LL Seizure focus Grid location # of elec.

A 34 M R L Left frontal Left frontal 61
B 28 M R L Left temporal Left frontal 52

Left temporal 66
Left parietal 16

C 25 F R L Left temporal Left frontal 28
Left temporal 66
Left parietal 4
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have noteworthy limitations. First, a thorough ECS interrogation is very
time-consuming. Second, ECS increases the risk of after-discharges or
seizures that result from “active” stimulation of the cortex using
electrical impulses. Finally, ECS can be difficult to accomplish in the
subset of pediatric patients and patients with psychiatric and cognitive
comorbidities. These issues have prompted recent and increasingly
encouraging investigations suggesting that “passive” methodologies,
such as electrocorticography (ECoG) or functional magnetic resonance
imaging (fMRI), may prove useful for functional mapping and may
have distinct advantages in efficiency, morbidity, or the range of pa-
tients that can benefit from it [3–11].

Unfortunately, traditional mapping of expressive language function
with any of these existing techniques carries the additional requirement
that patients actually speak, i.e., fully participate in specific tasks such as
verb generation, object naming, or counting. This requirement currently
precludes the use of these techniques in many patients, such as those
with aphasia or cognitive deficits or very young patients.

Together, these limitations and requirements preclude or greatly im-
pede functional mapping of expressive language areas in certain clinical
circumstances (such as during awake craniotomies) or with certain
populations (such as pediatric patients). Hence, it is desirable to have
access to a technique that does not electrically stimulate the brain and
that eliminates or reduces the requirement for patient participation.
Such a technique may eventually reduce ECS mapping time by guiding
the clinician with a preliminary map of eloquent expressive language
cortex. This would not only diminish the risks of patient morbidity,
discomfort, and iatrogenic seizures but would also increase the number
of patients who could be eligible for functional mapping of expressive
language areas.

Identification of eloquent expressive language cortex without re-
quiring the patient to speak is supported by several findings. Previous
fMRI studies reported activations of the left [12,13] and bilateral
[14–17] inferior frontal gyri while subjects listened to speech stimuli
but did not perform any overt speaking task. In addition, Suarez et al.
demonstrated using fMRI that a passive listening task recruited similar
cortical areas as a verb generation task in a cohort of 15 pediatric
patients [17]. However, fMRI is still expensive and requires substantial
expertise that is not available in all centers, and its reliability in the
context of functional mapping is still uncertain [18,19]. Thus, to date,
fMRI-based mapping has not achieved widespread acceptance.

Electrocorticographic recordings also provide opportunities for
functional mapping in the context of mapping of motor [2,3,20–22] or
language [3,20] function, in pediatric patients [23], and in the operating
room [3,6]. Together, these studies demonstrated that ECoG-based
mapping can be achieved in real time (i.e., while signals are being re-
corded), does not require expertise in signal analysis, and can produce
clinically useful results that can readily be compared with ECS results
in a fewminutes. However, evidence for its utility in identifying expres-
sive language without subject participation was lacking. Indeed, only
two previous neuroscientific ECoG studies reported activations in the
inferior frontal cortex during a passive listening task [24,25], but they
did not determine whether these activations could be identified using
a common analysis approach, establish the concordance between loca-
tions resulting from ECoG- and ECS-basedmapping, or discuss the feasi-
bility of such passive mapping ECoG protocol in the context of
presurgical or intraoperative mapping. The present report provides ini-
tial evidence on this topic from three subjects.

2. Methods

2.1. Patients

Three subjects (A–C) participated in this study. All three subjects
were patients at Albany Medical Center (Albany, New York). Subject A
was diagnosed with a low-grade glioma in the left frontal lobe after
presenting with new-onset seizures. Subjects B and C suffered from
intractable epilepsy. All subjects underwent temporary placement of
subdural electrode grids to localize seizure foci and eloquent cortex
prior to surgical resection. The subjects' clinical profiles are summarized
in Table 1. The electrode grids were approved for human use (Ad-Tech
Medical Corp., Racine,WI and PMTCorp., Chanhassen,MN) and covered
different areas within frontal, temporal, and parietal lobes of the left
hemisphere.Most importantly, all three subjects had coverage of frontal
lobe language areas, and two of the three (subjects B and C) also had
coverage of temporal lobe language areas. Electrodes consisted of plati-
num–iridium discs (4 mm in diameter, 2.3–3 mm exposed), were em-
bedded in silicone, and were spaced 6–10 mm apart. The total number
of implanted electrodes was 61, 98, and 134 in subjects A–C, respective-
ly. Following subdural grid implantation, each subject had postopera-
tive anterior–posterior and lateral radiographs, as well as computer
tomography (CT) scans to verify grid location. Preoperative language
lateralization (LL) had been assessed previously with fMRI in subject A
and with WADA testing [26] in subjects B and C. Based on these evalu-
ations, language was lateralized to the left hemisphere in all three sub-
jects. All subjects signed informed consent to participate in the study,
which was approved by the Institutional Review Board of Albany
Medical College and the Human Research Protections Office of the US
Army Medical Research and Materiel Command.

2.2. Data collection

Once subjects recovered postoperatively, we recorded ECoG signals
at the bedside using general-purpose BCI2000 software [27,28], which
controlled eight 16-channel g.USBamp biosignal acquisition devices
(g.tec, Graz, Austria). To ensure integrity of clinical data collection, a
connector split the electrode cables into two separate sets. One set
was connected to the clinical monitoring system, and another set was
connected to the g.USBamp acquisition devices. The ECoG signals were
amplified, digitized at 1200 Hz, and stored by BCI2000. We used
electrode contacts distant from epileptogenic foci and areas of interest
for reference and ground.

2.3. Anatomical mapping

We created 3D cortical brain models for each subject by submitting
preoperative high-resolution magnetic resonance imaging (MRI)
scans to Freesurfer software (http://surfer.nmr.mgh.harvard.edu/). We
coregistered MRI scans with postoperative CT images using SPM soft-
ware (http://www.fil.ion.ucl.ac.uk/spm/) and identified the stereotactic
coordinates of each grid electrode using custom MATLAB scripts (The
MathWorks Inc., Natick, MA). Finally, we visualized the cortical surface
of each subject and ECoG grid locations using NeuralAct software [29].

2.4. Task and stimuli

In our study, we asked the subjects to listen to four short stories nar-
rated by a male voice (stimulus duration: 17.15–35.70 s; interstimulus
interval (ISI) of 10 s) which were part of the Boston Aphasia Battery
[30]. The stimuli were digitized at 44.1 kHz in waveform audio file for-
mat and binaurally presented to each subject using in-ear monitoring
earphones (12 to 23.5 kHz audio bandwidth, 20 dB isolation from
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environmental noise). The sound volumewas adjusted to a comfortable
level for each subject. The subjects did not perform any overt task
(such as repeating words and generating verbs in response to the
words they heard).

2.5. Feature extraction

We identified ECoG activations by detecting task-related changes in
the broadband gamma (70–170Hz) band. Activity in this bandhas been
shown to be related to the average firing rate of neuronal populations
directly underneath an electrode [31–33]. A large number of studies
have shown that broadband gamma activity increases reliably in task-
related cortical areas [20,34], including locations traditionally thought
to be active during speech perception [24,35,36].

To identify those locations that responded to auditory stimulation,
we first removed channels that did not contain clear ECoG signals
(e.g., ground/reference channels, channels with broken connections,
or channels corrupted by environmental artifacts or interictal activity).
Of a total of 61, 98, and 134 channels, this left 59, 79, and 132 channels
for subjects A–C, respectively, which we submitted to subsequent anal-
yses. In these analyses, we high-pass filtered the signals at 0.1 Hz to re-
move drifts and re-referenced the signals to a common average
reference (CAR) montage. We band-pass filtered the results in the
broadband gamma band using a Butterworth filter of order 16. We
then obtained the power of these signals by computing the square of
the analytical signal of the Hilbert transform, followed by a low-pass fil-
ter at 4 Hz and down-sampling to 120 Hz. Finally, we normalized the
resulting broadband gamma power estimates by subtracting from
them the signal mean calculated from a baseline period (−6 to
−0.5 s prior to the onset of the auditory stimulus) and by dividing
them by the standard deviation of the signal during the baseline period.

2.6. ECoG-based mapping of expressive language cortex

We determined those locations whose ECoG broadband gamma ac-
tivity following onset of the auditory stimulus (i.e., the response period)
was different from that during the baseline period. Several studies have
shown that, in receptive auditory areas, broadband gamma activity reli-
ably tracks the time course of the envelope of the intensity of the audi-
tory stimulus [37,38] or speech stimulus [39]. A few isolated reports
documented discrete and brief broadband gammaactivations in inferior
frontal cortex after the onset of an auditory speech stimulus [24,25] that
occurred after the activations in receptive auditory areas [25]. Based on
these reports, we defined the response period as 250–750ms following
the onset of the auditory stimulus. Then, for each location, we deter-
mined the magnitude of the change in ECoG broadband gamma
power that was related to auditory stimulation by calculating the coef-
ficient of determination (Pearson's r2 value). Finally, we determined the
statistical significance of each r2 value, i.e., the probability that ECoG
broadband gamma samples differed in amplitude between the response
and baseline periods, using a permutation test. In this test, we cut the
ECoG broadband gamma power time courses into blocks of 500 ms
(thereby preserving the autocorrelation of the signal), randomly
permutated the resulting blocks, and finally calculated the correspond-
ing random r2 value. We repeated the permutation step 1000 times,
thus generating a distribution of 1000 random r2 values at each location.
We considered r2 values to be significant at the 95th percentile of that
distribution (p = 0.05, Bonferroni-corrected for the total number of
electrodes in each subject). The result of this procedure was a set of
locations whose ECoG broadband gamma activity was significantly
different between the baseline and the response periods and,
hence, responded to the speech stimuli. Among the resulting locations,
we identified those that were situated within inferior frontal cortex.
This included all electrodes whose Talairach [40] coordinate was within
x −28 to −55, y −8 to +34, and z 0 to 28, consistent with previous
observations [41].
2.7. ECS-based mapping of expressive language cortex

Standard electrocortical stimulation mapping of expressive speech
was performed extraoperatively for clinical purposes. The subjects
took part in two simple tasks commonly used for this purpose: a pic-
ture-naming task, during which subjects were asked to verbally name
sequentially presented pictures of simple objects and a verb generation
task, during which subjects had to verbally generate verbs associated
with simple nouns presented auditorily. Different electrode pairs were
stimulated to establish whether a given pair induced a disruption of ex-
pressive language function, e.g., speech arrest or hesitation. Stimulation
intensity typically started at 2 mA and was increased in incremental
steps of 2 mA until the neurologist observed clinical effects or after-
discharges or reached the 10 mA threshold.

3. Results

Themain results of our study are presented in Fig. 1. Thisfigure high-
lights those locations that were identified by our analyses of the ECoG
signals corresponding to the presentation of the speech stimuli (filled
circles) and locations that produced arrest of expressive language
function using ECS mapping (yellow circles).

Locations identified by ECoG mapping included the expected loca-
tions (highlighted by gray-filled circles) in superior temporal gyrus
and/or perisylvian areas (all subjects) as well as in premotor and/or
supplementary motor areas (subjects A and C) [38]. Consistent with
previous observations (see Fig. 8 in [38]), our method also identified re-
sponsive locations on or close to superior precentral gyrus (Patient C).
Most relevant in the context of the present study, our ECoG-basedmap-
ping identified locations (highlighted by blue-filled circles) in inferior
frontal cortex (pars triangularis and/or pars opercularis) in all three
subjects. Fig. 1C also presents exemplary time courses of ECoG
broadband gamma activity in Patient C.

Electrical cortical stimulation mapping identified 1–2 locations in
which stimulation produced expressive language arrest in each subject
(yellow circles). These locations were also located in or around pars
triangularis and pars opercularis. The ECS-positive sites overlapped
with the sites identified using ECoG or were located no more than one
contact away.

4. Discussion

In our study of three patients with chronically implanted subdural
electrode grids, we provide initial evidence that it is possible to use pas-
sively recorded ECoG in response to presentation of speech stimuli to
identify not only locations in the receptive language network that are
located primarily in the temporal lobe but also locations within the
expressive language network in the inferior frontal cortex.

With further refinement of the protocol and validation in more
subjects, the passive mapping approach described here could lead to a
mapping method that may have important clinical implications. The
ability to map expressive language cortex with greatly reduced needs
for patient participation expands the utility of functional languagemap-
ping. Specifically, it enables functional mapping of expressive language
in patients who are unable to cooperate productively such as pediatric
populations or patients suffering from aphasia or psychiatric and cogni-
tive comorbidities. We envision passive language mapping using ECoG
to either complement existing ECS or fMRI mapping protocols or
provide an alternative when other expressive language mapping
techniques are inadequate. The ECoG passive mapping may also have
distinct advantages in the time-limited settings of the intraoperative
environment. A preliminary map of eloquent expressive language
cortex could inform ECS mapping, likely resulting in reduced ECS
mapping time and thereby diminishing the risks of patient morbidity,
discomfort, and iatrogenic seizures. This would prove extremely useful
in an intraoperative decision-making situation. Recent studies already



Fig. 1. In this figure, panels A–C reflect results for the patients A–C, respectively. The electrode locations for each patient are overlaid in black, while white, blue, and yellow circles
correspond to locations described in the legend above. Panel C also includes four graphs presenting ECoG activity over exemplary sites from−500 ms to 1500 ms after stimulus onset.
Shaded areas reflect the standard error of the mean, the vertical dashed lines show stimulus onset, the horizontal dashed lines show baseline activity, and the horizontal dotted red
lines show a 3 z-score threshold above which ECoG activity is significantly different from baseline. The exact timing at which ECoG activity passes this threshold is further denoted by
an arrow under each time plot.
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demonstrated the feasibility of intraoperative real-time mapping
of motor [3,6] and language [3,6,42] mapping using acutely placed
subdural grids.

4.1. Variable congruency between ECS and ECoG

One important general question that remains to be answered is the
reason for the variable congruency between ECS and passive ECoG in
the context of language mapping. Using traditional ECoG-based map-
ping tasks (such as verb generation, picture naming, and passive listen-
ing), previously reported concordance rates between ECoG and ECS
range from 38%–89% in sensitivity and from 48%–92% in specificity [4,
23,43,44]. This variability in concordance reported in the literature can
be attributed to several factors. These include the different language
tasks used with each modality [44,45]. Other potential explanations
for the discrepancies between ECS and ECoG involve the statistical is-
sues that necessarily result from the comparison of the single-
electrode ECoG method with the pair-wise ECS method [2,45] and the
fundamental difference between a lesion-basedmodel approach versus
a task-based physiologic approach [34,43]: while ECoG should identify
all locations at which neuronal populations subserve the specific
function, ECS will only identify the (potentially small) subset of those
locations that completely disrupt function. Thus, ECoG can be expected
to define a larger area for preservation and underestimate the margin
for safe resection. In this context, it is worth noting that patients
have been reported to have postoperative language deficits after
resection of an ECoG(+)/ECS(−) node [4,23,43,44,46,47]. In a study of
77 patients, postoperative language deficits could be predicted by the
number of ECoG(+) language nodes resected [48]. At present, most re-
sections are based primarily on ECS results even though ECS has never
been validated in randomized, clinical trials [2]. This reality implies
that, with continued refinement and validation, the ECoG method
may play an even larger role in presurgical functional mapping in the
future. At the same time, without additional information, we currently
do not suggest replacing exhaustive ECS mapping but rather
argue that ECoG-based mapping provides useful and complementary
information.

4.2. Additional evidence from other studies supports the mapping of
expressive language function without requiring the patient to speak

Another critical question raised by the present study is to what
extent the encouraging results presented here generalize to a larger
number of patients. For two reasons, we are optimistic that the results
in a larger number of patients will echo the initial results reported
here. First, several groups have reported activation of the inferior
frontal gyrus in response to presentation of passive speech stimuli
[12–15,17,49]. Mazoyer et al. first demonstrated activation of the left in-
ferior frontal gyrus on positron emission tomography (PET) scans in 16
subjects while listening to lists of words and stories [12]. Several fMRI
[13–15,17,49] and ECoG [24,25] studies have replicated these results
using similar tasks. Furthermore, it is well known that the blood-
oxygen level-dependent (BOLD) signal changes detected using fMRI
correlate very well with the broadband gamma increases in ECoG
[50–56], which are the basis of ECoG-based functional mapping.
Second, recent evidence indicates that ECoG-basedmapping can identi-
fy locations in expressive language areas when sites in receptive lan-
guage areas are stimulated using electrical stimulation (corticocortical
evoked potentials (CCEPs)) [57–60]. For example, Matsumoto et al.
[57] described the technique of delivering a single pulse electrical stim-
ulation in the inferior frontal language area and recording a cortical
evoked potential in the temporal–parietal area, establishing structural
neuronal connectivity between the two functional regions. In a smaller
subset of patients, they were able to elicit CCEPs in the inferior frontal
and basal temporal regions with stimulation of the temporo–parietal
language area. This bidirectional connectivity is likely mediated at
least in part by the arcuate fasciculus, although the anatomical distribu-
tion of the arcuate fasciculusmay bemore complex than historically as-
sumed [61–64]. More generally, the language network connectivity
model appears to be much more complex than initially believed, with
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an interplay of numerous cortical regions and white matter tracts
[62,65–67].

4.3. Study limitations

While our initial results are encouraging, different circumstances
could temper the significant positive implications of expressive lan-
guage mapping using passive stimuli. When applied in intraoperative
scenarios, different surgical realities (such as intermittent irrigation on
the subdural grid, cable adjustment, variable clinical or cognitive status
of the patient) may lead to lower signal-to-noise ratio and a resultant
decrease in ability to detect task-related ECoG changes. The duration
of mapping may be increased if the grid requires repositioning with
reinitiation of tasks. Furthermore, it is possible that passive engagement
of expressive language functionmay not elucidate thewhole expressive
language network. Finally, the current study is only reporting results for
3 subjects. Further investigation in a larger number of patients is
required to assess the potential benefit of our findings to resective
neurosurgical planning. Furthermore, while our method successfully
identified expressive language sites in a patient diagnosed with a left
frontal tumor in close proximity to Broca's area (subject A), it is not
possible to predict how our method would generalize to patient popu-
lations with different types of distorting pathologies. It would also be
valuable to determine if our method can identify eloquent expressive
language cortex in patients with aphasia.

5. Conclusions

In this paper, we report initial results of an approach to functional
mapping of expressive language function that could greatly reduce the
need for subject participation. With further refinement and validation,
the approach described here may lead to a simple, easy-to-use protocol
that would simultaneously identify receptive and expressive language
areas for surgical planning. This protocol would be widely applicable
in a significantly greater number of patients. Finally, because our ap-
proach does not require the patient to speak, it opens up the possibility
for applying it to patients under general anesthesia. Thus, this approach
has the potential to completely revolutionize functional language
mapping in neurosurgery; the initial results presented here clearly
encourage further investigation.
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