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Abstract Invasive and non-invasive brain–computer

interface (BCI) studies have long focused on the motor

cortex for kinematic control of artificial devices. Most of

these studies have used single-neuron recordings or elec-

troencephalography (EEG). Electrocorticography (ECoG)

is a relatively new recording modality in BCI research that

has primarily been built on successes in EEG recordings.

We built on prior experiments related to single-neuron

recording and quantitatively compare the extent to which

different brain regions reflect kinematic tuning parameters

of hand speed, direction, and velocity in both a reaching

and tracing task in humans. Hand and arm movement

experiments using ECoG have shown positive results

before, but the tasks were not designed to tease out which

kinematics are encoded. In non-human primates, the rela-

tionships among these kinematics have been more carefully

documented, and we sought to begin elucidating that

relationship in humans using ECoG. The largest modula-

tion in ECoG activity for direction, speed, and velocity

representation was found in the primary motor cortex. We

also found consistent cosine tuning across both tasks, to

hand direction and velocity in the high gamma band

(70–160 Hz). Thus, the results of this study clarify the

neural substrates involved in encoding aspects of motor

preparation and execution and confirm the important role

of the motor cortex in BCI applications.

Keywords Electrocorticography � Subdural

electroencephalography � Motor cortex �
Brain–computer interfaces � Arm tuning � Cosine tuning

Introduction

Over the past several decades, neurophysiologists and

biomedical engineers have applied significant effort toward

creating useful brain–computer interface (BCI) systems for

the impaired (Dobelle et al. 1973; Bullara et al. 1979;

Wolpaw et al. 2002). During this same period, our ability

to collect, process, and understand brain signals has

increased substantially (Schwartz et al. 2006). Because of

these efforts, BCIs based on electroencephalography

(EEG) have already been installed in the homes of a few

impaired individuals (Kubler et al. 2005; Nijboer et al.

2008; Klobassa et al. 2009). For these patients, BCI devices

restore the capacity to interact with the world again. EEG is

widely used for research and development because it is

safe, inexpensive, and effective (Wolpaw and Birbaumer

2005); however, EEG can only detect synchronous changes
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in large areas of cortex (Nunez and Srinivasan 2006), thus

placing significant limitations on EEG devices in terms of

providing finer degrees of device control to a patient.

Results from prior studies based on implanted micro-

electrodes primarily in non-human primates show that the

scope of recordings from individual neurons is the converse

of EEG recordings (Bullara et al. 1979; Georgopoulos et al.

1982). Single-unit recordings have performed successfully

in device control experiments in the laboratory (Moran and

Schwartz 1999a, b; Georgopoulos et al. 1982; Schwartz

et al. 1988; Wang et al. 2007, 2010), enabling closed-loop

control of a computer cursor (Serruya et al. 2002; Taylor

et al. 2002) and even a robotic arm (Velliste et al. 2008). At

the same time, despite isolated encouraging successes in

clinical applications of these methods (Hochberg et al.

2006), single-unit recordings have yielded limited success

outside of the laboratory setting, mainly due to unsolved

problems with the long-term robustness of the recorded

signals (Baker et al. 1999; Liu et al. 1999; Blake et al.

2010; Retterer et al. 2008).

The limitations of both signal acquisition techniques

described above have led to the exploration of local field

potential (LFP) recordings and a similar recording modal-

ity (electrocorticography [ECoG]), closely related tech-

nologies that record signals from populations of neurons

(Leuthardt et al. 2006b; Schwartz et al. 2006). ECoG has

had successes showing that it contains more information

than EEG, but there are only preliminary findings to

address stability issues seen with single units (Chao et al.

2010). Early successes using ECoG were based on

approaches developed for EEG. These approaches make

use of brain signal correlates of gross motor movements

(e.g., moving a hand vs. rest) and equivalent motor imag-

ery. While these approaches provide robust ECoG signals

that can support good BCI performance, such BCI perfor-

mance depends on non-intuitive imagery and thus may be

suboptimal (Miller et al. 2007; Leuthardt et al. 2006a). A

number of recent studies have shown that ECoG signals

from the motor cortex in the 70–160-Hz range show strong

encoding of actual and imagined motor activity (Wang

et al. 2007; Schalk et al. 2007b; Pistohl et al. 2008;

Sanchez et al. 2008; Kubanek et al. 2009). Similar ECoG

activations have been successfully used for one- and

two-dimensional BCI control in subjects with epilepsy

(Leuthardt et al. 2004; Schalk et al. 2008). Given these

successes in decoding gross movements and corresponding

motor imagery, it is logical to further explore high-fre-

quency (70–160-Hz range) ECoG signals for more precise

encoding.

Recently, researchers have begun to explore the corre-

lation between two-dimensional hand movements and

ECoG recordings (Schalk et al. 2007b; Pistohl et al. 2008;

Sanchez et al. 2008). These studies focused on one

experiment and failed to explore the relationship between

tracing and center-out reaching tasks that has been eluci-

dated in non-human primates. Single-neuron approaches

are usually employed to decode directional tuning and

other movement parameters such as speed. Studies have

shown that firing rates of single units in the primary motor

cortex can be highly correlated with arm kinematics such

as position, direction, speed, and velocity (Moran and

Schwartz 1999a, b; Georgopoulos et al. 1982; Schwartz

et al. 1988; Wang et al. 2007, 2010), and a direction and

velocity signal-based BCI has been successfully imple-

mented (Serruya et al. 2002; Taylor et al. 2002; Velliste

et al. 2008). We have previously shown that single-unit

firing rates correlate well with high frequencies of local

field potentials and exhibit tuning to movement kinematics

(Heldman et al. 2006). Thus, the aim of this study is to

better characterize the differential ECoG signals encoded

by hand direction, velocity, and speed.

Methods

Cortical activity model

This study investigated the cortical representation of ECoG

signals for two-dimensional hand position and velocity in

humans. This model was adapted from the model used in

the previous primate studies (Wang et al. 2007; Moran and

Schwartz 1999a, b). Our hypothesis was that the relation-

ship between motor cortical ECoG activity and hand

kinematics can be described by:

AðtÞ ¼ b0 þ bs V~ðtÞ
�
�

�
�þ B~v � V~ðtÞ þ B~p � P~ðtÞ ð1Þ

where A(t) is the instantaneous ECoG spectral amplitude of

a given frequency band at any time t, b0 is the baseline

activity of a feature, and bs is the portion of the feature

activity modulated by hand speed. The remaining variables

are all two-dimensional vectors, that is, Bv, Bp, V(t) and

P(t). Bv is the preferred direction (PD) of a specific feature,

and Bp is the preferred gradient (PG) of the same feature.

Preferred gradient varies with the magnitude of displace-

ment from the central location. V(t) and P(t) are the hand

velocity and hand position, respectively. The magnitudes

of Bp and Bv represent the depth of modulation for each

tuning curve (position and velocity), respectively. The

depth of modulation is determined by the magnitude of the

resulting bx and by, specifically DoM = ||[bx, by]||. Equa-

tion 1 is based on the neuronal activity model proposed by

Moran and Schwartz (1999a).

Equation 1 can be broken into the following Eqs. 2–5

for analysis in order to calculate the portion of the signal

encoded by each of the kinematic components indepen-

dently. We analyzed three kinematic components during
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the movement period for their relative depths of modula-

tion and statistical significance. We used four equations to

model the kinematic components of position (Eqs. 2),

direction (Eq. 3), speed (Eq. 4), and velocity (Eq. 5):

�A ¼ b0 þ bpxxþ bpyy ð2Þ

�A ¼ b0 þ bdx
_x

�s
þ bdy

_y

�s
ð3Þ

�A ¼ b0 þ bs�s ð4Þ
�A ¼ b0 þ bvx _xþ bvy _y ð5Þ

In Eqs. 2–5, �A is the average spectral amplitude deviation

from baseline of the ECoG data over a given time period in

a given frequency band, and �x and �y represent average hand

position in that same time period (mapped from screen

positions). Similarly, _x and _y represent average hand

velocity from the same time period as �A. Mean speed during

a given time period, denoted �s, is used to calculate direction

in Eq. 3 as well as speed modulation in Eq. 4. The feature’s

baseline amplitude is b0; other variables, bpx, bpy, bdx, bdy,

bvx, and bvy, are the values of the preferred directions/gra-

dients calculated from their associated components.

A is calculated as the percent deviation from a baseline

wherein the task-dependent baseline was subtracted from the

signal of interest and then the resulting signal was divided by

the baseline value. Similarly, the movement kinematics are

standardized as ratios of the maximum in order to normalize

the variables between 1 and -1. Equation 2 is a model for

position and regresses the deviation from baseline amplitude

in signal ( �A) to the mean position of the cursor. Similarly, for

Eq. 3, the variable A is regressed to the horizontal and ver-

tical directions of the cursor movements. Equation 4 is used

for speed tuning and only has one component, s, which is the

magnitude of the derivative of both the �x and �y positions. By

combining speed and direction, Eq. 5 models velocity, and

the two vectors _x and _y represent the corresponding cursor

movement velocities.

Subjects and data collection

Our study included seven patients with epilepsy who

underwent clinical subdural ECoG monitoring for seizure

localization. The study was approved by the Washington

University Institutional Review Board, and all subjects

provided informed consent. Subject information is shown

in Table 1.

The subjects performed two different tasks using a

Microsoft Sidewinder II force feedback joystick that was

placed at a comfortable distance in order to allow for the

desired range of arm movements. The joystick was placed

at chest height on a table in front of each subject such that

he or she could comfortably grasp it using the hand that

was contralateral to the implanted electrodes. Subjects used

their hands and arms to manipulate the joystick in open-

loop experiments as described below. Joystick movements

involved both the arm and wrist because of the force

involved and displacement required. These movements

activated multiple muscle groups, making the experiments

less specific but more likely to yield results at the level

recorded by ECoG. This joystick had a force feedback

feature that provided a linear centering force of 4.5 New-

tons at the top of the joystick when displaced from the

center and provided an equivalent force resisting circular

motion. Visual feedback for the experiments was displayed

on a computer monitor that was placed approximately

18 in. from the subjects.

Data were collected by splitting the ECoG signals from

the subjects to allow both research and clinical recordings

simultaneously. FDA-approved amplifiers (i.e., USBamp,

Guger Technologies, Graz, Austria) were used to record the

signals for research purposes. Data were collected at a

sampling rate of 1,200 Hz (bandpass 0.5–500 Hz), similar

to the settings used in the previous work (Wisneski et al.

2008). Data acquisition and stimulus presentation were

accomplished using the BCI2000 software package (Schalk

et al. 2004) with custom experimental paradigms.

Table 1 These experiments were run on seven epilepsy subjects with normal cognition

Sex Handed Age Cognition Hand used Elec

CO

Elec

T

Location

Male Left 14 Normal Right 12 16 PM,M,S

Female Right 27 Normal Left 24 24 PM,M,FEF,T,PFC

Female Right 46 Normal Left 42 42 PM,M,S,FEF,T,PFC

Female Right 9 Normal Left 46 46 PM,M,S,FEF,T,PFC

Male Right 43 Normal Right 36 36 PM,M,S,T,PFC

Female Right 16 Normal Right 56 0 PM,M,S,FEF,T,PFC

Female Right 48 Normal Right 11 11 PM,M,FEF,T,

Different numbers of electrodes were run on some patients for center-out (CO) and tracing (T). The location information has the same areas as

Fig. 4 prefrontal (PFC), frontal eye fields (FEF), temporal (T), somato-sensory (S), motor (M), premotor (PM)
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Experimental paradigms

We designed two tasks to dissociate position and direction

kinematics from each other. The first task was a classic

center-out reaching task, first proposed by Georgopoulos

et al. (1982). The second task was based on the circular

drawing task first designed by Moran and Schwartz to

dissociate position from velocity (Wang et al. 2007; Moran

and Schwartz 1999a, b). Data were collected from seven

subjects for the center-out reaching task and six subjects

for the tracing task; one subject was not able to perform

both tasks.

In the center-out task, the subject moved a cursor from

the center of the screen to a random target placed toward the

periphery of the screen. The task specifics are described

below and are also outlined in Fig. 1. The first period was a

delay before a goal target was presented to the subject

(baseline period; 300 ms). Signals during this period were

used as a baseline in the analyses. The goal target then

briefly changed color (target-encoding period; 300–500 ms)

to indicate that it was the desired target in this trial. Another

delay (delay period; 300 ms) followed the target-encoding

period. Subjects then used the joystick to move the cursor to

the appropriate target (movement period; 500–3,000 ms),

which was the period of interest to analyze the kinematic

components in question. Upon reaching the target, the

subject had to hold the cursor over the target for a length of

time (hold period; 300–500 ms). A reward period followed

wherein the desired target turned green if the trial was

completed correctly, or red if the trial was completed

incorrectly. To complete the cycle for the task, the cursor

was re-centered by the computer, and the joystick was

re-centered by the subject so that each trial began in the

same location. The targets each were presented in a pseudo-

randomized order 10 times for a total of 80 movements per

subject.

The tracing task was based on a drawing task used in

prior studies (Moran and Schwartz 1999b; Schwartz and

Moran 1999). In this paradigm, the subject’s task was to

trace the path of a computer-controlled arrow (blue) with a

subject-controlled cursor arrow (red) using the joystick (see

Fig. 1). The direction of rotation of the arrow changed

between trials (i.e., clockwise or counterclockwise), so that

velocity encoding could be dissociated from position

encoding. The subject was instructed to match the length

and direction of the computer-generated arrow with his or

Fig. 1 The center-out and arrow tracing tasks. Top The center-out

task as performed in this study. There were 5 different key periods to

the task. A baseline was collected while the subject centered the

cursor in the middle of the screen (i.e., no force/displacement applied

to joystick). The target was then displayed for 300–500 ms by

changing the color of the ‘‘correct’’ target. A 300-ms delay period

followed the target-encoding period, wherein the target cueing was

extinguished, and the subject had to hold the correct target location in

memory. At the end of the delay period, a ring in the center of the

display disappears as a ‘‘go signal’’ to the subject and then moves to

the appropriate target. Once the subject reaches the target, they have

to hold the cursor on the target for a period of time (300 ms). Bottom
The arrow tracing task was performed by having the subject match

the radius of the blue arrow with the red arrow and the push the blue
arrow around the circle in the direction the computer would allow.

Both clockwise and counter-clockwise conditions were run on this

task in order to dissociate position and direction of movement. The

task was also run with two different radii; however, the results from

both radii were combined in the final analyses (color figure online)
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her cursor-controlled arrow using the joystick. The com-

puter-generated arrow was 2.5 or 5 cm long and was cen-

tered in the middle of the monitor. The arrow position and

direction matched the joystick position and direction. Once

the subject matched both the radius and angle of the blue

cue arrow, the computer rotated the arrow either clockwise

or counter clockwise, slightly ahead of the subject-con-

trolled arrow. The subject controlled the overall rate of

rotation (i.e., speed) by the rate at which it reacquired the

rotated blue arrow. The subjects performed a total of at

least 20 complete circle tracings over a 9-min period, five

repetitions in each direction (clockwise or counter clock-

wise) for each radius (2.5 or 5 cm).

Performing the tracing task in two directions dissociated

the movement kinematics of position and velocity, which

are correlated in the center-out task since it uses straight-

line movements. This dissociation is accomplished in the

tracing task by requiring a subject to move his or her arms

at opposite velocities in the same position and at the same

velocity in opposite positions (demonstrated in Fig. 1).

When the arrows are on opposite sides of the circle and are

moving in opposite directions, the direction of movement

kinematics is in the same direction along the circumfer-

ence. The light green arrow represents the direction of

movement for clockwise movement on the right and for

counter-clockwise movement on the left, which in both

cases is up and to the left.

Kinematics and analysis

All trials having movement periods lasting between 0.5 and

3 s were accepted for the center-out task. Approximately

80 trials for both tasks conformed to these standards. Short

trials (i.e., \0.5 s) were excluded because they included

movements that were initiated during the delay period.

Data for the tracing task were accepted if a subject moved

in the same direction for at least 300 ms while within

2.5 mm of the given radius (e.g., 2.5 or 5 cm). After

applying these criteria, our data set included every subject

and at least 75 trials for each task. The movement kine-

matics were normalized by averaging over the entire

movement period.

Prior to performing our analyses, we applied notch fil-

ters (6 Hz wide, 3rd order Butterworth) centered at 60 Hz

and its 2nd through 4th harmonics. We then performed

power spectra calculations using the maximum entropy

method (Press et al. 1992), as outlined in the previous work

(Anderson et al. 2009). These spectra were created as

estimations of power based on 100-ms sliding time win-

dows and a model order of 30. A baseline was calculated

during the first delay period for the center-out task and an

average of all the data for the tracing task. Next, cosine

tuning curves were fit on these spectra in 5-Hz bins using

the cosine tuning Eqs. 3–5.

The tuning of the baseline activity normalized power in

the spectra from 0 to 280 Hz in 5-Hz spectral bins was

regressed to the normalized movement kinematics of the

subject. Electrodes were divided up by Brodmann area, and

tuning was calculated by regression to the models in

Eqs. 2–5. The regression to each of the modeled kinetics

was an attempt to demonstrate tuning and reject the null

hypothesis that these models are not represented in the

signals ECoG records. A specific channel and frequency

band was considered statistically significant for this

hypothesis when p \ 0.05 for fit of regression to the model

and depth of modulation (DOM) for this model was

DOM [ 5 % of baseline power. A specific channel was

said to be tuned to the model and have statistical signifi-

cance if at least one-third of the 70–160-Hz band of interest

filled the criteria of statistical significance for a given band,

in this case that would be at least any 6 of the 5-Hz bands in

a given channel. The 6 bins needed to count a channel need

not be continuous but would represent wideband tuning in

the 70–160-Hz region. A specific Brodmann area was said

to be statistically significant, have organized and not just

spurious tuning, if the number of statistically significant

channels in that Brodmann area exceeded the number

expected by random chance at p \ 0.05. Each feature (5-Hz

frequency bin on each channel) was modeled to the direc-

tion, speed, and velocity of the joystick movements.

We considered two different statistics of tuning: mean

depth of modulation and number of channels. The mean

depth of modulation was used since it provided an expected

measure of modulation on an electrode within a Brodmann

area and was only computed using statistically significant

channels. Discerning the number of channels with signifi-

cant activations allowed us to estimate the likelihood that a

channel would be tuned if future electrodes were placed in

that area.

We averaged the 70–160-Hz band data to create a

gamma band average for the functional areas (Fig. 4). We

combined Brodmann areas to represent functional areas as

follows: Areas 11 and 47, prefrontal cortex; Areas 9, 46,

and 8, frontal eye fields (FEF); Area 6, premotor cortex;

Area 4, motor cortex; Areas 1, 2 and 3, somato-sensory

(Sensory) cortices; and Areas 21 and 22, temporal lobe.

After the preferred directions were calculated for each

feature, they were compared to their counterparts (same

frequency and channel) if both were statistically significant

across tracing and center-out tasks. To do so, we compared

the angle between the tuning of the preferred direction of

one condition and the tuning of the preferred direction of

the other condition. This comparison aided in determining

the stability of the preferred direction for a particular

feature.
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Results

Kinematic Figs. 2 and 3 illustrate the setups for these

experiments. Figure 2 illustrates all of the kinematic data

from Subject 1 used in later analysis. Mean time and var-

iance to each of the eight targets were similar for the

center-out task (see Fig. 3, left). The data for the tracing

task were segmented into octants based on the center-out

task target location before any additional analysis was

performed (see corresponding movement times in Fig. 3,

right). These times are similar except for the octant at 90�.

Each trial started in the octant at 90�, and the higher var-

iance reflects the time it took to arrive in the upper octant

from the subject’s previous position.

Table 2 shows the number of channels that are sta-

tistically significant for each of the functional areas.

Results for velocity tuning show that electrodes located

in the motor cortex were consistently statistically sig-

nificant for both the center-out and tracing tasks. The

frontal eye fields and premotor cortex show more dom-

inant tuning for the tracing task than for the center-out

task.

Fig. 2 Average kinematics for both the center-out and arrow tracing

tasks. On the left: For the center-out task, the green arrows represent the

average velocity of the cursor during a single movement. The green
arrows are centered on the average position of the cursor during that

same single movement. The red arrows are the mean velocities plotted

at the mean position for each target (across all trials to that target). The

mean velocity (red) arrows show approximately the same speed for any

given direction. On the right: For the Arrow Tracing task, the blue
arrows represent all the velocities used to create average values for the

regression. The red arrows are the mean velocity all originating from

the mean position in that octant. There are two mean velocity arrows for

each position since the task was run in both the clockwise and counter-

clockwise direction. This task showed fairly uniform velocity distri-

butions like the center-out task (color figure online)

Fig. 3 Mean movement times and variance for trials in center-out

task or time spent in a particular octant for the Arrow tracing task. The

black circles represent the mean time spent in each of the conditions

and the lines are one standard deviation above or below this mean.

For the center-out task, the means were relatively consistent around

1.25 s, and variances were relatively consistent across locations. This

was consistent with the similar velocities displayed in Fig. 2. For the

tracing task, the average time spent in each octant was relatively

consistent around 2–3 s. The variances on this were generally

consistent with the exception of the octant located at 90�. Each trial

started at 90� and the larger variability of time at this location is the

result of the variable delay at the beginning of each trial
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Figure 4 shows the tuning for each of the functional areas

described earlier. The horizontal axis of each plot shows the

functional areas, and the vertical axis shows the mean depth

of modulation. Each of these plots shows the depth of

modulation for each of the three kinematic components:

direction, speed, and velocity. The results displayed are all

statistically significant (p \ 0.05) individually, but the

motor cortical results show much larger depths of modula-

tion for direction, speed, and velocity terms compared to the

other functional areas.

Figure 5 illustrates the wideband tuning and inversion

(low frequency tuned in the opposite direction compared to

high frequency [[70 Hz]) that is prototypically seen in

channels with strong ECoG tuning. Frequency is repre-

sented on the horizontal axes, and the vertical axes are a

measurement of the modulation of that feature. The lengths

of the tuning vectors in Fig. 5 are the depths of modulation

of each 5-Hz bin when compared to normalized move-

ments, and the direction of the arrow is the modeled

direction of the tuning. The 5-Hz bands with statistically

significant tuning (p \ 0.05) and depth of modulation

([5 %) are shown in red. The general direction of tuning

and depth of modulation in given frequency bands is

similar across the center-out and tracing tasks, and phase

reversals are displayed between sub 50-Hz frequencies and

70–160-Hz frequencies tuning. There are also some dif-

ferences across the tasks and to a lesser extent the direction

and velocity results displayed: direction shows less depth

of modulation than velocity that is consistent with velocity

being tuned to a larger amount of the encoded information;

the tuning in center-out is more consistent across bands

than tracing likely because of the task design, specifically

longer time windows available for center-out decoding.

Figure 6 quantifies the cross task stability of directional

tuning across all the electrodes. As Fig. 5 showed for one

example electrode, direction and velocity tuning of the

neural substrates remains very stable across the center-out

and tracing tasks. The angle between conditions is between

0 and 0.5 radians for the vast majority of the statistically

tuned features. When the non-statistically significant

depths of modulations were compared across these two

tasks, they showed uniform distributions and did not

remain stable. Similar features across both conditions for

statistically significant depth of modulation indicate that

there is stability in the kinematic tuning across both tasks.

Discussion

This study examined the kinematic tuning (i.e., direction,

speed, and velocity) of cortical ECoG activations during

joystick-based arm movements across different brain

regions. The previous ECoG studies focused on motor

Table 2 Statistically significant electrodes from center-out and arrow tracing tasks across all parameters

Area Prefrontal FEF Premotor Motor Somatosensory Temporal

Center-out

Electrodes 22 58 46 43 21 39

Direction 0 0 2 8* 1 0

Velocity 0 1 2 12* 2* 1

Speed 1 1 3* 3* 3* 0

Tracing

Electrodes 16 39 32 34 15 39

Direction 0 3* 7* 4* 0 1

Velocity 0 4* 6* 3* 0 1

Electrodes were said to be statistically significant if they had at least 30 Hz of tuning in the bandwidth between 70 and 160 Hz. The regions that

showed statistical significance were primarily located in the motor areas. Premotor and frontal eye fields (FEF) are more involved in the tracing

task than the center-out task

* Statistical significance for the population

Fig. 4 Mean depth of modulation for each of the areas and the

kinematic components involved in the center-out task. This is the

mean depth of modulation for all statistically significant features from

70 to 160 Hz. Motor cortical areas show a much higher depth of

modulation in this band than any other region
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areas without differentiating velocity, which has been

shown to have stronger encoding from position during

movements (Schalk et al. 2007a). Our experiments were

based on the previous studies, and the results confirm those

found in single-unit recordings in primates, where velocity

and direction showed consistent strong tuning (Moran and

Schwartz 1999b). The frequencies of interest are consistent

with the previous ECoG literature that has shown that high

gamma frequencies are most suitable for BCI and mapping

applications (Miller et al. 2007, 2008; Crone et al. 1998).

The direction and velocity activations were modeled

using a standard cosine tuning model that resulted in an

array of preferred directions across the tested electrodes

(Fig. 5). While individual electrodes showed more con-

sistent preferred directions across the two tasks, cross

electrode comparisons yielded a relatively uniform distri-

bution, demonstrating that each electrode may have dif-

ferent, but stable tuning. The primary motor cortex,

Brodmann Area 4, showed by far the best depth of mod-

ulation for the measured kinematics (Fig. 4); Area 4 also

showed the most tuned electrodes in the center-out task.

While our results showed the best tuning in Brodmann

Area 4, it would be wise to cover adjoining areas as well in

those with motor impairment and thus altered motor maps.

Velocity is the primary kinematic used for BCI, and in this

case, it has a high depth of modulation and the highest

percentage of electrodes activated in the motor areas. This

makes sense, since velocity is tuned to a larger share of the

available information.

The previous studies have analyzed the angle of tuning

with respect to the firing rates of individual neurons

(Moran and Schwartz 1999a, b; Caminiti et al. 1990;

Georgopoulos et al. 1989; Ganguly and Carmena 2009).

The majority of these studies have indicated that the

direction of this tuning changes for individual neurons;

however, in ECoG, the tuning appears to be stationary over

Fig. 5 Comparison of velocity

tuning in 5-Hz bins for a single

electrode in Brodmann area 4.

The arrows indicate the two-

dimensional direction of the

tuning and length of the vector

indicates the depth of

modulation. Red arrows
indicate statistical significance.

This figure demonstrates the

similarity in tuning for this

electrode across tracing and

center-out. This figure also

demonstrates the wide gamma

band tuning that occurs between

approximately 70 and 60 Hz.

Adjacent frequencies show

similar tuning; however, there

are small differences in adjacent

bands that trend over frequency

(color figure online)

Fig. 6 Inter-task tuning.

Preferred directions were

calculated for each kinematic

parameter during the Arrow
tracing and center-out tasks.

The figure above shows the

average angle between preferred

direction from the two tasks.

The majority of statistically

significant preferred directions

show primarily small

differences in tuning between

the two tasks

Exp Brain Res

123



time. The results shown in Figs. 5 and 6 characterize the

robustness of this encoding across frequency and tasks.

Additionally, Fig. 5 demonstrates that arm movement

velocity is consistently encoded across large bandwidths

(e.g., 70–160 Hz). In Fig. 6, both tasks exhibit primarily

similar encoding for both direction and velocity. Combined

with recent evidence of ECoG’s long-term stability (Chao

et al. 2010), these results suggest that motor cortical ECoG

activity may be the optimal signal modality for long-term

chronic BCI applications.
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