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Abstract
Brain–Computer Interfaces (BCIs) are real-time computer-
based systems that translate brain signals into useful com-
mands. To date most applications have been demonstrations
of proof-of-principle; widespread use by people who could
benefit from this technology requires further development.
Improvements in current EEG recording technology are
needed. Better sensors would be easier to apply, more
confortable for the user, and produce higher quality and more
stable signals. Although considerable effort has been devoted
to evaluating classifiers using public datasets, more attention
to real-time signal processing issues and to optimizing the
mutually adaptive interaction between the brain and the BCI
are essential for improving BCI performance. Further devel-
opment of applications is also needed, particularly applications
of BCI technology to rehabilitation. The design of rehabilitation
applications hinges on the nature of BCI control and how it
might be used to induce and guide beneficial plasticity in the
brain.
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Introduction
A BraineComputer Interface (BCI) is a computer-based
system that acquires, analyzes, and translates brain sig-
nals into output commands in real-time. The term BCI

canbe traced to JacquesVidalwhodevised aBCI system in
the 1970s that used visual evoked-potentials [1]. Since
that time, the impressive advances in computer technol-
ogy, machine learning, and neuroscience have enabled the
development of a wide variety of BCI systems [2]. Many
BCI systems use electroencephalographic (EEG) signals
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[2]; others use alternative recording modalities such as
magnetoencephalography (MEG), electrocorticography
(ECoG), intracortical microelectrode recording of single
neuron action potentials or local field potentials, func-
tional magnetic resonance imaging (fMRI), or functional
near-infrared spectroscopy (fNIR) [3]. (see Fig. 1).

Most BCI studies have focused on using them to
restore communication and control to people paralyzed
by chronic neuromuscular disorders, such as amyo-
trophic lateral sclerosis (ALS), brainstem stroke, or
high-level spinal cord injury. To date, these studies
have been mainly demonstrations of proof-of-principle:
actual long-term BCI use by individuals who need
them has been limited to a handful of case studies
(e.g., ref. [4]). More recently, investigators have
become interested in other applications of BCI tech-
nology, particularly the possibility that they might

enhance neurorehabilitation for people with strokes
and other chronic disorders [5].

Some issues relating to invasive methods will be
considered. However this brief review focuses on key
issues related to noninvasive EEG-based BCIs; they are
the most widely researched due to their minimal risk
and the relative convenience of conducting studies and
recruiting participants, and they have the greatest im-
mediate promise for rehabilitation applications. First,
it reviews the major categories of EEG-based BCIs.

Second, it addresses the current state of EEG recording
methodologies. Third, it outlines the key issues
involved in BCI-related signal analysis. Finally, it reviews
the currently most exciting and promising area of BCI
research and development: BCIs for neurorehabilitation.
EEG-based BCIs
Farwell and Donchin [6] reported the first use of a P300-
based BCI, in which a positive potential in the EEG
about 300 msec after an attended target stimulus serves

as the control signal. The P300 is elicited by a stimulus
that has special significance; it is detected by averaging
the EEG responses to relatively rare presentations of
the target stimulus interspersed with many non-target
stimuli [7]. Their subjects viewed a 6 � 6 matrix of
items (letters and other symbols) and attended to a
target item as the rows and columns of the matrix
flashed repeatedly in random order. The average
response to the flash of the target item differed from the
average responses to the other items; the BCI detected
this difference and thereby determined which item the

subject wanted to select. With this BCI, a subject could
spell words. The fact that the P300 potential reflects
www.sciencedirect.com
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Fig. 1

Basic design and operation of a brain–computer interface (BCI) system. The BCI is shown in green. Electrical signals produced by brain activity are
recorded from the scalp, from the cortical surface, or from within the brain. They are analyzed to measure specific features (e.g., amplitudes of EEG
rhythms or firing rates of single neurons) that reflect the BCI user’s intent. These features are translated into commands that operate applications that
replace, restore, enhance, supplement, or improve natural (i.e., neuromuscular) CNS outputs. (From Ref. [3]). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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attention, rather than simply gaze direction, implies
that this BCI could be used by people who lack eye-
movement control [8]. Many research groups are
further developing P300-based BCIs [9]. Several groups
have explored BCIs that use auditory rather than visual

stimuli; these would be useful for people with visual
impairments [10].

Wolpaw et al. [11] reported the first use of sensorimotor
rhythms (SMRs) for BCI control. SMRs are oscillations
(i.e., mu (8e12 Hz) and beta (18e30 Hz)) recorded
over sensorimotor cortices that change in amplitude
with movement, imagined movement, or preparation for
movement [12]. People can learn to control SMR am-
plitudes to move a cursor to hit targets on a video screen
or perform other computer-based tasks. SMR amplitude

is measured by spectral analysis; the subject learns to
www.sciencedirect.com
increase or decrease it as needed to move the cursor
toward the target. The rapid bidirectional nature of this
BCI control paradigm [11] distinguished it from prior
studies that sought to produce long-term unidirectional
changes in brain rhythms for therapeutic purpose (e.g.,

ref. [13]). Subsequent studies by several groups have
further developed this BCI method. Subjects can learn
to use SMR amplitudes to control movement in multi-
ple dimensions simultaneously and to support sequen-
tial mouse-like control [14e16].

Many efforts to develop SMR-based BCIs ask the user
to generate specific mental states through motor imag-
ery [17]. Different BCI commands are often linked to
different imagery (e.g., imagine hand movement to
move the cursor up and foot movement to move it

down). However, as the user’s SMR control improves,
Current Opinion in Biomedical Engineering 2017, 4:194–200
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and particularly when users advance to controlling
multiple dimensions, imagery tends to disappear
[14,15]. While motor imagery may provide a logical and
effective starting point for user training, it becomes
unnecessary and may even be an impediment as training
progresses. Kober et al. [18] found that those subjects
who reported using no specific mental strategy after ten
SMR training sessions showed improved performance.

In contrast, subjects reporting various mental strategies
after ten training sessions showed no improvement.
Such results suggest that successful SMR control after
extended training involves implicit learning mecha-
nisms. Thus, SMR-based BCI control after extended
training resembles typical motor performance in that it
tends to become automatic (i.e., implicit) with practice.
Viewing SMR control as similar to other forms of motor
control suggests using principles of motor learning for
task design. Motor learning involves both explicit and
implicit processes which have differing characteristics

[19]. Explicit instructions can interfere with implicit
processes, particularly in well-trained people [20].

Another type of BCI uses steady-state visual evoked
potentials (SSVEPs) recorded over occipital cortex in
response to lights that flash repeatedly [21]. In this
approach, a subject views several lights that each flash at
a different frequency. When the subject focuses atten-
tion on one particular light, EEG spectral analysis shows
increased power at its frequency band; the BCI detects
this and performs the action represented by that light.

SSVEP-based BCIs can support high rates of information
transfer [22].

In principle, an EEG-based BCI system comprises four
modular subsystems; the first acquires the EEG signals;
the second processes these signals to derive specific
signal frequencies (e.g., SMR amplitudes) and trans-
lates these features into output commands that control
an application; the third is the application itself (e.g., a
spelling program or robotic arm); and the fourth is the
protocol that specifies overall system operation (e.g.,
when stimuli occur) [23,3]. Each of these modular

subsystems presents significant design problems. To be
useful for a wide variety of users, EEG recording sensors
and amplifiers need to provide reliable high quality
signals and be comfortable and easy to apply and use for
individuals who are not technically sophisticated [24].
Signal processing needs to extract the relevant signal
features reliably and translate them accurately into
output commands [2]. The next sections address these
two critical areas of BCI development. Each presents
engineering challenges, and at the same time provides
opportunities for improving BCI performance.

Recording methods
Effective BCI systems require reliable robust high-
quality EEG recording. Standard recording uses wet
electrodes; a conductive gel maintains good electrode
Current Opinion in Biomedical Engineering 2017, 4:194–200
contact with the scalp. While wet electrodes can provide
excellent EEG recording, they are less than optimal,
particularly for long-term daily use by people in their
homes. Many find them inconvenient to use: they
require careful application; the gel is sometimes messy
and needs periodic replenishment; the cap or other
apparatus the holds them in position on the head may be
uncomfortable, awkward, or unattractive [25]. If the

electrode density is too great, bridging can occur (i.e.,
two or more sensors are electrically coupled). In addi-
tion, surface electrodes are susceptible to a variety of
artifacts due to non-brain activity (e.g., electromyo-
graphic (EMG) signals), bodily movements, or nearby
electrical equipment, particularly if electrode imped-
ance increases. While Ferree et al. [26] suggest that high
electrode impedance has little effect beyond powerline
noise that can be easily filtered out, Kappenman & Luck
[27] showed that it increases EEG noise primarily at
lower frequencies and reduces the signal-to-noise ratio

of the P300 response.

Several alternative wet electrode designs have appeared
in recent years. The EPOC system (Emotive) uses
moistened felt pads and a semi-rigid support that en-
ables faster electrode placement but is less accurate
than conventional placement methods and largely re-
stricts placements to sites on the scalp perimeter, which
are more susceptible to EMG contamination [28]. The
g.SAHARA dry electrode (g.tec) consists of a set of 8
gold-plated pins; these electrodes are mounted in a

conventional cap that does not limit electrode locations
and is reported to provide P300-based BCI results
similar to those provide by wet electrodes [29]. Both the
EPOC and g.SAHARA electrodes rely on low impedance
resistive contact with the scalp. In contrast, the dry
electrode developed by QUASAR and Wearable Sensing
uses a hybrid combination of high-impedance resistive
and capacitive contact with the scalp [30].

The device that holds the recording electrodes on the
scalp is extremely important, particularly for long-term
home use. Ideally, this device allows electrodes to be

accurately positioned anywhere on the scalp and keeps
them firmly yet comfortably in place, readily accom-
modates differently sized and shaped heads, neither
interferes with nor is disturbed by head positioning
(e.g., on a headrest or pillow), and is reasonably inob-
trusive and cosmetic. Insecure electrode placement can
lead to noise due to sudden changes in impedance
(“electrode pops”) and variable placement can increase
day-to-day variations in the EEG features used by a BCI.

Nijboer et al. [31] reported that a 32-channel Biosemi

system produced higher P300-based BCI accuracy than
an 8-channel g.Sahara or 14-channel EPOC systems;
however, the BioSemi system and the g.Sahara system
were comparable when their performances using the
same eight electrode sites were compared. Hariston
www.sciencedirect.com
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et al. [32] compared the EPOC, QUASAR, and B-Alert
X-10 (Advanced Brain Monitoring) systems with the
BioSemi system, which they considered the gold stan-
dard. While they did not evaluate signal quality or
system performance, they found that only the BioSemi
system accommodated variations in both head size and
shape. They rated the B-Alert system next in terms of
accommodation. The EPOC and QUASAR systems

could produce uncomfortable pressure points and
movement artifacts. Dry electrodes can be more diffi-
cult to secure to the scalp; this may create a trade-off
between comfort and recording quality. At the same
time, the recent advent of dry electrode systems (e.g.,
Wearable Sensing) that provide EEG signals comparable
to those from wet-electrode systems is an exciting and
important advance toward the realization of practical
widely-used EEG-based BCI systems.

BCI methods that use epidural or subdural electrodes

[33] or intracortical microelectrodes [34] offer more
secure placement and better spatial resolution than
EEG. On the other hand, it is not yet clear to what
extent and for what purposes their invasive nature and
increased cost is justified as non-invasive methods can
produce comparable target acquisition times [15]. In
addition, these invasive recording methods, particularly
those using intracortical electrodes, have not yet
demonstrated reliable longterm (i.e., years) recording
stability [34]. Future advances in materials and tech-
niques may achieve longterm stability and performance

sufficient to justify implanted BCI systems [35].
EEG analysis for BCIs
Communication and control applications depend on
ongoing interaction between the user and the BCI

system; the user observes the results of his or her in-
tentions and adjusts the ongoing output in order to
maintain good performance and correct mistakes. Thus,
BCIs must operate in real time and provide feedback to
their users. Many of the initial BCI studies satisfied this
real-time requirement [2]. However, more recent
studies are often based on offline analyses of pre-
recorded data. For example, the Lotte et al. [36]
review of studies evaluating BCI signal-classification
algorithms found that most used offline analyses.
Indeed, the current popularity of BCI research is
doubtless due in part to the ease with which offline

analyses can be performed on publicly available data
sets. While such offline studies can help guide actual
online BCI studies, there is no guarantee that offline
results will generalize to online performance. When the
algorithm that extracts EEG and translates them into
outputs is changed, it changes the ongoing results that
are fed back to the user; thus, it is likely to change the
user’s subsequent EEG signals. The ultimate test of any
new BCI design is comprehensive online testing; offline
analysis is not in itself sufficient.
www.sciencedirect.com
The two steps in EEG analysis for BCIs are feature
extraction and feature translation [2]. A variety of spatial
and temporal filtering methods have been applied to
feature extraction. These include interest in currently
popular algorithms such as convolutional neural net-
works [37]. Many recent studies have used data-driven
spatial filtering methods such as common spatial pat-
terns [38] and source imaging methods [39]. Recent

interest in network models of CNS function has
prompted studies exploring the use of phase informa-
tion. Indeed, the success of the surface Laplacian for
amplitude-based features may be due to inclusion of
phase effects [40]. Phase effects may also be involved in
amplitude-based common spatial patterns and other
data-driven spatial filtering methods [41]. At the same
time, the inclusion of phase complicates neurobiological
interpretation of these complex multivariate models of
scalp EEG activity.

Physiological and anatomical understanding of the fea-
tures used by BCI systems is important for designing
signal processing methods as well as for detecting and
eliminating the impact of artifacts (e.g., non-brain activity
such as EMG, EOG (electrooculographic activity)). In
reviewing the literature on artifact detection and removal,
Islam et al. [42] concluded that none of the existing
methods is a perfect solution. One problem is that it
is often difficult to evaluate the effectiveness of the
methods because completely uncontaminated data may
not be available. Furthermore, the results ofmethods such

as independent components analysis may be difficult to
connect to specific underlying brain or non-brain (i.e.,
artifactual) events. They may also require some level of
human intervention, which rules out their use in real-time
systemsunless generalization tonovel data canbeverified.

Perhaps the most common type of BCI study evaluates
alternative feature translation algorithms [36], often
using archival data from healthy subjects (e.g., ref. [43]).
Many of these data sets do not include data from more
than one session; many were acquired during actual
muscle-based control; and many did not provide online

feedback to the user. Thus, many of these data sets do
not closely approximate data from the individuals most
likely to benefit from BCI-based communication and
control. These individuals have severe neuromuscular
disorders (e.g., ALS) that curtail their movements and/
or may affect their EEG activity; and their data are often
gathered under complicated and highly variable cir-
cumstances (e.g., home settings). Finally, when alter-
native translation algorithms are submitted to offline
testing using the same data set, their differences in
performance are often minimal [44].

Because effective BCIs must function reliably from
moment to moment and day to day, and brain signals
change continually on multiple time scales, EEG feature
extraction and translation methods that require large
Current Opinion in Biomedical Engineering 2017, 4:194–200
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amounts of training data are problematic. For example,
Rasmussen et al. [45] report that the directional tuning of
neurons in the primary motor cortex of monkeys changed
between two BCI tasks. They suggest that motor units
show dynamic range adaptation in a manner analogous to
that commonly seen in sensory neurons. Sussillo et al. [46]
suggest that robust BCI translation algorithms can be
tuned by using data from a wide variety of recording

conditions. An alternative approach would use continual
adaption of parameters [47]. The importance of adaption
may vary with the neural signal. For example, adaptive
updating of feature weights improves SMR-based per-
formance but not P300-based performance [47]. Thus,
these two BCI signals have different characteristics that
require alternative approaches to real-time signal
processing. In general, the importance of ongoing adaptive
changes by BCI algorithms favors use of simple algorithms
that have relatively few parameters to adapt.
BCIs for neurorehabilitation
Over the past decade, the possibility that BCIs might
enhance rehabilitation for people with strokes or other
CNS trauma or disease has generated steadily increasing
interest for several reasons. Effective BCI-based reha-
bilitation could help many millions of people around the
world. Furthermore, unlike BCIs for critical communi-
cation and control applications, BCIs for rehabilitation
do not have to have near-perfect performance, they need
only to be effective, that is, to enhance recovery of

function beyond that achieved by standard rehabilita-
tion therapies alone.

In theory, a BCI might contribute to functional recovery
in several different ways [5]. Dobkin [48] suggested that
practical BCI systems could be used as a tool to reinforce
the use of spared neural representations or to insure that
subjects were optimally prepared to execute a particular
movement. Daly and Wolpaw [49] suggested two
possible strategies. The first uses BCI-based feedback to
normalize relevant brain activity with the expectation

that this will be accompanied by improved motor func-
tion; the second strategy uses brain activity to enable
practice of more normal neuromuscular control with the
expectation that the more normal sensory input pro-
duced by better movement will induce plasticity that
improves neuromuscular control. Prasad et al. [50] sug-
gested that BCI technologies could be used to enhance
motor imagery in individuals with stroke. Donati et al.
[51] report that simply using a BCI-controlled exoskel-
eton over an extended period improves walking in pa-
tients with spinal cord injury. To date there have been a

number of studies providing proof of principle, but only a
few that provide clear evidence of efficacy (e.g., [52]).

The rationale for using BCI-facilitated motor imagery
for rehabilitation is that it is likely to activate some of
the same neural systems important in actual movement;
Current Opinion in Biomedical Engineering 2017, 4:194–200
thus it might be an effective therapy for stroke-related
dysfunction. Given that brain lesions can impair imag-
ery, methods to facilitate imagery might enhance re-
covery. In one such method, a BCI provides feedback
based on sensorimotor rhythms (SMRs) while the pa-
tient imagines movement of the affected limbs [53].
SMR training is used to enhance motor imagery. Thus,
these EEG features are employed as an index of a

cognitive task, the rehearsal of which facilitates recovery
from motor deficits following stroke.

Using BCI-based movement to reduce stroke-related
motor deficits closes the sensorimotor loop [54]. With
this paradigm, SMR desynchronization (i.e., decrease) is
rewarded by the activation of an orthosis that moves the
affected limb. This strategy assumes that the proprio-
ceptive feedback produced by limb movement will
activate motor cortex. Several alternative explanations
have been provided for the effects of closing the

sensorimotor loop, including Hebbian learning and
priming of subsequent physical therapy [54].

BCI technology has also been used to train users to
produce brain states that improve movement preparation
[55,56]. In this paradigm, users learn to modulate
SMRs in advance of the motor task to be practiced. This
approach assumes that better preparation facilitates
subsequent motor performance. Therapeutic benefit can
then result from the correct performance of the facili-
tated motor behavior and also from the user’s learning of

task-appropriate preparatory responses.

The goal of imagery enhancement is to reinforce weak
imagery [51]. Closing the sensorimotor loop strives to
associate intention with haptic feedback [53]. Improving
preparation seeks to insure optimal preparation for the
task [55,56]. These different approaches to BCI-based
rehabilitation have the same basic goal e improved
motor performance. The growing pace of BCI-based
rehabilitation research ensures that in the coming years
these approaches and others as well will be extensively
tested. It is likely that BCI technology will soon com-

plement other rehabilitation methods and enhance
functional recovery for people with strokes and other
chronic neuromuscular disorders.
Conclusions
Most EEG-based BCIs use the P300 evoked potential,
sensorimotor rhythms (SMRs), or the steady-state
visual evoked potential (SSVEP). All three BCI types
can help to restore basic communication and control to

peoplewith severe neuromuscular disabilities. At present,
their capabilities are limited. Improved EEG recording
methods that can provide stable high-quality signals in all
environments, are comfortable, and are easy to use are
needed. New dry-electrode systems have considerable
promise. Improved signal analysis algorithms that can
www.sciencedirect.com
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consistently maintain accurate performance are also
required. While much algorithmic development to date
has relied on offline analyses of archival data, actual online
testing of new algorithms is essential because it takes into
account the crucial ongoing adaptive interactionsbetween
the user and theBCI. BCIs, particularly SMR-basedBCIs,
also show promise as new methods for enhancing func-
tional recovery for people with strokes or other chronic

disorders. Several strategies for using BCIs to induce
beneficial plasticity are under study. Evidence that these
methods can enhance recovery beyond that achieved by
conventional methods alone is just beginning to emerge.
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