
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tbci20

Brain-Computer Interfaces

ISSN: 2326-263X (Print) 2326-2621 (Online) Journal homepage: http://www.tandfonline.com/loi/tbci20

Differential roles of high gamma and local
motor potentials for movement preparation and
execution

Aysegul Gunduz, Peter Brunner, Mohit Sharma, Eric C. Leuthardt, Anthony L.
Ritaccio, Bijan Pesaran & Gerwin Schalk

To cite this article: Aysegul Gunduz, Peter Brunner, Mohit Sharma, Eric C. Leuthardt, Anthony L.
Ritaccio, Bijan Pesaran & Gerwin Schalk (2016) Differential roles of high gamma and local motor
potentials for movement preparation and execution, Brain-Computer Interfaces, 3:2, 88-102, DOI:
10.1080/2326263X.2016.1179087

To link to this article:  https://doi.org/10.1080/2326263X.2016.1179087

View supplementary material Published online: 04 May 2016.

Submit your article to this journal Article views: 80

View related articles View Crossmark data

Citing articles: 3 View citing articles 

http://www.tandfonline.com/action/journalInformation?journalCode=tbci20
http://www.tandfonline.com/loi/tbci20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/2326263X.2016.1179087
https://doi.org/10.1080/2326263X.2016.1179087
http://www.tandfonline.com/doi/suppl/10.1080/2326263X.2016.1179087
http://www.tandfonline.com/doi/suppl/10.1080/2326263X.2016.1179087
http://www.tandfonline.com/action/authorSubmission?journalCode=tbci20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tbci20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/2326263X.2016.1179087
http://www.tandfonline.com/doi/mlt/10.1080/2326263X.2016.1179087
http://crossmark.crossref.org/dialog/?doi=10.1080/2326263X.2016.1179087&domain=pdf&date_stamp=2016-05-04
http://crossmark.crossref.org/dialog/?doi=10.1080/2326263X.2016.1179087&domain=pdf&date_stamp=2016-05-04
http://www.tandfonline.com/doi/citedby/10.1080/2326263X.2016.1179087#tabModule
http://www.tandfonline.com/doi/citedby/10.1080/2326263X.2016.1179087#tabModule


Differential roles of high gamma and local motor potentials for movement preparation and
execution

Aysegul Gunduza*, Peter Brunnerb,c, Mohit Sharmad, Eric C. Leuthardte, Anthony L. Ritaccioc, Bijan Pesaranf and
Gerwin Schalkb,c

aJ. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; bNational Center for
Adaptive Neurotechnologies, Wadsworth Center, NY State Department of Health, Albany, NY, USA; cDepartment of Neurology,

Albany Medical College, Albany, NY, USA; dDepartment of Biomedical Engineering, Washington University, St. Louis, MO, USA;
eDepartment of Neurosurgery, Washington University, St. Louis, MO, USA; fCenter for Neural Sciences, New York University,

New York, NY, USA

(Received 26 April 2015; accepted 13 April 2016)

Determining a person’s intent, such as the planned direction of their movement, directly from their cortical activity could
support important applications such as brain-computer interfaces (BCIs). Continuing development of improved BCI sys-
tems requires a better understanding of how the brain prepares for and executes movements. To contribute to this under-
standing, we recorded surface cortical potentials (electrocorticographic signals; ECoG) in 11 human subjects performing
a delayed center-out task to establish the differential role of high gamma activity (HGA) and the local motor potential
(LMP) as a function of time and anatomical area during movement preparation and execution. High gamma modulations
mostly confirm previous findings of sensorimotor cortex involvement, whereas modulations in LMPs are observed in
prefrontal cortices. These modulations include directional information during movement planning as well as execution.
Our results suggest that sampling signals from these widely distributed cortical areas improves decoding accuracy.

Keywords: brain-computer interfaces; BCI; electrocorticography; ECoG; sensorimotor systems

I. Introduction

Brain-computer interface (BCI) research develops neu-
rotechnologies that enable people to interact with brain
activity, and thereby supports entirely new avenues for
diagnosis or treatment of neuromuscular or neurological
disorders.[1] For example, BCI devices can support
robot-assisted neurorehabilitation,[2,3] or brain-based
control of arm prostheses [4,5] or wheelchairs.[6–9] BCI
research experienced impressive growth over the past
two decades, and instigated some of the most dynamic
and far-reaching multidisciplinary collaborations of our
time. Some of the most important BCI approaches use
brain signals that have relationships with particular
parameters of movements. However, the differential role
of different brain signal components and their ability to
predict movement direction in different areas of the brain
have remained unclear.

To contribute to understanding in this area, we aimed
to verify and more fully characterize the spatiotemporal
processes that prepare for and execute directional move-
ments in human electrocorticographic (ECoG) signals.
ECoG signals combine high spatial resolution with high
temporal resolution, and demonstrate negligible suscepti-
bility to other physiological artifacts.[10,11] Together
with its apparent superior long-term stability,[12,13]

ECoG should be well suited to satisfy the complex
demands of clinically viable BCIs.[14] In our study, we
asked 11 human subjects to engage in a center-out task
[15] using a joystick with eight possible targets while we
recorded ECoG signals using subdurally placed elec-
trodes. These electrodes can detect power modulations at
high frequencies (>70 Hz, high gamma activity (HGA))
that cannot readily be detected in scalp recordings. These
modulations reflect asynchronous local activity in the cor-
tex rather than synchronized cortical rhythms.[16] Results
from many studies demonstrated that HGA is highly cor-
related with different types of behavior [17] and thus is a
prime candidate to support BCI applications.[14,18,19] In
addition, time-domain variations in ECoG signals called
local motor potentials (LMP,[20–22] also called low-
frequency components, LFC [23]), have also been shown
to modulate with movements and thus are likely to be
relevant to BCI systems.

The objectives of the study were to: (i) establish the
differential role of HGA and LMP activity as a function
of time and anatomical area during movement prepara-
tion and execution; (ii) examine and compare the amount
of directional information from these two ECoG features;
(iii) investigate the impact of the number of electrodes
sampled across cortical areas and ECoG features on the
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accuracy of the decoded directional information in single
trials. Our results confirm and extend previous findings
by showing that movement-related ECoG responses are
found in a highly distributed network that involves the
premotor, parietal, and prefrontal cortices.[5,24,25] Sam-
pling from these distributed regions improves decoding
accuracy of the direction of movement preparation and
execution in single trials. The results also highlight the
differential role of HGA and LMP as a function of time
and anatomical area during movement preparation and
execution. HG activations are observed in the premotor
and parietal areas during movement preparation and in
the primary motor areas during execution, whereas LMP
activations are observed the dorsolateral prefrontal cortex
during movement preparation and execution, and with
sensorimotor cortex activations during execution.

II. Materials and methods

A. Human subjects and cortical models

Eight subjects at Albany Medical Center and three sub-
jects at Washington University at St. Louis participated
in this study. The study was approved by the Institu-
tional Review Boards of both hospitals as well as by the
Human Research Protections Office of the US Army
Medical Research and Materiel Command. All subjects
gave informed consent. Subjects were patients with
intractable epilepsy who underwent temporary placement
of subdural electrode arrays to localize seizure foci prior
to surgical resection. The implanted electrode grids (Ad-
Tech Medical Corp., Racine, WI) consisted of platinum-
iridium electrodes that were 4 mm in diameter (2.3 mm
exposed), spaced at an inter-electrode distance of
10 mm, and were embedded in silicone. Subject H was
implanted with a custom high-density temporal grid with
an inter-electrode distance of 6 mm (PMT Corp, Chan-
hassen, MN) (see Figure 1). Electrode contacts distant
from epileptic foci and areas of interest were used for
reference and ground. The number of implanted elec-
trodes varied between 58 and 111 contacts across sub-
jects. The electrode numbers and a summary of the
subjects’ clinical profiles are given in Table 1. Nine sub-
jects underwent grid implantation over the left hemi-
sphere, whereas two subjects’ implants were placed on
the right hemisphere (Subjects D and E).

We established three-dimensional cortical models of
individual subjects using pre-operative structural mag-
netic resonance imaging (MRI) using Curry software
(Compumedics, Charlotte, NC). We then co-registered
these MRI images with post-operative computer tomog-
raphy (CT) images, transformed the result into the Talair-
ach coordinate system,[26] and identified electrode
locations from the CT images using Curry software. The
resulting cortical models and electrode localizations are

presented in Figure 2. We accounted for brain surface
shifts (e.g., due to craniotomy) by projecting the elec-
trodes onto the convex hull of the cortical model using
the NeuralAct software.[27] We also assigned these elec-
trode locations to Brodmann areas using the Talairach
Daemon (http://www.talairach.org [28]). Finally, we gen-
erated cortical activation maps using the NeuralAct soft-
ware utilizing the 3D cortical model that was derived
from the respective subject. For activation maps that
were computed across subjects, electrode positions from
each patient were projected to the three-dimensional cor-
tical template provided by the Montreal Neurological
Institute (MNI) (http://www.bic.mni.mcgill.ca). Note that
for the visualization of accumulated activity across sub-
jects, we projected the grid implants of Subjects D and
E (whose electrodes were implanted on the right hemi-
sphere) to the left hemisphere.

Neuropsychological evaluations (Wechsler Adult
Intelligence Scale-III) revealed low average to superior
motor performance (25th–99th percentile) as well as
average to superior visuomotor scanning performance
and visual search capacity (37th–91st percentile) across
patients. Subjects had corrected-to-normal vision and did
not suffer from any visual impairment. The subjects had
performance IQs of at least 85 and were mentally and
physically capable of performing the task.

B. Data collection

The experimental setup is depicted in Figure 3. We
recorded ECoG signals at the bedside using eight 16-
channel g.USBamp biosignal acquisition devices (g.tec,
Graz, Austria) at a sampling rate of 1200 Hz. In addition
to recording brain activity, we also recorded the subjects’
eye gaze using a monitor with a built-in eye-tracking
system (Tobii Tech., Stockholm, Sweden) positioned
54–60 cm in front of the subjects, and the activity from
a push button. The built-in sampling rate of the eye
tracker was 60 Hz. Eye tracker data were upsampled to
1200 Hz by sample-and-hold (i.e. no interpolations
between two samples from the eye tracker). The eye
tracker was calibrated to each subject at the beginning of
the experimental session using custom software. Data
collection from the biosignal acquisition devices, stimu-
lus presentation, and behavioral variables (i.e. eye
tracker, push button), as well as control of the experi-
mental paradigm, were accomplished simultaneously
using BCI2000 software.[29,30]

C. Experimental paradigm

ECoG signals were collected while the subjects per-
formed an eight-target center-out cursor movement task
[31] while fixating their eye gaze at a central fixation
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cross as illustrated in Figure 3. Eye gaze fixation was
confirmed online by BCI2000 and the eye tracker: a trial
was aborted if the subject looked away from the center
for more than 500 ms. Each trial started with the presen-
tation of a target in one of eight possible locations. A
cursor appeared 1 s later at the center of the screen. The
subjects’ task was to use their hand contralateral to the
implants to control a joystick so as to move the cursor
into the target. Thus, subjects D, E, and G used their
non-dominant hands. We positioned the subjects such
that the joystick movements were mainly restricted to
the wrist.[20] The subjects were instructed to make exag-
gerated movements and achieve maximal radial exten-
sion of the joystick to hit the targets. Once the target
was hit, the next trial started after an inter-trial interval
of 1 s. Figure 4 gives an illustration of the stages of the
task. Trials aborted by the eye tracker, trials in which
joystick movement preceded the presentation of the cur-
sor, and trials in which subjects failed to hit the correct
target were omitted from further analyses. The total num-
ber of trials run per subject was a minimum of 400 trials,
and the average number of remaining valid trials was
371 ± 88 across the subjects. The average reaction time
and time to complete a trial for the subjects were 0.51
± 0.21 s and 1.40 ± 0.29 s, respectively. A trial was
aborted if the target was not hit 2 s after cursor presenta-
tion. The task accuracy, reaction time, and time to hit the
target were not significantly different across the subjects
who used their dominant hands versus the subjects who
used their non-dominant hands.

D. Feature extraction

Our data analyses began with the inspection and removal
of channels that were heavily affected by electrical arti-
facts (e.g., due to bad electrode contacts) or epileptiform
activity. The channels that passed visual inspection were
high-pass filtered above 0.01 Hz (using a Butterworth fil-
ter in the forward and backward directions for zero-phase
delay) and re-referenced to a common average reference
(CAR).[20] High gamma activity (HGA) and local motor
potentials (LMP) at time tn were computed in [tn −
150 ms tn + 150 ms] windows with a step window size
of 100 ms (tn+1 = tn + 100 ms). We computed power
spectral density using a maximum entropy autoregressive
model [31] of order 25 between 1 and 200 Hz in 1 Hz
bins with linear detrending. HGA was estimated by aver-
aging the spectral amplitudes in the 70–110 Hz (broad-
band) range to avoid 60 Hz line noise and its harmonics.
LMP were computed from the moving average of the
high-pass filtered and re-referenced signals in the same
windows.

E. Decoding of movement preparation and execution

A block diagram of the task is presented in Figure 4.
Herein, we aim to study the modulations in HGA and
LMP during movement preparation and execution. Inter-
trial periods were labeled as ‘rest,’ and periods after the
target presentation up to the cursor presentation (i.e., the
go cue) were labeled as ‘movement preparation.’
The beginning of the ‘movement execution’ period was

Figure 1. Subdural frontal and high density temporal clinical grid implants shown for Subject H. Left: post-operative X-ray. Right:
intra-operative photograph of the implants.
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defined as the time sample when the joystick was pushed
beyond one-eighth of its maximum radial extension from
its rest position. First, we built classifiers based on HGA
and LMP features to differentiate task states (movement
preparation/execution) from rest. We also studied the
contribution of each feature at each electrode location
and each time window to investigate the spatiotemporal
evolution of the activations. We then focused on the tem-
poral significance of the electrodes placed over motor,
dorsolateral prefrontal, and temporal cortices for a com-
parison between HGA and LMP features.

One second of ECoG features from the beginning of
each state (movement preparation/execution) were used
to build the state decoders. Decoders for the movement
preparation and execution states were built by consider-
ing the two corresponding binary classification problems:
movement preparation versus rest, and movement execu-
tion versus rest. For each of the binary classification
problems, we built three decoders: (i) HGA features
alone, (ii) LMP features alone, and (iii) both features.
Each decoder output was the weighted summation of 1s
of ECoG features (i.e., 10 features per second of HGA

Table 1. Clinical profiles of participants.

Subject Age Sex Handedness Full-scale IQ / performance IQ Seizure focus Grid locations (number of contacts)

A 29 F R 122 / 136 Left temporal Left fronto-parietal (64)
Left temporal (23)
Left temporal pole (4)
Left occipital (6)

B 56 M R 84 / 87 Left temporal Left frontal (56)
Left temporal (35)
Left occipital (6)

C 26 M R 102 / 100 Left temporal Left frontal (64)
Left temporal (35)
Left frontal pole (6)
Left parietal (6)

D 25 M R 99 / – Right frontal Right frontal (64)
Right orbital (6)
Right frontal pole (6)
Right anterior mesial (6)
Right mid-mesial (4)
Right posterior mesial (6)

E 25 M R 116 / 114 Right frontal Right frontal (64)
Right posterior frontal (20)
Orbital superior frontal (4)
Right frontal parietal (4)
Right anterior mesial (4)
Right posterior mesial (4)

F 45 M R 97 / 99 Left temporal Left frontal (54)
Left temporal (4)

G 49 M L 97 / 99 Left temporal Left temporal frontal (61)
Left temporal mesial (4)
Left frontal (4)

H 25 M R 84 / 95 Left temporal Left frontal (64)
Left anterior temporal (8)
Left inferior frontal (6)
Left anterior interhemispheric (8)
Left anterior subtemporal (4)
Left posterior subtemporal (4)
Left middle inter hemispheric (6)

I 56 M R 116 / 125 Left temporal
J 46 M R – / – Left temporal Left frontal (56)

Left temporal (35)
Left occipital (6)

K 40 M R 104 / 110 Left temporal Left temporal inferior frontal (64)
Left posterior subtemporal (16)
Left anterior temporal (8)
Left anterior subtemporal (4)
Left suboccipital (6)
Left posterior occipital (8)
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and/or LMP features) across all channels. Linear weights
for these binary classification problems were obtained
with the stepwise multilinear regression method
(SWLDA), which determined the weights of the linear
function that minimized the squared error between the
output estimates and labels of the classes. The decoder
training and test sets were selected repeatedly in a
10-fold cross-validation procedure: the data were divided
into 10 parts, and each tenth was used as the test set in
turns for a classifier that was trained on the remaining 9
tenths. The accuracies corresponding to the 10 test sets

were averaged and reported. Electrodes over visual
cortex were not used in the decoders to minimize any
potential immediate impact of visual stimulation.

In addition, we performed univariate analyses, for
each channel and each time point, to determine the spa-
tiotemporal significance of the HGA and LMP features
over cortical areas across the stages of the task. We fur-
ther investigated the time evolutions of the significance
of electrodes grouped over the motor, dorsolateral pre-
frontal, and temporal cortices for a comparison between
HGA and LMP through multivariate analyses. Similar to

Figure 2. Cortical models and electrode locations for all 11 subjects created from pre-op MRI and post-op CT scans.

Data

Experimenter 
Computer

Subject Screenwith Eye Tracker

Joystick

Acquisition

Figure 3. Experimental setup.
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the analyses described above, we performed these two
analyses using stepwise multilinear regression and 10-
fold cross-validation procedures. For both univariate and
multivariate analyses, we computed the significance by
calculating the negative logarithm of the p-value of the
correlation between the decoder outputs and true classes.
Finally, we conducted the same analyses using the ampli-
tude in the mu (8–12 Hz) and beta (18–30 Hz) frequency
bands. The results suggested much lower classification
accuracies than for HGA and LMP features, and thus are
not presented in the following sections.

F. Decoding of movement direction

In addition, we built classifiers to decode the direction of
the target during movement preparation and execution
states using the HGA and LMP features. A feature selec-
tion stage was found necessary and 25% of trials were
used for feature selection (not further used in training of
the decoders). We plotted tuning curves by binning the
feature values across these trials as a function of the eight
directional angles separated by 45°. To determine whether
a curve was tuned to a direction, we calculated a tuning
index measure [20] calculated as the ratio of variance of
features across all directions, to the average of variances
of features in each direction. If, for instance, a curve is
not tuned to a particular direction (i.e., the feature ampli-
tude does not show some relationship to direction), the
variance of each direction is likely to be the same as the
overall variance, which will yield a tuning index that will
be close to 1. The tuning index will be greater than 1 if
there are some directional bins whose mean value is
much higher than the rest and/or if the variance within
bins is small. To determine the significance level of the
tuning index, we performed surrogate analyses by shuf-
fling the features randomly across bins and attaining the
tuning index for randomly assigned bins. We repeated
this procedure for 200 surrogate sets, and then derived
the significance (p) value of our tuning index by perform-
ing a Wilcoxon signed rank test of the original measure

across the 200 surrogate measures (The test hypothesis
was the distribution of surrogate values had a mean that
was smaller than the original measure, which was not
rejected.) The significance level of tuning for a channel
was computed using false discovery rate (FDR) control to
correct for multiple comparisons. We projected the accu-
mulated negative logarithm of the significant p-values on
MNI cortical models. (For visualization purposes, all
electrodes were projected onto the left hemisphere.)

In a similar fashion to the procedure described in
Cogan et al., [33] we then pooled the directionally tuned
electrodes across all subjects for each feature, for a total
of N electrodes. The minimum number of valid trials for
each direction common to all significant electrodes was
used during pooling to control for variability in trial
numbers across subjects. For each subject, these trials
were taken from the remaining 75% of trials not used
previously in feature selection. The features were pooled
together as though they were collected during the same
experimental session. This means that given a target
direction, one trial was selected across all significant
electrodes and pooled to generate the features for that
direction and for that trial. Thus, this pooling procedure
does not increase the number of trials, but increases the
number of features assigned to a trial and its correspond-
ing target direction. We then studied the effect of the
number of pooled channels, n, used in the decoder on
classification performance. Using a total number of elec-
trodes from n = 1 to N, we used a maximum of 100 per-
mutations of n electrodes (min{P(N,n),100}) to decode
direction during the movement preparation and execution
periods. The n electrodes at each iteration were selected
randomly without regard to the subject labels. For each
iteration, decoding of target direction was performed
using linear discriminant analysis (LDA) classifiers in 10
cross-validation folds at both states of the task (move-
ment preparation and execution). The results of all analy-
ses are presented next. Classifiers for mu and beta bands
implemented in the same manner did not result in statis-
tically significant decoding performance.

REACTION
TIME

Target appears Cursor appears

MOVEMENT
EXECUTION

MOVEMENT
PREPARATION

1 sec

Response Target hit

0.51±0.21 sec 1.40±0.29 sec

Figure 4. Experimental paradigm: (i) target appears in one of eight possible locations; (ii) a second later, a cursor appears as a go
cue; (iii) subject initiates movement; (iv) subject hits the target to end the trial. Note that the time between target and cursor presenta-
tions is labeled the ‘Intention’ period and the time from movement initiation until the task is completed is labeled the ‘Movement’
period.
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III. Results

The relationship between the brain signals and task states
is shown in Figure 5 for Subject A in three exemplary
channels over the visual (top), premotor (middle), and
primary motor (top) cortices. The time-frequency plots
are averaged across all trials, divided by baseline activity
and presented in linear scale (i.e., a scale of 1 denotes
no change from baseline). Although activity from the
visual cortex is not used in the decoders, herein we show
the response of the visual cortex to the different stages
of the experiment as captured through electrocorticogra-
phy. The visual cortex electrode displays increases at fre-
quencies higher than 50 Hz when the target and cursor
are presented (top left panel). These are followed by
decreased amplitude in lower frequencies, including the
alpha band. Increases at 50–100 Hz are observed as the
cursor moves towards the target (top right panel). Similar
event-related increases in HGA and decreases in the mu
band are present in premotor cortex (middle row). In pri-
mary motor cortex (bottom row), event-related decreases
in mu and beta ranges accompany premotor decreases in
the mu band (bottom left panel). However, HGA does
not increase until the movement starts (bottom right
panel). Our selection of the high gamma range (70–
110 Hz) follows these observations, which are consistent
across subjects, and also omits 60 Hz line noise and its
harmonics.

A. Decoding movement preparation and execution
from cortical activity

The main results of this analysis are presented in Table 2.
This table gives the classification accuracies for discrimi-
nating movement preparation and execution from the
resting state for each subject (binary classifications),
averaged across 10 cross-validation folds. Using LMP
features, the mean classification accuracy and its stan-
dard deviation across subjects was 85 ± 12% for detect-
ing movement intention and 80 ± 9% for detecting hand
movement (both at a 50% chance level). With HGA fea-
tures, the mean classification accuracy and its standard
deviation across subjects was 77 ± 7% for detecting
movement intention and 82 ± 6% for detecting hand
movement. Overall, across subjects, the LMP feature
yielded higher classification for decoding preparation,
whereas HGA yielded higher accuracy for execution. For
Subject C and the LMP feature, our procedure could not
detect a difference between movement intention and the
rest state at the p = .05 level, or a difference between
movement intention and the rest state at the p = .01
level. Furthermore, using all features for classification
failed significance at p = .01 for decoding intention. The
mean classification accuracy and its standard deviation
across subjects was 79 ± 8% for detecting movement
intention and 82 ± 8% for detecting hand movement
when both HGA and LMP features were used.
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Figure 5. Left: exemplary electrodes selected over visual, premotor and primary motor cortices (top to bottom) in Subject A.
Middle: spectral amplitude modulations over selected channels normalized to rest. Dashed lines indicate the onset of target and cursor
presentations. Right: spectral amplitude modulations aligned to movement onset as defined by joystick extensions beyond one-eighth
of maximal joystick extension range. (Note that the electrodes over the visual cortex were excluded from all subsequent quantitative
analyses.)
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Subsequently, we were interested in determining the
temporal significance of cortical locations involved in
differentiating movement preparation and execution
from resting states. To this end, we computed the corre-
lations and corresponding p-values between the tasks
and outputs of models for each feature at every time
point for each electrode location. For each electrode,
we defined a significance index as the −log(p) value.
These significance indices were then accumulated for
all subjects and projected onto the template MNI brain.
Figure 6 depicts the spatiotemporal evolution for HGA
(top panel) and LMP (bottom panel). The activations
reflect the significance of the underlying area from
which the features were extracted. For the three rows of
each feature, 0 ms denotes time alignment around target
presentation (top row), cursor presentation (middle
row), and movement onset (bottom row), respectively
from top to bottom. For HGA most activations are in
the sensorimotor and parietal cortices, whereas activa-
tions for LMP are in the sensorimotor and prefrontal
areas. To compare the two features across time, we
accumulated all electrodes across subjects from the
motor (Brodmann areas 4 and 6) and dorsolateral pre-
frontal (DLPFC; Brodmann areas 9 and 46) cortices.
Figure 7 depicts the temporal evolutions of the features
across these areas. The shaded areas show the standard
deviation of the significance across subjects. As a con-
trol, we also accumulated electrodes from the temporal
cortex, which did not show any significance for either
feature at any stage of the task (red curves). For HGA
motor cortex yielded higher significance than the dorso-
lateral prefrontal cortex. The activity in the motor cor-
tex peaked around 400–500 ms after target presentation
and increased again after cursor presentation. Activity
increases with movement and peaks within ∼200 ms of
movement initiation. Activity in the DLPFC is much
lower and is mostly focused around movement initia-
tion. LMP seems to be equally significant in both areas.

The LMP activity in the motor cortex follows the
timing of the HGA feature. LMP activation in the
DLPFC, however, starts early on during the movement
preparation period.

B. Decoding of direction of movement

Figure 8 shows the cortical areas for HGA and LMP that
are significantly tuned to a target direction. HGA features
are localized over premotor and primary hand motor cor-
tices with some tuned channels in parietal regions. LMP
features are widely distributed over the motor cortex, as
well as DLPFC. For both features, cortical allocations
are broader and more significant during movement exe-
cution compared to the preparation period. Out of 642
channels that had frontal and parietal cortical coverage in
11 subjects, the number of HGA channels that are signif-
icantly tuned are 18 and 20 channels during movement
preparation and execution, respectively. These electrodes
are marked in blue in the right panel of Figure 9. For
the LMP, the significant electrode totals were 17 and 20
channels, for the two conditions, shown in red in Fig-
ure 9. Two electrodes were significantly tuned for both
features during intention, and three during movement
(shown in half red and blue in Figure 9). These elec-
trodes were used in the decoding of direction.

Table 3 shows the average magnitude of the angular
error of classification of movement direction in individ-
ual subjects and for movement preparation or execution,
and for high gamma and local motor potentials, respec-
tively. Across subjects, the median angular error was
between 62° and 70°. Angular errors shown in bold are
statistically lower than errors expected by chance
(112.5°, p = .05). To establish statistical significance, we
created 100 surrogates for each of the four cases by
shuffling the classifier outputs and computed the error
for the surrogates. We then compared the actual angular
errors with the error distribution of the surrogates using

Table 2. Classification accuracies (mean ± standard deviation) for discriminating movement preparation and execution from rest.

Subject
Movement preparation Movement execution

High gamma activity Local motor potentials Both High gamma activity Local motor potentials Both

A 87±6% 95±3% 88±4% 91±10% 84±6% 96±3%
B 82±5% 94±2% 83±3% 85±4% 90±2% 84±3%
C 62±8%† 55±12%‡ 62±9%† 70±6% 61±6%† 66±9%
D 68±10% 70±6% 69±6% 73±5% 77±6% 75±6%
E 84±4% 89±3% 84±5% 85±4% 70±9% 82±4%
F 81±6% 89±4% 82±4% 81±3% 86±5% 83±4%
G 79±5% 90±3% 79±6% 84±3% 92±3% 87±3%
H 79±5% 91±5% 83±3% 85±3% 83±6% 88±5%
I 77±10% 90±2% 80±5% 78±5% 71±5% 80±5%
J 73±7% 80±6% 75±8% 81±5% 79±5% 80±6%
K 79±4% 88±4% 81±4% 84±5% 86±6% 86±3%

†Failed binomial test at a confidence level of 99%.
‡Failed binomial test at a confidence level of 95%.

Brain-Computer Interfaces 95



a two- distribution t-test. Only two of the 11 subjects did
not hold any significant directional information.

While electrodes from individual subjects only
weakly encoded directional information, features pooled
across subjects yielded classification accuracies signifi-
cantly higher than chance level (12.5%). Average classi-
fication accuracies and the standard errors are plotted in
Figure 9 as a function of number of electrodes used in
the decoder. Overall, classification accuracies increase
with the number of electrodes added to the LDA classi-
fier. This result suggests that different locations encode
different information about the direction of intended or
executed movements. The only exception is the LMP
features during intention, for which the classification
results follow a stable trend just higher than chance
level. When both features are used in classification, they
do not perform better than HGA, but classification con-
tinues to increase with increasing number of electrode
locations. Figure 10 shows the absolute error angle of
classification for HGA and LMP features when all tuned

channels were utilized. In this figure, 0° corresponds to
correct classification. An error angle of 45° means that
the target was mistaken for one of its neighbors.
Figure 10 demonstrates that the target was most fre-
quently misclassified as one of its neighbors.

IV. Discussion

In the present study, we investigated in detail directional
movement planning and execution using ECoG signals
in 11 human subjects, and established the degree to
which ECoG HGA and LMP features hold different
information about these tasks in single trials. We local-
ized the features that showed the most robust temporal
or spectral changes during the center-out task and pre-
sented their temporal evolution. Both HGA and LMP
features showed pronounced changes in the hand motor
areas during movement preparation and execution, with
changes in parietal regions with HGA, and in prefrontal
areas with LMP (Figure 6).

Figure 6. Temporal evolution of significant areas for discriminating tasks (movement preparation or execution) from rest accumu-
lated across all subjects. Top panel: high gamma activation time aligned to target (top), cursor (middle), and movement (bottom)
onsets. Bottom panel: local motor potential time aligned to target (top), cursor (middle), and movement (bottom) onsets.
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HGA is known to reflect local neural activity [16,35]
and has been successfully used in real-time functional
motor mapping in patients with epilepsy.[36] The
changes in HGA observed in this task were temporally
more discriminative between task engagement and rest-
ing state compared to narrow-banded activity in the mu

or beta ranges as seen in the example mean activity in
Figure 5. Moreover, in a previous study, we showed that
the same HGA features could be used to faithfully pre-
dict movement onsets.[36] Note that the accumulated
HGA feature activations in the top panel of Figure 6 are
highly localized for activations aligned to target onset

Figure 7. Temporal evolution of different cortical areas for discriminating tasks (movement preparation or execution) from rest accu-
mulated across all subjects. Top panel: high gamma activation time aligned to target (top), cursor (middle), and movement (bottom)
onsets. Bottom panel: local motor potential activation time aligned to target (top), cursor (middle), and movement (bottom) onsets.
Dashed lines indicate level of statistical significance at p = .05.
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Figure 8. Cortical areas that exhibit directional tuning during intention (left column) and movement (right column) for high gamma
activations (top row) and time-domain components (bottom row).
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and movement onsets (top and bottom row, respectively).
When aligned around cursor presentation, the activity is
broader (middle row), which is a consequence of the
variance in reaction times. At 400 ms after target onset,

we observe increased HGA within the premotor and pari-
etal cortices (Brodmann areas 6 and 7, respectively),
which merge over primary sensorimotor cortex at move-
ment onset. The role of Brodmann area 7 is to guide our

Figure 9. Left: directional classification accuracies as a function of number of accumulated channels during movement preparation
(top panel) and execution (bottom panel). Blue and red curves represent classification using directionally tuned channels for high
gamma activity and local motor potentials, respectively. Green curves represent classification for both features. Shading around the
curves denotes standard error of the means. Right: solid blue and red balls show tuned channels for HGA and LMP features. Two-
colored balls represent electrodes that were tuned for both features.

Table 3. Mean magnitude of angular errors for classifying directions during movement preparation and execution.

Subject

Movement preparation Movement execution

High gamma activity Local motor potentials High gamma activity Local motor potentials

A 46* 55* 44* 57*
B 58* 51* 45* 51*
C 81 66 51* 63
D 65 73 53* 54*
E 62 70 53* 64
F 46* 69 46* 65
G 61 79 63 65
H 59* 64 60 51*
I 63 72 75 51*
J 60 69 59* 73
K 51* 54* 39*

*p < .05.

98 A. Gunduz et al.



actions in space through proprioception.[22,37] During
movement (e.g., 800 ms after movement onset), the pari-
etal activations migrate to Brodmann area 40, which is
assumed to be involved in the longer-term coding of spa-
tial relationships, such as in delayed movements.[38–40]

Dorsolateral prefrontal cortex (Brodmann areas 9, 46)
is known to be engaged in a range of aspects of cogni-
tive control of motor behavior, such as processing sen-
sory inputs and planning future actions.[41–43] In
Figure 7, we observe that HGA in the DLPFC peaks
around cursor presentation (top left in green). This sug-
gests that this HGA is an execution-related activation in
the DLPFC.[44] On the other hand, LMP activity in the
DLPFC starts early on in the trial (bottom left in green),
before HGA activity in the DLPFC or LMP activity in
the motor cortex, suggesting it may reflect a more gen-
eral process of movement preparation, such as anticipa-
tion, and only hold modest directional information (see
Figure 9). Taken together, it appears quite clear that the
two DLPFC activations in HGA and LMP reflect differ-
ent physiological processes.

To ensure that the directional classification results in
Figure 9 were not a result of small training set sizes and
large number of input channels, we decreased the num-
ber of training samples by 50%. These substantially
smaller sizes of the training set only very modestly
reduced classification accuracies. Hence, we conclude
that we have not yet reached the optimal number of
input channels for the classifiers (i.e., low classification
accuracies are not due to a high number of input parame-
ters). Moreover, our analysis might be more than deter-
mining the effect of channel inclusion, but the approach
also increases the heterogeneity of the inputs to the final
decoding model.

In this experiment a joystick was used for the center-
out task, which only requires wrist deviations compared
to expansive arm reaches in typical primate center-out
tasks. This small isometric motor plan and output may
be the reason that the decoded directional information
was not decoded in single subjects, or that the classifica-
tion accuracies across the pooled channels were not high.
Figure 10 shows that the most frequent directional mis-
classification was between a target and one of its neigh-
bors. Hence, this small isometric movement of the
joystick might have limited the resolution of the move-
ments that could be decoded.

It should be noted that the directional classification
results presented herein were based on information from
electrodes that were pooled across subjects. Thus, they
are not necessarily representative of results for an indi-
vidual subject using a BCI. Still, our results also demon-
strate that ECoG signals hold statistically significant
information about movement direction in 9 of the 11
subjects. We also should point out that the directional
classification results were attained in offline analyses.
Nevertheless, ECoG-based BCIs have been shown to be
successful in online settings (for lower dimensions or
number of targets) using both LMP and HGA fea-
tures.[18,19] In a previous study we showed that it is
also possible to distinguish between movement prepara-
tion and execution [45] using HGA features in single tri-
als. Moreover, BCI performance generally improves as
the BCI system adapts to its user.[5,46] Classification
accuracies in our task are also likely to improve with
user training and reach classification accuracies of those
achieved with EEG.[18,19,47]

In the context of ECoG-based decoding of direc-
tional movements as attempted in our or other studies,

Figure 10. Histograms of absolute classification error angles for movement preparation (left column) and execution states (right col-
umn) using all tuned HGA (top row) and LMP electrodes (bottom row). Note that 0° corresponds to accurate classification.
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the optimal electrode diameter and density remain
largely undefined. Modeling studies suggest that the
optimal inter-electrode distance should be in the range
1.3–1.7 mm,[48,49] and a recent study [50] demon-
strated that details of hand/wrist movements can be
inferred from ECoG signals recorded over motor cor-
tex at a similar resolution (1 mm). Together with
ongoing and likely future advances in miniaturization
of ECoG grids and corresponding electronics,[11] this
suggests that it should be possible to design small and
fully implantable ECoG interfacing systems with dense
electrode spacing, and that these miniaturized systems
will deliver substantial information about movements.
At the same time, it is becoming increasingly clear
that even simple movements or other important behav-
iors are supported by neuronal activity in widely dis-
tributed areas of the brain,[53] and the findings from
the present study suggest that sampling across these
widely distributed areas provides additional information
about actual or intended movements. These realities
imply that there is a distinct possibility that optimiza-
tion of the performance and robustness of BCI systems
may require an increase in both the density and areal
coverage, and thus total number of ECoG electrodes
that are being sampled, but these more capable sensor
designs will likely also increase clinical morbidity. In
consequence, while there is encouraging initial evi-
dence of the potential clinical relevance of ECoG-
based BCI systems,[14,51,52] further delineation and
eventual resolution of this important issue is likely to
be of central importance to the design of clinically rel-
evant invasive BCI devices.

Finally, the present study investigated ECoG signals
during movement or movement preparation. A number
of previous studies investigated movement preparation/
execution along with movement imagery.[54–57]. For
example, an ECoG study by Miller et al. [58] on move-
ment imagery showed high gamma activations that were
broadly distributed over sensorimotor cortex, but
appeared to be more frontal compared to movement exe-
cution. The locations identified in the Miller et al. study
for movement imagery are similar to those identified in
our study for movement preparation.

Herein, we present evidence that movement is a com-
plex spatiotemporal mechanism involving different dis-
tributed physiological processes that produce HGA and
LMP. Thus, sampling from various areas and capturing
different processes appears to be beneficial for the design
of BCIs.
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