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Abstract
Several stories in the popular media have speculated that it may be possible to infer from the
brain which word a person is speaking or even thinking. While recent studies have
demonstrated that brain signals can give detailed information about actual and imagined
actions, such as different types of limb movements or spoken words, concrete experimental
evidence for the possibility to ‘read the mind’, i.e. to interpret internally-generated speech, has
been scarce. In this study, we found that it is possible to use signals recorded from the surface
of the brain (electrocorticography) to discriminate the vowels and consonants embedded in
spoken and in imagined words, and we defined the cortical areas that held the most
information about discrimination of vowels and consonants. The results shed light on the
distinct mechanisms associated with production of vowels and consonants, and could provide
the basis for brain-based communication using imagined speech.

S Online supplementary data available from stacks.iop.org/JNE/8/046028/mmedia

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recent studies have shown that brain–computer interface
(BCI) systems can use brain signals that are usually related
to motor movements or motor imagery [1–5] to select from
different characters or words [6–10]. While this approach is
effective, it has distinct limitations that include a relatively
slow communication rate and extensive subject training.
This training requirement could be reduced, and perhaps
BCI performance further increased if it was possible to
directly, i.e. without the use of intermediate choices (such

7 Author to whom any correspondence should be addressed.

as selection of characters out of a group), determine what
specific word the users wished to communicate through their
brain signals [11]. However, compared to brain signals in
the motor system, which are often governed by relatively
simple (e.g., linear or cosine) relationships with parameters
of movements, language processing appears to be more
complex. It involves a widely distributed neural network
of distinct cortical areas that are engaged in phonological
or semantic analysis, speech production, and other processes
[12–14]. Nevertheless, recent studies have begun to elucidate
the relationship of brain activity with different aspects of
a receptive or expressive, auditory or articulatory language
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Figure 1. Schematic diagram of the experimental setup.

function [15–19]. For example, functional magnetic resonance
imaging (fMRI) of auditory and other cortices was shown
to hold information about different monophthongs (i.e. /a/,
/i/, /u/) that the subjects listened to [17], scalp-recorded
electroencephalography (EEG) was shown to hold information
about the rhythm of syllables [19] and some information about
individual vowels (i.e. /a/, /u/) [18], and electrocorticography
(ECoG) was used to decode several spoken words [20].
However, concrete evidence that brain signals could allow
for the identification of components of words has remained
largely elusive. Identification of the neural correlates of speech
function could allow for determination of those cortical areas
that allow for discrimination of words or their components.
While previous studies have already demonstrated evidence
for the neural basis of differential processing of vowels and
consonants [21–25], this evidence has either been indirect or
inconsistent, and has not pinpointed the anatomical location
of consonant–vowel dissociation.

ECoG recordings from the surface of the brain have
recently attracted increasing attention because they combine
relatively high spatial with high temporal resolution. Some of
these ECoG-based studies [26–33] have begun to investigate
neural correlates of speech processing. These and other
studies [34–38] consistently showed that ECoG amplitude over
anatomically appropriate areas decreased during a task in mu
(8–12 Hz) and beta (18–26 Hz) frequency bands and increased
in gamma (>40 Hz) bands. Other studies [39–44] have shown

that this information in ECoG can be used to reconstruct or
map the different aspects of motor or language function.

In this study, we show for the first time that it is
possible to decode vowels and consonants that are embedded in
spoken or imagined monosyllabic words from ECoG signals in
humans, and also characterize the cortical substrates involved
in the discrimination within distinct vowels and consonants,
respectively.

2. Methods

2.1. Subjects

The subjects in this study were eight patients with intractable
epilepsy who underwent temporary placement of subdural
electrode arrays to localize seizure foci prior to surgical
resection. They included two men (subjects F and I) and
six women (subjects A, B, C, D, E, and G). (See table 1
for additional information.) All gave informed consent for
the study, which was approved by the Institutional Review
Board of Washington University School of Medicine and
the Human Research Protections Office of the US Army
Medical Research and Materiel Command. Each subject
had an electrode grid (48 or 64 contacts) placed over frontal,
parietal and temporal regions (see figure 1 for general system
setup and figure 2 for approximate electrode locations). Grid
placement and duration of ECoG monitoring were based
solely on the requirements of the clinical evaluation, without
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Figure 2. Electrode locations in the eight subjects. Electrodes were projected onto the left hemisphere for subject G.

Table 1. Clinical profiles.

Subject Age Sex Handedness Grid location Tasks

A 16 F R Left frontal-parietal-temporal Overt/covert word repetition
B 44 F L Left frontal-parietal-temporal Overt/covert word repetition
C 58 F R Left frontal Overt/covert word repetition
D 48 F R Left frontal Overt/covert word repetition
E 49 F R Left frontal-parietal-temporal Overt/covert word repetition
F 55 M R Left frontal-parietal-temporal Overt/covert word repetition
G 47 F R Right frontal-parietal-temporal Overt word repetition
I 44 M R Left frontal Overt word repetition

any consideration of this study. As shown in figure 2, the
location of the implanted grid varied across subjects. These
grids consisted of flat electrodes with an exposed diameter
of 2.3 mm and an inter-electrode distance of 1 cm, and were
implanted for about 1 week. The electrodes for all subjects
except subject G were localized over the left hemisphere.
Following the placement of the subdural grid, each subject
had postoperative anterior–posterior and lateral radiographs to
verify grid location.

2.2. Experimental paradigm

During the study, each subject was in a semi-recumbent
position in a hospital bed about 1 m from a video screen.
In separate experimental runs, ECoG was recorded during
two different conditions: overt or covert word repetition
in response to visual word stimuli. Throughout the paper,
we will refer to these two tasks as ‘Overt’ and ‘Covert.’
The visual stimuli consisted of 36 monosyllable words that
were presented on a video monitor for 4 s, followed by a
break of 0.5 s during which the screen was blank. Each
of these 36 words was composed of one of four different
vowels (i.e. /ε/, /æ/, /i:/ and /u:/, which are well separable
in formant space) and one of nine consonant pairs (i.e.
/b_t/, /c_n/, /h_d/, /l_d/, /m_n/, /p_p/, /r_d/, /s_t/,
/t_n/, which were chosen to create actual words, rather
than pseudowords, in combination with the vowels). These
vowels and consonants were integrated in a consonant–vowel–
consonant (CVC) structure (see table 2 for the list of all words.)
This structure allowed us to group the words based on either the
vowel within the word (_V_) or the leading/trailing consonant

Table 2. List of word stimuli.

CVC b_t c_n h_d l_d m_n p_p r_d s_t t_n

/ε/ bet ken head led men pep red set ten
/æ/ bat can had lad man pap rad sat tan
/i:/ beat keen heed lead mean peep read seat teen
/u:/ boot coon hood lewd moon poop rood soot toon

pair (C_C). In other words, each word was uniquely identified
by its vowel and consonant pair.

2.3. Data collection

In all experiments, we recorded ECoG from the electrode
grid using the general-purpose software BCI2000 [45, 46] that
was connected to five g.USBamp amplifier/digitizer systems
(g.tec, Graz, Austria). Simultaneous clinical monitoring was
achieved using a connector that split the cables coming from
the subject into one set that was connected to the clinical
monitoring system and another set that was connected to the
BCI2000/g.USBamp system. Thus, at no time was clinical
care or clinical data collection affected. All electrodes were
referenced to an inactive electrode. In a subset of subjects
(B, C, D, E, F), the verbal response was recorded using
a microphone; in the remaining subjects, speech onset was
detected using the g.TRIGbox (g.tec, Graz, Austria). ECoG
signals and the microphone signal were amplified, bandpass
filtered (0.15–500 Hz), digitized at 1200 Hz, and stored by
BCI2000. We collected two to seven experimental runs from
each subject for each of the two conditions (i.e. overt or covert
word repetition). Each run included 36 trials (140 trials total
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Figure 3. Example of ECoG features from one subject. (A) 3D brain template with one location marked with a green star; (B) normalized
spectrogram of ECoG signals recorded at the location marked in (A), averaged across all spoken words with the same vowels, i.e. /i:/ (left)
and /ε/ (right); (C) distribution of samples in two-dimensional feature space (i.e. gamma and mu amplitudes outlined by ellipses in (B),
marked with upward (blue online) and downward (red online) triangles, respectively) for vowels /i:/ (circles) and /ε/ (squares).

per condition, on average). All eight subjects participated
in the experiments using overt word repetition; a subset of
six subjects (A, B, C, D, E, F) participated in experiments
using covert word repetition. The subjects completed 72–
216 trials for overt speech (140 on average) and 72–252 trials
for covert speech (126 on average). Each dataset was visually
inspected and all channels that did not contain clean ECoG
signals (e.g., ground/reference channels, channels with broken
connections, etc) were removed, which left 47–64 channels for
our analyses.

2.4. 3D cortical mapping

We used lateral skull radiographs to identify the stereotactic
coordinates of each grid electrode with software [47] that
duplicated the manual procedure described in [48]. We
defined cortical areas using Talairach’s Co-Planar Stereotaxic
Atlas of the Human Brain [49] and a Talairach transformation
(http://www.talairach.org). We obtained a 3D cortical brain
model from source code provided on the AFNI SUMA website
(http://afni.nimh.nih.gov/afni/suma). Finally, we projected
each subject’s electrode locations on this 3D brain model and
generated activation maps using a custom Matlab program.

2.5. Feature extraction and classification

We first re-referenced the signal from each electrode using
a common average reference (CAR) montage [39]. Then,
for every 50 ms and for each channel, we converted the
time-series ECoG signals of the previous 333 ms into the
frequency domain using an autoregressive (AR) model [50]
and an empirically determined model order (25)8. Using this
AR model, we calculated spectral amplitudes between 0 and
200 Hz in 2 Hz bins. We then averaged these spectral
amplitudes in three different frequency ranges, i.e. 8–12, 18–
26 and 70–170 Hz (excluding 116–124 Hz). Figure 3(B)

8 This model order typically maximized identification of task-related ECoG
activity in offline analyses of this and other experiments.

shows an example of normalized ECoG time–frequency
spectrograms recorded from the location marked in figure 3(A)
(channel 38, superior temporal gyrus, Brodmann Area 22)
for subject A. The two spectrograms in this figure were
generated across responses for all word stimuli containing
/i:/ and /ε/, respectively. Figure 3(C) shows an example of
the distributions of samples in two-dimensional feature space
(i.e. ECoG spectral amplitude within 70–170 Hz between
900 and 1233 ms, and within 8–12 Hz between 1100 and
1433 ms, respectively). In this study, we chose 70–170 Hz
as the gamma frequency band, which is the same band we
used in a different study using the same dataset [51]. Different
groups or studies have selected different frequency bands (e.g.,
Crone’s group used 80–100 Hz [26, 27], Knight’s group used
80–200 Hz [29]). In general, a large number of ECoG studies
have shown that functional activation of cortex is consistently
associated with a broadband increase in signal power at
high frequencies, i.e. typically >60 Hz and extending up to
200 Hz and beyond [52]. These high gamma responses have
been observed in different functional domains including motor
[53], language [27] and auditory [26, 31], and different choices
of frequency bands have yielded comparable results [54, 55].
At the same time, recent evidence suggests that this view of
a broadband phenomenon may be an oversimplification [56].
In addition to these frequency-based features, we also derived
the local motor potential (LMP) [39], which was calculated
as the running average of the raw time-domain signal at each
electrode. These four sets of features were derived between
500 and 2500 ms after stimulus onset using a window size
of 333 ms (50 ms stepping size). We extracted from each
trial a total of 136 features (four different sets of features
and 34 samples per feature). Because we only used ECoG
information after 500 ms, and because no subject had coverage
of visual areas, our ability to infer vowels or consonants was
mainly based on interpretation of neural processes involved in
overt/covert word repetition rather than of processes involved
most directly with stimulus presentation.

Then, separately for each channel and analysis (overt or
covert speech, vowels or consonants), we ranked the ECoG

4

http://www.talairach.org
http://afni.nimh.nih.govprotect $elax hbox {ma char '75}$afniprotect $elax hbox {ma char '75}$suma


J. Neural Eng. 8 (2011) 046028 X Pei et al

features using the MRMR (maximum relevance and minimum
redundancy) criterion [57]. We submitted the best (35 or 40 for
decoding consonants or vowels, respectively) features at each
location to a Naive Bayes classifier and used the optimized
features to decode from each trial the vowel and consonant
pair group for the target word of that trial, respectively.

We first asked if we could determine from the brain signals
in each trial which of the four vowels (i.e. /ε/, /æ/, /i:/, /u:/)
was present in the spoken or imagined word. For each vowel,
the classifier was constructed and evaluated using tenfold
cross-validation. To do this, each dataset was divided into ten,
and the parameters of the Bayes classifier were determined
from 9/10th of the dataset as a training set and tested on the
remaining 1/10th test set. This procedure was then repeated
ten times—each time, a different 1/10th of the dataset was
used as the test set. The decoder for each vowel (i.e. including
all nine different words with different consonant pairs) was
constructed by modeling ECoG features associated with that
vowel using a Naive Bayes classifier.

Then, using the same methods, the classifier identified
the consonant pair in each trial (e.g., B_T, H_D, L_D,
or P_P). To allow for a better comparison of the results
between vowels (four possible vowels) and consonants (nine
possible consonant pairs), we selected groups of four different
consonant pairs for classification, and repeated the process for
all possible combinations of four out of nine pairs (i.e. 126
combinations). The classification result for each combination
of consonant pairs was the average result achieved for tenfold
cross validation. We reported accuracies of the averaged
results across all possible combinations for the best location.

Finally, we determined which vowel or consonant pair
was most accurately identified by the procedures above. To
do this, we first determined the actual and decoded vowel or
consonant for each trial using the analyses described above.
Then, we simply tabulated the frequency with which any
actual vowel/consonant resulted in decoding of any of the
vowels/consonants. The results are shown in the confusion
matrices in tables 4–7, separately for vowels and consonant
pairs and for overt and covert speech. These confusion
matrices give indications which vowels/consonants were most
similar or most discriminative.

2.6. Cortical discriminative mapping

For each subject, we derived a measure of classification
accuracy from each electrode. Therefore, we were able
to ask which cortical locations held the most information
about discrimination of the vowels or consonants, i.e. which
electrodes had a classification accuracy that was least likely
due to chance.

Specifically, we first computed, for a given number of
samples, the parameters (i.e. mean and standard deviation)
of the normal distribution of accuracy values expected for a
four-class problem using a randomization test. In this test, we
produced 10 000 subsets of samples, where each sample had
one of four random labels. We then calculated the accuracy of
each subset of samples by comparing the random labels to the
true labels. Based on these distributions (i.e. one distribution

for each possible number of samples in our evaluations) of
10 000 accuracy values, we calculated the expected mean and
standard deviations of accuracy values. We then derived a z-
score for the observed accuracy level as the difference of that
accuracy from the mean in units of standard deviation. Finally,
we used a custom Matlab program to project the z-scores at
all locations on to a three-dimensional template cortical brain
model (i.e. cortical discriminative maps).

2.7. Spatial overlap

We then asked to what extent the cortical areas that were
involved in the processing of vowels and consonants or of
overt and covert speech overlapped with each other. To do
this, we quantitatively evaluated the spatial overlap of the
respective cortical discriminative maps using the reshuffling
technique described in a recent study [58]. Specifically, we
first determined the z-score at each location as described above,
and set all z-scores below an empirically derived threshold
(listed below) to zero. Second, we quantified the spatial
overlap between two conditions (e.g., overt and covert) by
calculating the dot product of the two sets of z-score values.
This calculation was confined to those locations that had non-
zero z-scores for at least one of the two conditions. Third,
we created a surrogate distribution of dot product values
by randomly reshuffling electrode positions for one of the
two conditions, calculated the dot product, and repeated this
process 106 times. Finally, we used this surrogate distribution
to estimate the statistical significance of the overlap value
that we observed for the correct (i.e. unshuffled) locations.
We computed these significance values for individual subjects
(using a z-score threshold of 1.64, which corresponds to a
p-value of 0.05) and also combined values for all subjects
(i.e. simply by concatenating locations and z-scores across all
subjects, using a z-score threshold of 2, which corresponds to
the threshold shown in figure 5).

3. Results

3.1. Decoding performance

The average classification accuracies for decoding vowels
across all subjects were 40.7 ± 2.7% (overt speech) and 37.5 ±
5.9% (covert speech) (see figure 4 and supplementary material
video 1 available at stacks.iop.org/JNE/8/046028/mmedia).
For decoding consonants, the average classification accuracies
across all subjects for the best location were 40.6 ± 8.3%
(overt speech) and 36.3 ± 9.7% (covert speech) (see figure 4).
These classification accuracies were substantially better than
those expected by chance (i.e. 25% for vowels and also for
consonants) as evaluated using the parameterized bootstrap
resampling test with 10 000 repetitions as described above.
In particular, for overt speech, accuracies were significant
in all subjects (p < 0.004) for vowels and in most subjects
(7/8 subjects, p < 0.0022) for consonants (see table 3 for
details). For covert speech, accuracies were significant in
most subjects (5/6 subjects, p < 0.007) for vowels and in the
majority of the subjects (4/6 subjects, p < 0.03) for consonants
(see table 3 for details). Statistical analyses using the paired
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Table 3. Statistical analysis of the classification accuracy. In this table, ‘n’ is the number of trials; ‘z-scores’ indicates how many standard
deviations a particular accuracy level is better than that expected by chance.

Overt speech Covert speech

Vowels (n)/(z-scores) Consonant (n)/(z-scores) Vowel (n)/(z-scores) Consonant (n)/(z-scores)

A 72/3.8 72/5.5 72/4.1 72/5.9
B 108/3.6 108/2.03 108/1.2 108/2.08
C 216/5.4 216/4.8 180/2.8 180/1.3
D 216/3.9 216/7.7 72/3.2 72/2.3
E 216/4.7 216/5.4 252/2.48 252/1.44
F 72/3.2 72/2.1 72/2.7 72/1.91
G 144/5.3 144/5.7
H 72/2.66 72/1.3
p-value P < 0.004 p < 0.022 (except subject H) p < 0.007 (except subject B) p < 0.03 (except subjects C and E)

Table 4. Confusion matrix of consonant decoding for overt speech. The column labels correspond to the predicted consonant pair in a given
trial. The row labels correspond to the correct consonant pair. The values in each cell give frequencies in percent and the standard deviation
calculated across subjects. This table represents a composite of frequencies derived from all 126 combinations of 4 of 9 consonants. The
best consonant pair (R_D) is marked in bold.

% B_T K_N H_D L_D M_N P_P R_D S_T T_N

B_T 23.2 ± 9.9 8.8 ± 6.5 11.2 ± 4.1 10.6 ± 4.7 9.8 ± 4.1 7.5 ± 3.7 7.2 ± 6.2 9.6 ± 3.9 12.2 ± 3.4
K_N 9.2 ± 4.5 20.9 ± 5.2 9.8 ± 3.5 8.0 ± 4.3 7.5 ± 3.9 12.7 ± 3.4 13.3 ± 1.9 10.5 ± 4.1 8.1 ± 4.5
H_D 9.2 ± 4.9 8.9 ± 4.8 27.2 ± 7.2 10.7 ± 3.9 8.3 ± 5.4 7.4 ± 2.9 8.3 ± 4.1 11.2 ± 4.5 8.8 ± 3.8
L_D 13.8 ± 3.7 8.1 ± 4.3 11.4 ± 5.1 21.8 ± 4.2 8.9 ± 3.4 9.6 ± 2.7 6.2 ± 4.1 8.9 ± 2.2 11.37 ± 3.1
M_N 10.9 ± 2.3 7.9 ± 4.2 11.8 ± 5.6 7.9 ± 3.6 27.6 ± 9.1 7.5 ± 2.9 6.8 ± 4.8 8.2 ± 3.0 11.19 ± 2.6
P_P 6.4 ± 2.2 14.4 ± 2.7 10.8 ± 4.7 9.7 ± 3.9 6.9 ± 2.4 24.3 ± 5.2 10.5 ± 2.1 9.6 ± 2.3 7.2 ± 2.9
R_D 7.9 ± 4.7 13.6 ± 5.8 8.4 ± 4.3 6.2 ± 2.7 6.9 ± 4.8 9.9 ± 3.9 32.9 ± 12.5 7.9 ± 3.7 6.3 ± 3.7
S_T 10.9 ± 3.9 11.6 ± 4.8 11.2 ± 3.3 10.0 ± 2.3 7.8 ± 2.7 9.4 ± 3.1 8.4 ± 2.6 22.7 ± 5.2 7.9 ± 1.3
T_N 12.5 ± 3.9 7.1 ± 3.4 12.6 ± 4.8 11.5 ± 2.7 10.9 ± 2.4 6.9 ± 2.2 6.5 ± 4.7 8.1 ± 2.3 23.7 ± 6.0

Table 5. Confusion matrix of consonant decoding for covert speech.

% B_T K_N H_D L_D M_N P_P R_D S_T T_N

B_T 22.3 ± 8.1 11.4 ± 6.1 10.1 ± 3.7 8.6 ± 4.7 9.6 ± 1.2 7.2 ± 3.1 8.9 ± 4.2 11.9 ± 4.9 9.9 ± 1.6
K_N 8.2 ± 4.3 24.2 ± 6.2 8.7 ± 5.9 11.8 ± 2.8 6.9 ± 3.3 11.3 ± 3.6 7.6 ± 3.3 12.6 ± 3.4 8.7 ± 2.9
H_D 9.7 ± 5.3 8.3 ± 3.2 18.3 ± 3.7 10.4 ± 2.3 9.2 ± 2.4 10.3 ± 3.7 11.3 ± 2.5 10.1 ± 3.1 12.5 ± 1.8
L_D 6.7 ± 4.4 10.3 ± 4.7 10.5 ± 2.4 24.7 ± 7.0 8.9 ± 3.9 9.7 ± 1.2 8.8 ± 2.3 10.9 ± 1.8 9.4 ± 1.7
M_N 13.4 ± 9.2 8.3 ± 4.5 8.4 ± 2.8 11.3 ± 3.8 23.8 ± 6.4 8.1 ± 3.2 7.8 ± 3.6 9.7 ± 3.2 9.2 ± 1.9
P_P 7.9 ± 3.5 10.5 ± 3.0 9.9 ± 3.3 12.0 ± 1.1 7.8 ± 3.9 25.3 ± 9.0 9.1 ± 1.2 8.6 ± 3.4 8.8 ± 4.1
R_D 7.6 ± 4.5 9.3 ± 2.7 12.8 ± 0.8 9.5 ± 5.4 7.9 ± 4.5 8.1 ± 3.2 27.8 ± 16.9 8.6 ± 2.2 8.2 ± 2.9
S_T 9.0 ± 3.5 11.4 ± 3.1 10.7 ± 1.3 10.5 ± 2.9 8.4 ± 3.5 8.1 ± 1.9 8.2 ± 2.8 23.7 ± 6.2 9.9 ± 2.7
T_N 10.6 ± 3.4 8.7 ± 4.1 12.5 ± 3.6 9.3 ± 4.8 7.1 ± 3.2 8.0 ± 4.6 7.7 ± 2.1 10.8 ± 5.3 25.2 ± 11.8

Table 6. Confusion matrix of decoding vowels for overt speech. The column labels correspond to the predicted vowel pair in a given trial.
The row labels correspond to the correct vowel pair. The values in each cell give frequencies in per cent and the standard deviation
calculated across subjects. The best vowel pair /u:/ is marked in bold.

Accuracy (%) /ε/ /æ/ /i:/ /u:/

/ε/ 27.72 ± 7.92 18.76 ± 6.27 24.43 ± 8.29 29.09 ± 4.55
/æ/ 21.38 ± 11.83 34.09 ± 16.00 23.79 ± 9.45 20.74 ± 5.78
/i:/ 19.82 ± 6.92 17.88 ± 8.22 38.80 ± 7.71 23.48 ± 8.31
/u:/ 19.74 ± 6.38 19.64 ± 4.77 21.70 ± 7.36 38.91 ± 7.68

Table 7. Confusion matrix of decoding vowels for covert speech.

Accuracy (%) /ε/ /æ/ /i:/ /u:/

/ε/ 40.49 ± 12.32 19.16 ± 4.01 19.01 ± 6.09 21.33 ± 12.76
/æ/ 27.93 ± 6.20 26.63 ± 4.72 23.70 ± 6.01 21.74 ± 8.71
/i:/ 22.19 ± 9.88 27.03 ± 7.96 28.69 ± 7.08 22.09 ± 9.98
/u:/ 20.82 ± 9.59 16.00 ± 7.76 20.45 ± 9.25 42.72 ± 9.35
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(A) (B)

Figure 4. Classification accuracies of the ECoG-based decoding of vowels and consonants during overt and covert speech, respectively. On
each box, the central mark is the median value, the edges of the box are the 25th and 75th percentiles and the whiskers extend to the
maximum/minimum. Chance accuracy is 25%. (A) Consonant decoding accuracy for overt/covert word repetition; (B) vowel decoding
accuracy for overt/covert word repetition.
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Figure 5. Color-coded cortical discriminative maps for vowels or consonants and for actual or imagined speech, respectively. The
color-coded (see color bar) cortical patterns show the locations with the best decoding performance and were superimposed for all
left-hemisphere subjects (seven for actual speech and six for imagined speech, respectively). Color gives z-scores indicating how much
better accuracy at the respective location was compared to chance (p-value: 0.0023 at a z-score of 2). (A), (B) Discriminative maps for
decoding vowels and consonants during overt word repetition. (C), (D) Discriminative maps for decoding vowels and consonants during
covert word repetition.

Wilcoxon signed-rank test for eight subjects (overt speech)
and six subjects (covert speech) did not reveal significant
differences in accuracy for consonants and vowels or overt
and covert speech.

The classification accuracies for each vowel and
consonant pair are shown in confusion matrices that are
presented in tables 4–7. These results show that the best
averaged classification performance across all subjects, for
both overt and covert speech, was achieved for the vowel /u:/
and the consonant pair ‘R_D’. The corresponding accuracies
were 39%, 43%, 33%, 28% (i.e. vowels/overt, vowels/covert,
consonants/overt, consonants/covert, respectively), all of
which were above the chance level (i.e. 25% for four-vowel
matched groups classification and for nine-consonant-pair
matched groups classification).

These results demonstrate that it is possible to infer the
vowels and consonant pairs independently in spoken and
imagined words using ECoG signals in humans.

3.2. Cortical discriminative maps

Figure 5 shows the cortical discriminative maps that indicated
the areas that held the most information about vowels and
consonants from all subjects. Figures 6 and 7 show the
same results for individual subjects. The results shown in
figure 5 demonstrate that the cortical areas that best
discriminated vowels or consonants in the overt speech
tasks were located in primary motor cortex (PMC, Brodmann’s
area (BA) 4), premotor cortex (BA 6), Broca’s area
(BA 44/45) and also posterior superior temporal gyrus (STG,
i.e. the posterior part of BA 22). For covert speech tasks,
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Figure 6. Cortical discriminative maps for individual subjects and for vowels (left panel) and consonants (right panel) in overt speech.
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Figure 7. Cortical discriminative maps for individual subjects and for vowels (left panel) and consonants (right panel) in covert speech.

the best cortical areas were localized over small foci in
temporal and frontal regions. In addition, for decoding
consonants, optimal sites tended to be located surrounding
Wernicke’s area, whereas for vowels, optimal sites tended to
be centered surrounding the premotor regions with smaller
involvements of Broca’s and Wernicke’s areas. The results
shown in figure 6 indicate that the discriminative maps are
relatively consistent for overt word repetition. Discriminative
information is mainly located in the frontal lobe (premotor
cortex and Broca’s area) and also in superior temporal regions.
In contrast, the discriminative maps shown in figure 7 are

more distributed and variable across subjects for covert word
repetition.

Finally, we asked whether the discriminative cortical maps
for overt and covert speech or for vowels and consonants
were different from each other. Using the same reshuffling
technique described above, our results demonstrate that for
both individual subjects and also for all subjects combined, the
cortical discriminative maps did not overlap between vowels
and consonants (p > 0.26 and p = 1, for overt and covert
speech, respectively), or between overt and covert speech
(p > 0.94 and p > 0.37, for vowels and consonants (except for

8
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subject A, p < 0.05 when evaluating subjects individually),
respectively). These results suggest that the neural substrates
involved in discrimination of vowels and consonants during
overt and covert speech tasks are different. However, the fact
that these areas are statistically different does not preclude
the possibility that they do not share some commonalities. In
fact, figure 5 shows that the cortical patterns for vowels and
consonants during overt speech tasks involve some common
areas over premotor cortex and parts of middle temporal
regions.

4. Discussion

In this study, we showed that ECoG signals can be used
to decode vowels and consonants in spoken or imagined
words. Discriminating different components of speech, such
as phonemes, vowels, consonants or words, could provide an
approach for rapid selection of one of multiple choices that
may be quite intuitive. Thus, the results presented here may
ultimately lead to speech-based BCI systems that may provide
effective communication with only a little training.

In this context, it is interesting to note that the decoding
accuracies that we reported in this study were similar for overt
and covert speech tasks. At the same time, these decoding
accuracies reflect accuracies achieved for individual locations.
The discriminative maps shown in figure 5 suggest that overt
speech allows for discrimination in larger cortical areas (i.e.
not only auditory areas, but also motor areas) than does covert
speech. This is consistent with a recent report that found that
covert speech does not engage motor areas [51]. The fact that
multiple locations, and not just one, hold information about
vowels or consonants also points to a straightforward way to
further improve the classification accuracies shown here.

We also began to elucidate the neural substrate
associated with vowel and consonant production. Previous
behavioral studies based on lesion cases and lexical decision
tasks have shown that the brain dissociates vowel and
consonant processing [21, 22], which could be explained
by the differential demands on prosodic and lexico-semantic
processing placed by vowels and consonants [21], respectively.
Our results give quantitative evidence that production of
different vowels and consonants is associated with different
ECoG activity patterns. These differential patterns are
predominantly located in premotor and motor areas for spoken
vowels/consonants, and in different speech-related areas for
imagined vowels/consonants. This finding supports the notion
that overt word repetition is composed partly of motoric
processes of speech production [29, 30, 59–61] that contribute
less to covert word repetition. Moreover, these results suggest
that covert word repetition consists at least in part of imagining
the perceptual qualities of the word (i.e. imagining what the
word sounds like) rather than of processes that simulate the
motor actions necessary for speech production. This is in
marked contrast to recent findings [58] that demonstrated that
overt and covert motor performances result in similar ECoG
activation patterns. One should keep in mind, however, that it
is unclear whether our results will generalize to speech tasks
other than the word repetition task used here.

No previous study demonstrated that different vowels
or consonants that are embedded in different spoken or
imagined words can be discriminated using brain signals.
Our results show that vowels and consonants can be decoded
independently, and thus provide additional evidence for the
dissociation within different vowels or consonants. Decoding
vowels or consonants across groups of words is a more
complicated problem than, for example, simply decoding one
of four spoken vowels, and also complicates the corresponding
interpretations (e.g., misclassification of /ε/ as /u:/ in table 6
and /æ/ as /ε/ in table 7). At the same time, our results show
that the vowel /u:/ overall provided the best classification rates
for both overt and covert speech. This observation supports the
hypothesis that formant-based features may play an important
role in brain-based discrimination of the spoken/imagined
different vowels.

In conclusion, the results shown in this paper may
ultimately lead to BCI systems based on overt or covert speech.
Furthermore, our findings add empirical evidence that there is
cortical dissociation not only between processing of different
vowels or consonants in spoken and imagined words, but
also between processing of vowels and consonants. Further
research is needed to improve detection accuracy and/or
extend these results to more vowel/consonant categories. In
particular, use of information from different locations, and not
just individual locations as done here, should prove useful.
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