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Abstract
Signals from the brain could provide a non-muscular communication and control system, a
brain–computer interface (BCI), for people who are severely paralyzed. A common BCI
research strategy begins by decoding kinematic parameters from brain signals recorded during
actual arm movement. It has been assumed that these parameters can be derived accurately
only from signals recorded by intracortical microelectrodes, but the long-term stability of such
electrodes is uncertain. The present study disproves this widespread assumption by showing in
humans that kinematic parameters can also be decoded from signals recorded by subdural
electrodes on the cortical surface (ECoG) with an accuracy comparable to that achieved in
monkey studies using intracortical microelectrodes. A new ECoG feature labeled the local
motor potential (LMP) provided the most information about movement. Furthermore, features
displayed cosine tuning that has previously been described only for signals recorded within the
brain. These results suggest that ECoG could be a more stable and less invasive alternative to
intracortical electrodes for BCI systems, and could also prove useful in studies of motor
function.

M This article features online multimedia enhancements

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Brain–computer interfaces (BCIs) use brain signals to
communicate a user’s intent [1]. Because these systems do not
depend on peripheral nerves and muscles, they can be used by
people with severe motor disabilities. Practical applications of
BCI technology are currently impeded by the limitations and
requirements of non-invasive and invasive methods.

Non-invasive BCIs use electroencephalographic activity
(EEG) recorded from the scalp [1]. While non-invasive
BCIs can support multidimensional control [2], their use
requires extensive user training. Invasive BCIs use activity
from multiple neurons recorded within the brain [3–6].
Signals recorded within cortex have higher fidelity and might
support BCI systems that require less training than EEG-based
systems. However, clinical implementations are impeded
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Figure 1. Electrode locations in the five subjects. The electrodes were projected on the right hemisphere for subjects A and E (see
asterisks). The brain template on the bottom right highlights the location of the central sulcus and Sylvian fissure, and also outlines relevant
Brodmann areas.

Table 1. Clinical profiles. All subjects were literate and functionally independent. Subject A had a prior left anterior temporal lobectomy.
Subject B had no traumatic or structural lesion. Subject C had a right anterior frontal traumatic injury. Subject D had a right posterior
temporal arteriovenous malformation embolized 20 years earlier. Subject E had a left frontal dysembryoplastic neuroepithelial tumor.

Subject Age Sex Hand Cognitive capacity Grid location Seizure focus

A 23 M R Normal (IQ 88) Left frontal temporal Left temporal
B 24 F R Normal (IQ 97) Right frontal temporal Right orbitofrontal and temporal
C 38 M R Borderline (IQ 70) Right frontal Right frontal
D 48 M R Normal (IQ 82; Right sup Right temporal Right temporal occipital focus

quadr visual deficit)
E 18 F R Normal (IQ 86) Left frontal Left frontal

mainly by the risks of surgical implantation and by the
substantial problems in achieving and maintaining stable long-
term recordings [7, 8]. While a few recent studies have begun
to apply non-invasive and invasive BCI technologies to the
needs of severely disabled individuals [9, 10], these issues
remain crucial obstacles that currently prohibit widespread
clinical use in humans.

In the current absence of techniques to extract high-
fidelity signals from EEG and of methods to record activity
from within the brain safely and over long periods, the use
of electrocorticographic activity (ECoG) recorded from the
cortical surface could be a powerful and practical alternative.
ECoG has higher spatial resolution than EEG (i.e., tenths of
millimeters versus centimeters), broader bandwidth (i.e., 0–
500 Hz [11] versus 0–40 Hz), higher amplitude (i.e., 50–
100 µV maximum versus 10–20 µV), and far less vulnerability
to artifacts such as EMG [12]. At the same time, because
ECoG does not require electrodes that penetrate cortex, it
is likely to have greater long-term stability [13–17] and to
produce less tissue damage.

We previously showed that ECoG signals associated with
imagery of arbitrary tasks can provide one-dimensional BCI
control with little training [18]. It is possible that using more
intuitive tasks (such as imagined hand movements) might
more efficiently extend this control to multiple dimensions.
However, most studies that decoded hand movements from
brain signals have been in monkeys [19–21]. Only limited
relevant information is available in humans [18, 22, 23].

In this study, we set out to determine if it is possible
to faithfully decode in real time kinematic parameters from
ECoG signals recorded in humans. We studied five subjects
who were asked to use a joystick to move a cursor so as

to track a target that moved on a computer screen. The
principal results show that ECoG signals can be used to
accurately decode two-dimensional joystick kinematics in
humans. They also show that these results are within the range
of those achieved in studies using intracortical microelectrode
recordings in monkeys that also aimed to decode two-
dimensional kinematic parameters. Furthermore, they indicate
that a new brain signal component, which we label the local
motor potential (LMP), holds substantial information about
movement direction. Finally, ECoG features can also exhibit
the same kind of cosine tuning previously detected only with
intracortical microelectrodes in monkeys [21, 24–32]. These
results provide strong evidence that ECoG could be used
to provide accurate multidimensional BCI control, and also
suggest that ECoG is a potentially powerful tool for the study
of brain function.

2. Methods

2.1. Subjects

The subjects in this study were five patients with intractable
epilepsy who underwent temporary placement of subdural
electrode arrays to localize seizure foci prior to surgical
resection. They included three men (subjects A, C and D)
and two women (subjects B and E). (See table 1 for additional
information.) All gave informed consent. The study was
approved by the Institutional Review Board of the University
of Washington School of Medicine. Each subject had a 48-
or 64-electrode grid placed over the fronto-parietal-temporal
region including parts of sensorimotor cortex (see figure 1
for details). These grids consisted of flat electrodes with a
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diameter of 4 mm (2.3 mm exposed) and an inter-electrode
distance of 1 cm, and were implanted for about 1 week.
Grid placements and duration of ECoG monitoring were based
solely on the requirements of the clinical evaluation, without
any consideration of this study. Following placement of
the subdural grid, each subject had postoperative anterior–
posterior and lateral radiographs to verify grid location.

2.2. Experimental paradigm

During the study, each subject was in a semi-recumbent
position in a hospital bed about 1 m from a video screen.
He/she used a joystick with the hand contralateral to the
implanted electrode array to move a white cursor in two
dimensions to track a green target. The target moved counter-
clockwise in a circle that was positioned in the center of a
computer screen. The target encouraged the subjects, who
were often impaired by post-operative recovery, to engage in
continuous movements. Substantial variability in the subjects’
tracking trajectories allowed us to make additional inferences
about different aspects of the movement (see section 4 for
details). The diameter of the circle was 61% (one subject)
or 85% (all other four subjects) of the screen’s height. One
full revolution of the target took 6.3 s for all subjects. (At the
same movement speed, a typical center-out task (i.e., moving
a cursor from the center of the screen to the periphery of the
screen) would have had a movement duration of less than
1.2 s.) To allow for offline analyses, the position of the cursor
and the target were stored along with the digitized ECoG
signals. Joystick position was mapped to cursor velocity and
the joystick produced significant force feedback to the subject
so that this task approached the isometric force tasks used in
[33–35]. Subjects were asked to use shoulder and proximal
arm movements rather than wrist movements. They were also
asked to maintain a constant posture, but neither body, head,
nor hand were restrained in any way.

2.3. Data collection

In all experiments, we recorded ECoG from the electrode
grid using the general-purpose BCI system BCI2000 [36]
connected to a Neuroscan Synamps2 system. Simultaneous
clinical monitoring was achieved using a connector that split
the cables coming from the subject into one set that was
connected to the clinical monitoring system and another
set that was connected to the BCI2000/Neuroscan system.
Thus, at no time was clinical care or clinical data collection
compromised. All electrodes were referenced to an inactive
electrode. The signals were amplified, bandpass filtered
between 0.15 and 200 Hz, digitized at 1000 Hz, and stored
in BCI2000. The amount of data obtained varied from subject
to subject, and depended on the subject’s physical state and
availability. The duration of the datasets averaged 443 s
(range 130–830 s). Each dataset was visually inspected and
all channels that did not clearly contain ECoG activity (e.g.,
such as channels that contained flat signals or noise due to
broken connections) were removed prior to analysis, which left
48–64 channels for our analyses.

2.4. 3D cortical mapping

We used lateral skull radiographs to identify the stereotactic
coordinates of each grid electrode with software [37] that
duplicated the manual procedure described in [38]. We
defined cortical areas using Talairach’s Co-Planar Stereotaxic
Atlas of the Human Brain [39] and a Talairach transformation
(http://ric.uthscsa.edu/projects/talairachdaemon.html). We
obtained a template 3D cortical brain model (subject-specific
brain models were not available) from source code provided
on the AFNI SUMA website (http://afni.nimh.nih.gov/afni/
suma). Finally, we projected each subject’s electrode locations
on this 3D brain model and generated activation maps using a
custom Matlab program.

2.5. Feature extraction and selection

We first re-referenced the signal from each electrode using
a common average reference (CAR) montage. To do this,
we obtained the CAR-filtered signal s ′

h at channel h using
s ′

h = sh − 1
H

∑H
q=1 sq . H was the total number of channels and

sh was the original signal sample at a particular time.
For each 333 ms time period (overlapping by 166 ms), we

then converted the time-series ECoG data into the frequency
domain with an autoregressive model [40] of order 50. Using
this model, we calculated spectral amplitudes between 0 and
200 Hz in 1 Hz bins. We averaged these spectral amplitudes in
particular frequency ranges (8–12 Hz, 18–24 Hz, 35–42 Hz,
42–70 Hz, 70–100 Hz, 100–140 Hz, 140–190 Hz) in the
mu, beta and gamma frequency bands, similar to those used
in [21]. In addition, visual inspection identified specific
channels in which ECoG voltage level appeared to correlate
with kinematic parameters. It thus seemed that these locations
were amplitude-modulated in the time-domain (i.e., exhibiting
the local motor potential (LMP)) rather than in a low band in
the frequency-domain.

Figure 2 shows an example ECoG time course for subject
C (A), the spatial distribution of channels that exhibit the
LMP (B), and the magnified time course of channel 35, as
well as the X position of the cursor and moving target (C).
The correlation of the ECoG time course with the movement
parameters is evident and clearly focused on select channels
over hand sensorimotor cortex. The magnification shown in
(C) demonstrates an example of good correlation between
ECoG time course (black trace) with the X position of
the cursor (thick dark green trace). It also illustrates an
example of modest tracking performance indicated by the poor
concurrence between the X position of the cursor (thick dark
green trace) and the X position of the moving target (thin light
green trace) between 45 and 60 s.

To account for the possibility of movement-related LMP
modulation, we added to the frequency-based features listed
above the 333 ms running average of the raw unrectified signal.
This yielded eight features per channel, i.e., a total maximum
of 8 × 64 = 512 features. Finally, we applied a running
average filter (boxcar window, length was 9 samples (9 ×
166 ms = 1494 ms)) to each of these features.

To reduce this large number of features, we employed the
correlation-based feature selector (CFS) that is implemented in
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Figure 2. Example ECoG time course for subject C. (A) Time course of ECoG signals for channels 21–40 and for the X position of the
cursor (Xcrs), the X position of the tracking target (Xtrk), as well as the Y position of the cursor (Ycrs) and target (Ytrk). Channels that exhibit
a time course that is correlated with the movement parameters Xcrs or Ycrs (i.e., a time course exhibiting the LMP) are indicated with
symbols. (B) Electrode locations including channel numbers. Symbols indicate the locations of channels that show the LMP.
(C) Magnification of ECoG time course of channel 35 from 30 to 60 s, as well as the X position of the cursor (thick dark green trace) and the
X position of the moving target (thin light green trace).

the Java-based Weka package [41], which ranks feature subsets
rather than individual features. (It thereby takes into account
not only the correlation of any one particular feature with the
values to be decoded, but also the cross-correlation between
features.) The use of this procedure reduced the number of
features to 5–20 (10 on average) for the different datasets.

2.6. Classification

Using the ECoG features selected by the CFS procedure, we
then derived one linear model for each of the four kinematic
parameters of the subject’s cursor (i.e., horizontal position,
vertical position, horizontal velocity, vertical velocity). We
used the ECoG features to decode each of the four kinematic
parameters immediately following the period representing
these features (i.e., causal prediction) so that the same
procedure could be used in real time.

2.7. Evaluation

The performance of the linear models was evaluated using 5-
fold cross-validation, i.e., each dataset was divided into five
parts, the linear models were determined from 4/5th of the
dataset (training set) and tested (i.e., the coefficients of the
linear model derived using the regression were applied) on
the remaining 1/5th (test set). This procedure was then
repeated five times—each time, a different 1/5th of the dataset

was used as the test set. (The feature selection procedure was
always applied to the training set only.)

We evaluated the performance of each of the five models
by cross-correlating the decoded kinematic parameters with
the actual values for position and velocity. This resulted in a
correlation coefficient r for each dataset, cross-validation fold,
and each of the four kinematic parameters.

2.8. Directional tuning

In additional analyses, we determined the relationship between
each ECoG feature f and the direction (i.e., angle) of
movement. To do this, we assigned, for each cross-validation
fold of each dataset, the feature samples f to the corresponding
movement direction, which we discretized in 20 equidistant
bins from −180 to +180◦. Depending on the length of the
dataset and the joystick movement patterns, each of these
bins contained a variable amount of feature samples (19
on average). The 20 bins i and the distribution of feature
samples f i within each bin defined a tuning curve for each
feature, location, cross-validation fold and subject. We then
determined whether these observed tuning curves were a
function of movement direction (i.e., they were tuned) or a
cosine function of movement direction (i.e., they were cosine
tuned), similar to the approach in [21]. This procedure is
described in short below.
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To determine whether a curve was tuned, we calculated
the probability that each tuning curve differed from randomly
generated tuning curves. To do this, we first calculated a tuning
index measure SNR that related the variance of all feature
values σ 2(f) to the average variance of the feature values
within each bin

(
1

20

∑20
i=1 σ 2(f i )

)
: SNR = σ 2(f)

1
20

∑20
i=1 σ 2(f i )

.

Then, we shuffled all feature values such that they were
assigned to randomly chosen bins, calculated the value of
SNR, and repeated this procedure 200 times, which resulted in
200 measures of SNR. We modeled these measurements using
a Gaussian distribution (i.e., we calculated the SNR mean and
standard deviation)1. We finally determined the probability
pt that the value of SNR for the observed tuning curve was
generated by the Gaussian model distribution of randomly
generated SNR values. A tuning curve was considered tuned
if pt was smaller than 0.001.

For each tuning curve that was considered tuned, we
also determined whether it was cosine tuned. To do this, we
calculated the mean value f i of all features within each bin,
which defined the average observed tuning curve. We then
calculated the correlation coefficient r between this average
tuning curve and a cosine function that was fit through
to this curve. Similar to above, we then determined the
probability pct that the observed tuning curve was generated
by a distribution of randomly generated r values. A tuning
curve was considered cosine tuned if pct was smaller than
0.001.

3. Results

To study the fidelity of the trajectory decoding and
the characteristics of the associated brain signals, we
determined the accuracy of decoded cursor position and
velocity, compared it to published results using implanted
microelectrodes, and established the anatomical location and
ECoG features that held the most information. We also
determined the anatomical location and ECoG features that
were cosine tuned to movement direction. The results of these
evaluations are described below.

3.1. Accurate decoding of kinematic parameters

Table 2 shows the principal results of this study, which are
given in correlation coefficients calculated between actual and
decoded kinematic parameters. The generally high correlation
coefficients demonstrate that it is possible to infer accurate
information about joystick kinematic parameters in real time
using ECoG signals in humans (see figure 3 and the movie
in the supplementary material at stacks.iop.org/JNE/4/264 for
actual and decoded trajectories). Because the calculation of
decoding parameters only involves the training dataset, but
not the test dataset, similar results can be expected in online
experiments.

Table 3 compares the results of the present study to
those previously reported for decoding of two-dimensional

1 We assessed the normality of these measurements using a Kolmogorov–
Smirnoff test. This test determined that 90% of all distributions were
considered Gaussian at the 0.05 level.

Table 2. Decoding of kinematic parameters. Correlation
coefficients (r) between the actual and decoded kinematic
parameters (horizontal position of the cursor (X), vertical position
(Y), horizontal velocity (Vx) and vertical velocity (Vy)) and the
average across kinematic parameters (Avg r). Top group:
correlation coefficients are given, for each parameter and dataset, for
the worst and the best of the five cross-validation folds. Bottom
group: median values of correlation between the actual and decoded
kinematic parameters, calculated across all five cross-validation
folds. These results demonstrate that good reconstruction of
kinematic parameters (on data that were not used to train the
algorithm) is possible using ECoG signals in humans.

Subject X Y Vx Vy Avg r

A 0.49–0.61 0.20–0.49 0.18–0.48 0.39–0.66
B 0.19–0.60 −0.13–0.72 0.03–0.73 0.18–0.52
C 0.50–0.81 0.18–0.80 0.04–0.35 0.45–0.85
D 0.40–0.64 0.28–0.78 0.30–0.72 0.58–0.68
E 0.14–0.52 0.04–0.48 0.09–0.61 0.11–0.66

A 0.58 0.38 0.42 0.59 0.49
B 0.42 0.55 0.59 0.32 0.47
C 0.71 0.51 0.10 0.67 0.50
D 0.57 0.68 0.58 0.66 0.62
E 0.37 0.22 0.32 0.49 0.35

movement parameters using intracortical implants in non-
human primates. This table shows that the correlation of the
actual with the decoded trajectories, and thus the fidelity of the
decoding, reported in the present study, is within the range of
those achieved before only using implanted microelectrodes.

3.2. Relative importance of anatomical areas and eCoG
features

We also studied the relative importance of the different
anatomical areas and ECoG features (i.e., the seven frequency-
based features and the LMP) that were implicated in the
decoding of cursor position and velocity. To do this,
we analyzed the data as described before except that we
first normalized the features with respect to their standard
deviations2. This allowed the weights that were derived by the
linear regression and associated with particular features and
locations to be used as a measure of importance in decoding
a certain kinematic parameter. We then used the CFS feature
selection procedure and linear regression to produce weights
for specific features at particular locations for the best four
cross-validation folds in each subject, and for each of the four
kinematic parameters. We finally removed the bias due to the
number of electrodes by normalizing each set of weights by
the sum of all weights.

To determine the relative importance of different
anatomical areas, we then simply accumulated the weights
for each location (so that one electrode could be assigned
multiple weights from different folds and/or features) and
plotted the results on a 3D model of the cortex. (Subjects
A and E had electrode grids on the left hemisphere. We
projected the electrode locations from these subjects to the

2 We did not utilize this normalization before because we were interested in
deriving results that could have been achieved in real time. We here calculated
the standard deviation on the whole dataset, which cannot be performed in
real time.
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Figure 3. Actual and decoded movement trajectories. This figure shows examples for actual (thin red traces) and decoded (thick green
traces) X and Y cursor position for all subjects (for the best cross-validation fold for each of X and Y cursor position), as well as the
respective correlation coefficients r. The high correlation coefficients evidence the generally close concurrence between actual and decoded
cursor positions.

Table 3. Comparison to intracortical studies. We compared the results of the present study to published results using two-dimensional tasks
and microelectrode recording in monkeys. (We included only those reports that described methods that could have been achieved in real
time.) Average correlation coefficients for published position and/or velocity values (Position r and Velocity r, respectively) across all
subjects are shown. The correlation of the actual with the decoded trajectories, and thus the fidelity of the decoding, reported in the present
study, is within the range of those achieved using implanted microelectrodes in monkeys.

Study and source Position r Velocity r

Schwartz and Moran (1999, p 2713) – 0.77
Carmena et al (2003, figures 1(F) and 3(C)) 0.33–0.63 0.27–0.73
Paninski et al (2004, table 1) 0.47 –
Lebedev et al (2005, table 2) – 0.56
Averbeck et al (2005, est. from figures 8(A) and (B)) – 0.74
Present study (2006, table 2) 0.50 0.48

right hemisphere to facilitate interpretation.) These results are
shown in figure 4, which shows the topographical distribution
of weights (color coded with red corresponding to the highest
weight) accumulated for all features and subjects. Table 4
reports these weights broken down by Brodmann’s area and
ECoG feature.

These weights are generally high for motor and pre-motor
cortical areas (Brodmann’s area 4 and 6, respectively), but
also for additional areas such as dorsolateral prefrontal cortex
(which has been implicated in other guided motor tasks [42])

and those that do not have obvious motor control relevance
(such as the activation at the tip of the temporal pole). The
high weights reported in table 4 for the LMP also indicate the
important contribution of the LMP to our results.

We draw four conclusions from these analyses. First,
the cortex offers opportunities to infer kinematic parameters
over widespread areas of cortex, not only over classical
sensorimotor areas. This notion is consistent with a recent
review on this topic [43]. Second, sensory cortex had only
a modest influence, which suggests that movement decoding
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Figure 4. Anatomical areas holding information about movement parameters. Colors represent the weights accumulated for all features and
subjects at the respective locations, and thus indicate the relative importance of these sites in decoding cursor position or velocity
(transparent color and red correspond to zero and maximum weight, respectively). The weights are normalized for each movement
parameter. The dominant focus over hand and proximal arm areas of motor cortex, indicated by the highest weights given to these areas, is
evident. In addition, other locations are involved for which the anatomical relevance is not clear. The total area covered by the electrode
grids in the five subjects is indicated by the blue outline.

Table 4. Relative importance of anatomical areas and ECoG features. The four tables contain weights assigned to signals in particular
Brodmann’s areas and ECoG features for cursor position and velocity. The two most important areas and features are given in bold. Motor
and pre-motor cortices, as well as the LMP feature, held the highest weights, and thus the most information about kinematic parameters.

Horizontal cursor position Vertical cursor position

Area 8–12 18–24 35–42 42–70 70–100 100–140 140–190 LMP SUM Area 8–12 18–24 35–42 42–70 70–100 100–140 140–190 LMP SUM

1 0.10 0.06 0.40 0.55 1 0.03 0.03 0.06
2 0.02 0.06 0.38 0.63 0.99 0.19 2.28 2 0.05 0.19 0.21 0.08 0.03 0.04 0.53 1.12
3 0.14 0.21 0.60 0.94 3 0.38 0.51 0.16 0.53 0.23 2.36 4.16
4 0.07 0.18 0.51 1.44 0.99 3.20 4 0.25 0.04 0.01 0.03 1.53 1.85
6 0.20 0.18 0.33 0.17 0.46 0.10 1.05 2.49 6 0.03 0.13 0.18 0.12 2.51 2.97
7 7 0.29 0.07 0.36
8 0.10 0.67 0.77 8 0.06 0.05 0.05 0.31 0.47
9 0.06 0.08 0.08 0.23 0.03 1.71 2.18 9 0.05 0.06 0.40 0.12 1.02 1.65

10 0.11 0.11 0.22 10 0.18 0.18
20 0.01 0.01 20
21 0.20 0.04 0.06 0.32 0.62 21 0.08 0.17 0.09 0.35
22 0.26 0.57 0.19 0.42 1.44 22 0.14 0.05 0.10 0.08 0.31 0.69
37 0.06 0.06 37 0.06 0.06
38 0.04 0.11 0.74 0.89 38 0.18 0.09 1.02 1.29
39 39 0.01 0.01
40 0.19 0.19 0.15 0.66 1.19 40 0.05 0.01 0.05 0.18 0.13 0.04 0.57 1.03
42 0.04 0.05 0.29 0.38 42 0.10 0.10
43 0.13 0.07 0.02 0.22 43 0.18 0.16 0.34
44 0.11 0.04 0.13 0.39 0.67 44 0.13 0.05 0.19
45 0.08 0.08 45 0.07 0.03 0.11
46 0.05 0.06 0.02 0.52 0.66 46 0.04 0.07 1.30 1.40
47 0.18 0.21 0.79 1.18 47 0.11 0.08 0.10 1.34 1.63

SUM 1.23 0.45 1.55 0.94 1.01 2.06 3.50 9.25 SUM 1.55 0.75 1.22 1.14 0.48 1.27 0.47 13.12

Horizontal cursor velocity Vertical cursor velocity

Area 8–12 18–24 35–42 42–70 70–100 100–140 140–190 LMP SUM Area 8–12 18–24 35–42 42–70 70–100 100–140 140–190 LMP SUM

1 0.05 0.17 0.23 1 0.05 0.12 0.06 0.31 0.54
2 0.20 0.05 0.25 0.02 0.13 1.10 1.76 2 0.08 0.08 0.18 0.54 1.42 0.08 2.38
3 0.08 0.07 0.34 0.34 1.07 1.89 3 0.04 0.30 0.12 0.06 1.17 0.01 1.70
4 0.15 0.24 2.38 2.77 4 0.06 0.07 1.12 1.33 2.59
6 0.33 0.14 0.21 0.03 0.09 2.19 2.99 6 0.21 0.05 0.42 0.07 0.25 0.19 1.91 3.10
7 0.28 0.03 0.31 7 0.03 0.03
8 0.08 0.40 0.48 8 0.04 0.56 0.60
9 0.07 0.31 0.04 0.83 1.25 9 0.04 0.10 0.06 1.06 1.25

10 0.14 0.14 10 0.07 0.13 0.19
11 11 0.78 0.78
21 0.25 0.11 0.07 0.19 0.61 21 0.08 0.07 0.47 0.62
22 0.12 0.09 0.38 0.59 22 0.13 0.06 0.05 0.51 0.75
33 33 0.11 0.11
37 37 0.06 0.06
38 0.09 0.11 0.24 1.13 1.56 38 0.11 0.09 0.06 0.67 0.93
39 0.10 0.10 39
40 0.23 0.20 0.09 0.81 1.32 40 0.05 0.30 0.07 0.96 1.38
42 0.07 0.07 42 0.04 0.19 0.23
43 0.04 0.01 0.29 0.34 43 0.12 0.04 0.38 0.55
44 0.08 0.08 44 0.50 0.50
45 0.08 0.17 0.25 45 0.04 0.20 0.12 0.35
46 0.05 0.04 0.09 1.88 2.06 46 0.08 0.07 0.04 0.67 0.85
47 1.22 1.22 47 0.04 0.13 0.09 0.28 0.53

SUM 0.88 0.47 1.22 0.88 0.54 0.80 1.20 14.02 SUM 0.79 0.69 1.27 0.81 0.39 1.00 4.06 11.01
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is primarily related to the execution of movement and not
to sensory feedback. Third, eye movements likely did not
play a substantial role in movement decoding in our paradigm.
Fourth, the evident anatomical relevance suggests that our
signals are not an artifact but rather reflect physiological events
related to movement control.

3.3. Directional tuning

The previous section described the importance of particular
brain areas and ECoG features for the decoding of cursor
position and velocity using a linear model. These analyses
focused on decoding strategies that could be utilized in
real time, which is important for potential brain–computer
interfacing applications. Studies in the primate literature have
also investigated the relationship of signal features with the
movement direction (i.e., the angle of the movement). These
studies (e.g., [24]) have shown that signal features (i.e., firing
rates of particular neurons) that are derived from electrodes
implanted within the brain can be tuned, i.e., are a function
of movement direction, or even cosine tuned, i.e., are a cosine
function of movement direction.

To study this possibility for our ECoG features, we
investigated the effect of movement direction on feature
amplitude using an approach similar to that employed in [21].
In short, we calculated the amplitudes of the eight features
as a function of movement direction (i.e., the angle of the
movement measured in −180 to +180◦). This produced one
tuning curve for each subject, cross-validation fold, electrode
location and feature. As described in section 2, we then derived
the probabilities that the resulting tuning curves were tuned
(pt) and cosine tuned (pct). We selected those tuning curves
from the best four cross-validation folds that were tuned at
pt < 0.001 and cosine tuned at pct < 0.001 and derived from
each of them an index of cosine tuning (ict = −log10(pct)).
As in the previous analysis, in which we used the CFS feature
selector and linear regression, the present analysis derived
measures (i.e., cosine tuning indices ict) for particular features
at particular locations, cross-validation folds and subject. We
then accumulated these cosine tuning measures across cross-
validation folds and subjects and again projected the electrode
locations for subjects A and E onto the right hemisphere.

The results of these analyses are shown in figure 5. This
figure shows the cosine tuning indices, accumulated for all
subjects and features (figure 5(A)) and for all subjects and
each feature (figure 5(B)). These accumulated cosine tuning
indices are color coded (see color bars). It is also shown
in figure 5(C) three example LMP tuning curves for three
subjects and for locations marked in the LMP in figure 5(B).
The high values of the cosine tuning indices over primarily
different motor cortical areas and for the LMP (the scale
of the LMP in figure 5(B) is from 0 to 20) again validate
the dominant role of these locations and this ECoG feature,
respectively. Furthermore, the topographies of the tuning
indices show substantial correlation for the different frequency
features but are markedly different for the LMP. The tuning
index topography for the LMP is more diffuse, but again peaks
over hand area of motor cortex.

4. Discussion

In this study, we showed that ECoG signals can be used
to accurately decode two-dimensional joystick trajectories
in humans. We also characterized a new brain signal, the
local motor potential (LMP), that holds substantial information
about kinematic parameters. Furthermore, we demonstrated
that ECoG features can exhibit the same kind of cosine tuning
that has been previously described for neuronal firing rates
and local field potentials (LFPs) recorded using intracortical
microelectrodes [21, 44]. These results indicate that ECoG
provides information that greatly exceeds in specificity that
provided by EEG and is in important respects comparable to
that provided by microelectrodes implanted in cortex. This
study further implies that ECoG has characteristics that make
it attractive not only for BCI research, but also for basic
neuroscience investigations of brain function.

4.1. The local motor potential

The successful decoding of joystick movement achieved in
this study depended in large part on the LMP component.
Because no previous report has, to our knowledge, described
the relationship of this new brain signal feature to kinematic
parameters, we were concerned that it might be artifactual.
Our results strongly indicate that this is not the case. First, the
initial step in analysis was the application of a common average
reference filter. This filter, which improved performance
compared to when it was not applied, removes signals with
low spatial frequencies such as those that would be expected
for an artifact created by wire movement or some other external
influence. Furthermore, analyses showed that the LMP was
most often located over anatomically relevant areas, and that it
could exhibit cosine tuning similar to that described for signals
recorded by intracortical microelectrodes.

It is surprising that the LMP has apparently not been
previously described in intracortical or scalp recordings. It
is possible that the LMP cannot be detected on the scalp.
Moreover, in our paradigm kinematic parameters changed
relatively slowly (i.e., one full circle in 6.3 s = 0.16 Hz),
whereas intracortical studies in monkeys often utilized higher
speeds (i.e., around 1–2 Hz). In the latter cases, associated
LMP components could have been masked by other activity.
Alternatively, the LMP could be a continuous correlate to
evoked LFP changes that have been described for other tasks,
such as center-out [45] and reaching tasks [46]. Finally,
it is possible that in previous studies the LMP component
was filtered out at the amplification or post-processing stage.
Indeed, when we re-analyzed data from our previous study
[18] without applying a high-pass filter3, we found that
LMP amplitude in one particular location was modulated by
the direction of joystick movement, and LMP amplitude in
one immediately adjacent location was modulated by hand
opening/closing and rest. These locations closely matched
those that showed modulation of the spectral amplitude at

3 In the previous study, we had analyzed signals from 0 to 200 Hz. However,
we had subtracted the mean from each 280 ms window prior to analysis, which
acted as a high-pass filter.
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(A)

(B)

(C)

Figure 5. Cosine tuning. This figure shows the spatial distribution of the cosine tuning index, accumulated for all subjects and features (A),
and for all subjects and each feature (B). The cosine tuning index is color coded (see color bars). The scale of the LMP figure in (B) is from
0 to 20. The tuning curves in (C) are calculated for the LMP at the locations marked in the LMP figure in (B).

18 Hz (i.e., a traditional frequency-based feature in
the beta band). See the supplementary materials at
stacks.iop.org/JNE/4/264 for details.

At this point, the physiological origin of the LMP
component is a matter of speculation. It is possible that it
reflects firing rate modulation of neurons located immediately
underneath the electrode. In this case, the LMP may be
related to the directionally-specific rate modulations observed
in single-unit studies using center-out or tracking tasks

[21, 47–54]. What complicates this interpretation is the fact
that the tuning topographies for the LMP and frequency-
based features are clearly different (see figure 5(B)), which
suggests differing originating processes. Furthermore, it may
be difficult to theoretically model the relationship between
single-unit activity and ECoG activity as resulting ECoG
activity could be dominated by the degree of synchronous
activity of underlying cells rather than simply by the magnitude
of cell activity. Hence, determination of the relationship
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between these sources of brain signal activity will likely
require simultaneous recordings of single-unit and ECoG
activity (e.g., [55]), or at least of single-unit and local field
potential activity (e.g., [20, 56, 57]).

4.2. Relevance for brain–computer interfaces

Together with results from previous studies in monkeys,
the present results suggest that ECoG-based BCI use could
be more intuitive, i.e., subjects could use movement-
related imagery rather than imagery of arbitrary tasks for
multidimensional BCI control. Thus, BCI training time might
be reduced by using ECoG and movement-related imagery.
At the same time, it is currently not clear what factors
govern the need for BCI training time. It is possible that
the physiological nature of the brain signal is important. In
a typical mu- or beta-rhythm EEG-based BCI, brain signals
associated with imagined limb movements are first identified.
These signals are then used to provide one- or two-dimensional
control. While the origins of these scalp-recorded rhythms
are not entirely clear [58, 59], they are not believed to be
strongly correlated with movement direction. Thus, their use
for directional movement control might require considerable
plasticity and user training. In contrast, BCI systems using
implanted microelectrodes may require less user training.
These systems typically utilize single-unit action potentials
or local field potentials (LFPs) derived from neurons in motor
cortex. Neurons are then identified that have firing rates/LPFs
related to parameters of hand movements [24, 52, 53, 60–69].
They are then combined to produce multidimensional control
signals. When monkeys are provided feedback based on
brain signals rather than actual hand movements, they initially
continue to move the hand but then learn to produce the
same signals without the actual physical movements [4]. It
is likely that the transformation of brain signals that typically
encode movement direction into directional non-muscular
commands demands less cortical reorganization and user
training than the transformation of brain signals that do not
normally encode direction, such as scalp-recorded mu and
beta rhythms. Thus, the results of the present study, which
show that kinematic parameters can be decoded from ECoG
signals, suggest that the potential training-time advantage of
implanted microelectrode recordings could also be achieved
using ECoG.

For clinical applications of BCI technology, chronic
implants of ECoG electrodes would be required. The
literature suggests that subdural/epidural electrodes exhibit
good long-term stability [13–17]. In addition, there are several
theoretical reasons why ECoG electrodes will probably not
be affected by the substantial stability problems associated
with implanted microelectrodes. The area covered by each
ECoG electrode is much larger, and thus its impedance much
lower, than is the case for a microelectrode. Moreover,
since ECoG electrodes do not penetrate cortex, the reactive
responses of the brain typical with microelectrodes should
be substantially reduced. Even if scar tissue were to form
underneath the electrodes, the electrodes’ low impedance
should enable effective long term recordings. Furthermore,

ECoG recordings require a dramatically lower bandwidth (i.e.,
500 Hz sampling, and much less if only the LMP is extracted)
than single-neuron recordings using microelectrodes (i.e., 10–
50 kHz). These lower technical needs translate to substantially
decreased processing and power requirements. Lower power
requirements mean less heat dissipation and longer battery
life. These substantial technical advantages will facilitate
the design of electrode/telemitter systems that could be
chronically implanted and would not require any percutaneous
connection. This would greatly reduce the long-term risk of
infection.

Our results did not depend on the circular trajectory of the
target and were specific to the joystick movements. Tracking
performance (i.e., how well the subjects tracked the target) was
modest (r = 0.56, r = 0.57, r = 0.50, r = 0.50 calculated,
for each of the kinematic parameters, between the cursor
and the target, respectively) and not predictive of decoding
performance (p = 0.84, p = 0.88, p = 0.62, p = 0.91
for the four kinematic parameters, respectively). This is
inconsistent with the hypothesis that decoding performance
is dependent on how well the subjects tracked the circular
trajectory of the target. In summary, our results did not depend
on the circular trajectory of the target and there was some
degree of independence between the kinematic parameters. At
the same time, the current paradigm was simply not designed
to independently examine all four kinematic parameters. In
consequence, future studies could expand on our initial results
and utilize different movement patterns, directions and speeds,
to determine how the results in humans using ECoG relate to
the body of knowledge that has been established for signals
recorded from intracortical microelectrodes.

4.3. Current experimental limitations

The present results strongly encourage further investigations
using ECoG. At the same time, there will ultimately be limits
to what can be achieved using the currently used patient
population. Our study, like practically all human ECoG studies
to date, relied on electrode grids implanted for clinical reasons.
Thus, the grids often do not cover locations most appropriate
for our purpose and, in addition, are different for each patient.
Furthermore, the physical and cognitive condition and level
of cooperation of each patient are impaired and/or variable.
Finally, the patients’ posture can be controlled for mostly only
using instructions. This relatively uncontrolled experimental
situation is in contrast to the typically rigorously controlled
animal studies.

Despite these issues, the present results, in which we
utilized all available data for each subject, compare favorably
to results that have been achieved in highly controlled animal
studies. At the same time, the present situation simply does not
permit systematic studies using controlled experiments, which
will ultimately limit the information that can be derived. We
expect that the present results, and the results of the studies
that will follow, will provide ample evidence of the utility of
the ECoG platform to support FDA approval of subdural or
epidural implants in humans for BCI purposes.
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