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Auditory perception and auditory imagery have been shown to activate overlapping brain
regions. We hypothesized that these phenomena also share a common underlying neural
representation. To assess this, we used electrocorticography intracranial recordings from
epileptic patients performing an out loud or a silent reading task. In these tasks, short
stories scrolled across a video screen in two conditions: subjects read the same stories
both aloud (overt) and silently (covert). In a control condition the subject remained
in a resting state. We first built a high gamma (70–150 Hz) neural decoding model
to reconstruct spectrotemporal auditory features of self-generated overt speech. We
then evaluated whether this same model could reconstruct auditory speech features
in the covert speech condition. Two speech models were tested: a spectrogram and a
modulation-based feature space. For the overt condition, reconstruction accuracy was
evaluated as the correlation between original and predicted speech features, and was
significant in each subject (p 5< 10− ; paired two-sample t-test). For the covert speech
condition, dynamic time warping was first used to realign the covert speech reconstruction
with the corresponding original speech from the overt condition. Reconstruction accuracy
was then evaluated as the correlation between original and reconstructed speech
features. Covert reconstruction accuracy was compared to the accuracy obtained from
reconstructions in the baseline control condition. Reconstruction accuracy for the covert
condition was significantly better than for the control condition (p < 0.005; paired
two-sample t-test). The superior temporal gyrus, pre- and post-central gyrus provided the
highest reconstruction information. The relationship between overt and covert speech
reconstruction depended on anatomy. These results provide evidence that auditory
representations of covert speech can be reconstructed from models that are built from
an overt speech data set, supporting a partially shared neural substrate.
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INTRODUCTION
Mental imagery produces experiences and neural activation pat-
terns similar to actual perception. For instance, thinking of mov-
ing a limb activates the motor cortex, internal object visualization
activates the visual cortex, with similar effects observed for each
sensory modality (Roth et al., 1996; Kosslyn et al., 2001; Kosslyn,
2005; Stevenson and Case, 2005). Auditory imagery is defined
as the mental representation of sound perception in the absence
of external auditory stimulation. Behavioral and neural studies
have suggested that structural and temporal properties of audi-
tory features, such as pitch (Halpern, 1989), timbre (Pitt and
Crowder, 1992; Halpern et al., 2004), loudness (Intons-Peterson,
1980) and rhythm (Halpern, 1988) are preserved during music

imagery (Hubbard, 2013). However, less is known about the
neural substrate of speech imagery. Speech imagery (inner speech,
silent speech, imagined speech, covert speech, or auditory verbal
imagery) refers to our ability to “hear” speech internally with-
out the intentional movement of any extremities, such as the lips,
tongue, hands, or auditory stimulation (Brigham and Kumar,
2010).

The neural basis of speech processing has been a topic of
intense investigation for over a century (Hickok and Poeppel,
2007). The functional cortical organization of speech compre-
hension includes Heschl’s gyrus (primary auditory cortex), the
superior temporal gyrus (STG), and sulcus (STS) (e.g., Wernicke’s
area). Speech production depends on premotor, motor and
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posterior inferior frontal regions (e.g., Broca’s area) (Fiez and
Petersen, 1998; Heim et al., 2002; Duffau et al., 2003; Billingsley-
Marshall et al., 2007; Towle et al., 2008; Price, 2012). How these
brain areas interact to encode higher-level components of speech
such as phonological, semantic, or lexical features, as well as
their role in covert speech, remains unclear. Increasing evidence
suggests that speech imagery and perception activate the same
cortical areas. Functional imaging studies (Yetkin et al., 1995;
Rosen et al., 2000; Palmer et al., 2001). Transcranial magnetic
stimulation over motor sites and inferior frontal gyrus induced
speech arrest in both overt and covert speech production (Aziz-
Zadeh et al., 2005). Finally, brain lesion studies have shown
high correlation between overt and covert speech abilities, such
as rhyme and homophones judgment (Geva et al., 2011b) for
patients with aphasia.

Imagery-related brain activation could result from top-down
induction mechanisms including memory retrieval (Kosslyn
et al., 2001; Kosslyn, 2005) and motor simulation (Guenther
et al., 2006; Price, 2011; Tian and Poeppel, 2012). In memory
retrieval, perceptual experience may arise from stored informa-
tion (objects, spatial properties, and dynamics) acquired during
actual speech perception and production experiences (Kosslyn,
2005). In motor simulation, a copy of the motor cortex activity
(efference copy) is forwarded to lower sensory cortices, enabling
a comparison of actual with desired movement, and permit-
ting online behavioral adjustments (Jeannerod, 2003; Tian and
Poeppel, 2012). Despite findings of overlapping brain activation
during overt and covert speech (Hinke et al., 1993; Yetkin et al.,
1995; McGuire et al., 1996; Rosen et al., 2000; Palmer et al., 2001;
Aleman, 2004; Aziz-Zadeh et al., 2005; Geva et al., 2011a), it
is likely that covert speech is not simply overt speech without
moving the articulatory apparatus. Behavioral judgment studies
showed that aphasic patients indicated inner speech impair-
ment, while maintaining relatively intact overt speech abilities,
while others manifested the reverse pattern (Geva et al., 2011b).
Similarly, imaging techniques showed different patterns of cor-
tical activation during covert compared to overt speech, namely
in the premotor cortex, left primary motor cortex, left insula,
and left superior temporal gyrus (Huang et al., 2002; Shuster and
Lemieux, 2005; Pei et al., 2011). This suggests that brain acti-
vation maps associated with both tasks are dissociated at least
in some cases (Feinberg et al., 1986; Aleman, 2004; Shuster and
Lemieux, 2005; Geva et al., 2011a,b,c). The extent to which audi-
tory perception and imagery engage similar underlying neural
representations remains poorly understood.

To investigate similarities between the neural representations
of overt and covert speech, we employed neural decoding models
to predict auditory features experienced during speech imagery.
Decoding models predict information about stimuli or mental
states from recorded neural activity (Bialek et al., 1991). This
technique has attracted increasing interest in neuroscience as a
quantitative method to test hypotheses about neural representa-
tion (Warland et al., 1997; Kay et al., 2008; Kay and Gallant, 2009;
Naselaris et al., 2011; Pasley et al., 2012). For instance, decod-
ing models have allowed predicting continuous limb trajectories
(Carmena et al., 2003; Hochberg et al., 2006, 2012; Schalk et al.,
2007; Pistohl et al., 2008) from the motor cortex. In the visual

domain, visual scenes can be decoded from neural activity in the
visual cortex (Warland et al., 1997; Kay et al., 2008). Similarly,
this approach has been used to predict continuous spectrotem-
poral features of speech (Guenther et al., 2009; Mesgarani et al.,
2009). We used this approach to compare decoding accuracy dur-
ing overt and covert conditions in order to evaluate the similarity
of speech representations during speech perception and imagery.

We hypothesized that speech perception and imagery share a
partially overlapping neural representation in auditory cortical
areas. We reasoned that if speech imagery and perception share
neural substrates, the two conditions should engage similar neu-
ral representations. Thus, a neural decoding model trained from
overt speech should be able to predict speech features in the covert
condition. (Pasley et al., 2012) showed that auditory spectrotem-
poral features of speech could be accurately reconstructed, and
used to identify individual words during various listening tasks.
In this study, we used a similar neural decoding model trained
on sounds from self-generated overt speech. This model was then
used to decode spectrotemporal auditory features from brain
activity measured during a covert speech condition. Our results
provide evidence for a shared neural representation underlying
speech perception and imagery.

To test these hypotheses we used electrocorticography (ECoG),
which provides high spatiotemporal resolution recordings of
non-primary auditory cortex (Leuthardt et al., 2004). In partic-
ular, the high gamma band (HG, ∼70–150 Hz) reliably tracks
neuronal activity in all sensory modalities (Lachaux et al., 2012)
and correlates with the spike rate of the underlying neural pop-
ulation (Miller et al., 2007; Boonstra et al., 2009; Lachaux et al.,
2012). HG activity in auditory and motor cortex has been linked
to speech processing (Crone et al., 2001; Canolty, 2007; Towle
et al., 2008; Llorens et al., 2011; Pasley et al., 2012), and served
as the input signal for all tested neural decoding models.

MATERIALS AND METHODS
SUBJECTS AND DATA ACQUISITION
Electrocorticographic (ECoG) recordings were obtained using
subdural electrode arrays implanted in 7 patients undergoing
neurosurgical procedures for epilepsy (Table 1). All patients vol-
unteered and gave their informed consent (approved by the
Albany Medical College Institutional Review Board) before test-
ing. The implanted electrode grids (Ad-Tech Medical Corp.,
Racine, WI; PMT Corporation, Chanhassen, MN) consisted
of platinum–iridium electrodes (4 mm in diameter, 2.3 mm
exposed) that were embedded in silicon and spaced at an inter-
electrode distance of 0.6–1 cm. Grid placement and duration of
ECoG monitoring were based solely on the requirements of the
clinical evaluation (Figure 1).

ECoG signals were recorded at the bedside using seven 16-
channel g.USBamp biosignal acquisition devices (g.tec, Graz,
Austria) at a sampling rate of 9600 Hz. Electrode contacts distant
from epileptic foci and areas of interest were used for refer-
ence and ground. Data acquisition and synchronization with
the task presentation were accomplished using BCI2000 software
(Schalk et al., 2004; Schalk, 2010). All channels were subse-
quently downsampled to 1000 Hz, corrected for DC shifts, and
band pass filtered from 0.5 to 200 Hz. Notch filters at 60, 120,
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Table 1 | Clinical profiles of subjects.

Subject Age Sex Handed-ness FSIQ VIQ PIQ LL Seizure focus Grid/Strip locations

and contact numbers

S1 30 M Right 74 64 90 Bi-lateral Left temporal Left temporal (35)
Left temporal pole (4)
Left fronto-parietal (48)
Left occipital pole (4)

S2 29 F Right 90 91 90 Left Left temporal Left temporal (35)
Left fronto-parietal (56)
Left temporal (4)
Left occipital pole (4)

S3 26 F Right 112 106 117 Left Left temporal Left temporal (35)
Left fronto-parietal (64)
Left temporal (4)
Left occipital pole (4)

S4 56 M Right 84 82 87 Left Left temporal Left temporal (35)
Left fronto-parietal (56)
Left occipital pole (4)

S5 26 M Right 102 103 100 Left Right temporal Right temporal (35)
Right fronto-parietal (64)
Right frontal pole (6)
Right occipital pole (6)

S6 45 M Right 98 93 105 Left Left frontal Left front-temporal (54)
Left temporal (4)

S7 29 F Right 84 111 95 Bi-lateral Left temporal Left temporal (68)
Left fronto-parietal (40)
Left frontal pole (4)
Left parietal (4)
Left temporal (4)

All of the subjects had normal cognitive capacity and were functionally independent. Full scale (FSIQ), verbal (VIQ), and performance (PIQ) intelligence has was

based on the Wechsler Adult Intelligence Scale (WAIS-III) test. Language lateralization (LL) was based on the Wada test.

FIGURE 1 | Electrode locations. Grid locations for each subject are overlaid on cortical surface reconstructions of each subject’s MRI scan.

and 180 Hz were used to remove electromagnetic noise. The
time series were then visually inspected to remove the intervals
containing ictal activity as well as channels that had excessive
noise (including broadband electromagnetic noise from hospital
equipment or poor contact with the cortical surface). Finally, elec-
trodes were re-referenced to a common average. The high gamma
frequency band (70–150 Hz) was extracted using the Hilbert
transform.

In addition to the ECoG signals, we acquired the subject’s
voice through a dynamic microphone (Samson R21s) that was
rated for voice recordings (bandwidth 80–12000 Hz, sensitivity
2.24 mV/Pa) and placed within 10 cm of the patient’s face. We
used a dedicated 16-channel g.USBamp to amplify and digi-
tize the microphone signal in sync with the ECoG data. Finally,
we verified the patient’s compliance in the covert task using an
eye-tracker (Tobii T60, Tobii Sweden).
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EXPERIMENTAL PARADIGMS
The recording session included three conditions. In the first
condition, text excerpts from historical political speeches or a
children’s story [i.e., Gettysburg Address (Roy and Basler, 1955),
JFK’s Inaugural Address (Kennedy, 1961), or Humpty Dumpy
(Mother Goose’s Nursery Rhymes, 1867)] were visually displayed
on the screen moving from right to left at the vertical center of
the screen. The rate of scrolling text ranged between 42 and 76
words/min, and was adjusted based on the subject’s attentive-
ness, cognitive/verbal ability, and comfort prior to experimental
recordings. In the first condition, the subject was instructed to
read the text aloud (overt condition). In the second condition,
the same text was displayed at the same scrolling rate, but the sub-
ject was instructed to read it silently (covert condition). The third
condition served as the control and was obtained while the sub-
ject was in a resting state condition (baseline control). For each
condition, a run lasted between 6 and 8 min, and was repeated
2–3 times depending on the mental and physical condition of the
subjects.

AUDITORY SPEECH REPRESENTATIONS
We evaluated the predictive power of a neural decoding model
based on high gamma signals (see section Decoding Model and
Reconstruction Procedure for details) to reconstruct two auditory
feature representations: a spectrogram-based and a modulation-
based representation. The spectrogram is a time-varying repre-
sentation of the amplitude envelope at each acoustic frequency.
This representation was generated by an affine wavelet transform
of the sound pressure waveform using a 128 channel-auditory fil-
ter bank mimicking the frequency analysis of the auditory periph-
ery (Chi et al., 2005). The 128 acoustic frequencies of the initial
spectrograms were subsequently downsampled to 32 acoustic
frequency bins—with logarithmically spaced center frequencies
ranging from 180 to 7000 Hz.

The modulation representation is based on a non-linear trans-
formation of the spectrogram. Spectral and temporal fluctua-
tions reflect important properties of speech intelligibility. For
instance, comprehension is impaired when temporal modulations
(<12 Hz) or spectral modulations (4 cycles/kHz) are removed
(Elliott and Theunissen, 2009). In addition, low and intermedi-
ate temporal modulation rates (<4 Hz) are linked with syllable
rate, whereas fast modulations (>16 Hz) are related to sylla-
ble onsets and offsets. Similarly, broad spectral modulations are
associated with vowel formants, whereas narrow spectral mod-
ulations are associated with harmonics (Shamma, 2003). The
modulation representation was generated by a 2-D affine wavelet
transform of the 128 channel auditory spectrogram. The bank
of modulation-selective filters spanned a range of spectral scales
(0.5–8 cycle/octave) and temporal rates (1–32 Hz), and was esti-
mated from studies of the primary auditory cortex (Chi et al.,
1999). The modulation representation was obtained by taking the
magnitude of the complex-valued output of the filter bank, and
subsequently reduced to 60 modulation features (5 scales × 12
rates) by averaging along the frequency dimension. These opera-
tions were computed using the NSL Matlab toolbox (http://www.

isr.umd.edu/Labs/NSL/Software.htm). In summary, the neural
decoding model predicted 32 spectral frequency features and 60

rate and scale features in the spectrogram-based and modulation-
based speech representation, respectively.

DECODING MODEL AND RECONSTRUCTION PROCEDURE
Overt speech decoding
The decoding model was a linear mapping between neural activity
and the speech representation (Figure 2A). It modeled the speech
representation (spectrogram or modulation) as a linear weighted
sum of activity at each electrode as follows:

Ŝ(t, p) =
∑

τ

∑
n

g(τ, p, n)R(t − τ, n), (1)

where R(t−τ, n) is the high gamma activity of electrode n at time
(t − τ), where τ is the time lag ranging between −500 and 500 ms.
Ŝ(t, p) is the estimated speech representation at time t and speech
feature p, where p is one of 32 acoustic frequency features in
the spectrogram-based representation (Figure 5B) and one of 60
modulation features (5 scales × 12 rates) in the modulation-
based representation (Figure 7B; see section Auditory Speech
Representations for details). Finally, g(τ, p, n) is the linear trans-
formation matrix, which depends on the time lag, speech feature,
and electrode channel. Both speech representations and the neu-
ral high gamma response data were synchronized, downsampled

FIGURE 2 | Decoding approach. (A) The overt speech condition was used
to train and test the accuracy of a neural-based decoding model to
reconstruct spectrotemporal features of speech. The reconstructed
patterns were compared to the true original (spoken out loud) speech
representation (spectrogram or modulation-based). (B) During covert
speech, there is no behavioral output, which prevents building a decoding
model directly from covert speech data. Instead, the decoding model
trained from the overt speech condition is used to decode covert speech
neural activity. The covert speech reconstructed patterns were compared to
identical speech segments spoken aloud during the overt speech condition
(using dynamic time warping realignment).
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to 100 Hz, and standardized to zero mean and unit standard
deviation prior to model fitting.

Model parameters, the matrix g described above, were fit using
gradient descent with early stopping regularization—an iterative
linear regression algorithm. We used a jackknife resampling tech-
nique to fit separately between 4 and 7 models (Efron, 1982), and
then averaged the parameter estimates to yield the final model.
To maintain the temporal correlations within neural activity and
speech features, the data were first divided into 7 seconds blocks.
From these blocks, 90% were randomly partitioned into a training
set and 10% into a testing set. Within the training set, 10% of the
data were used to monitor out-of-sample prediction accuracy to
determine the early stopping criterion and minimize overfitting.
The algorithm was terminated after a series of 30 iterations fail-
ing to improve performance. Finally, model prediction accuracy
(see section Evaluation for details) was evaluated on the indepen-
dent testing set. Model fitting was performed using the STRFLab
MATLAB toolbox (http://strflab.berkeley.edu/).

Covert speech decoding
Decoding covert speech is complicated by the lack of any mea-
surable behavioral or acoustic output that is synchronized to
brain activity. In other words, there is no simple ground truth by
which to evaluate the accuracy of the model when a well-defined
output is unavailable. To address this, we used the following
approach. First, the decoding model was trained using data from
the overt speaking condition. Second, the same model (Equation
1) was applied to data from the covert condition to predict speech
features imagined by the subject (Figure 2B), as follows:

Ŝcovert(t, p) =
∑

τ

∑
n

g(τ, p, n)Rcovert(t − τ, n), (2)

where Ŝcovert(t, p) is the predicted covert speech representation
at time t and speech feature p, and Rcovert(t−τ, n) is the high
gamma neuronal response of electrode n at time (t−τ), where τ is
the time lag ranging between -500 and 500 ms. Finally, g(τ, p, n)
is the linear model trained from the overt speech condition. To
evaluate prediction accuracy during covert speech, we made the
assumption that the covert speech representation should match
the spectrotemporal content of overt speech. In this sense, overt
speech is used as the “ground truth.” Because subjects read the
same text segments in both overt and covert conditions, we com-
puted the similarity between the covert reconstructions and the
corresponding original speech sounds recorded during the overt
condition. To account for timing differences between conditions,
we used dynamic time warping to realign the covert reconstruc-
tion to the original overt speech sound, as described in the next
section.

Dynamic time warping
We used a dynamic time warping (DTW) algorithm to realign
the covert speech reconstruction with the corresponding spo-
ken audio signal from the overt condition, allowing a direct
estimate of the covert reconstruction accuracy (Figure 3B). For
the overt speech reconstructions, dynamic time warping was not
employed (Figure 3A), unless otherwise stated. DTW is a stan-
dard algorithm used to align two sequences that may vary in
time or speed (Sakoe and Chiba, 1978; Giorgino, 2009). The idea
behind DTW is to find the optimal path through a local sim-
ilarity matrix d, computed between every pair of elements in
the query and template time series, X ∈ R

P x N and Y ∈ R
P x M

as follows:

d (n, m) = f
(
xn, ym

)
, d ∈ R

N x M, (3)

FIGURE 3 | Speech realignment. (A) Overt speech analysis—the overall
reconstruction accuracy for the overt speech condition was quantified by
computing directly the correlation coefficient (Pearson’s r) between the
reconstructed and original speech representations (B) Covert speech
analysis—the covert speech reconstruction is not necessarily aligned to the
corresponding overt speech representation due to speaking rate differences
and repetition irregularities. The reconstruction was thus realigned to the overt
speech stimuli using dynamic time warping. The overall reconstruction
accuracy was then quantified by computing the correlation coefficient
(Pearson’s r) between the covert speech reconstruction and the original speech

representation. (C) Baseline control analysis—a resting state (baseline control)
condition was used to assess statistical significance of covert speech
reconstruction accuracy. Resting state activity was used to generate a noise
reconstruction and dynamic time warping was applied to align the noise
reconstruction to overt speech as in (B). Because dynamic time warping has
substantial degrees of freedom, due to its ability to stretch and compress
speech segments, the overall reconstruction accuracy for the baseline control
condition is significantly higher than zero. However, direct statistical
comparisons between the covert and baseline conditions are valid as equivalent
analysis procedures are applied to both covert and resting state neural data.
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FIGURE 4 | Brain mapping and electrode localization. (A) Post-operative
CT scans (1 mm slices) and (C) pre-operative structural MRI scans (1.5 mm
slices, T1-weighted) were acquired for each subject. From these scans, grid
position (B) and the cortical surface (D) were reconstructed providing a
subject-specific anatomical model (E) (see section Coregistration for
details).

where d is the dissimilarity matrix at time n and m, f can be any
distance metric between sequence x and y at time n and m, respec-
tively. In this study, we used the Euclidean distance, defined as

d (n, m) =
√∑P

p (xnp − ymp)2. Given ϕ, the average accumulated

distortion between both warped signals is defined by:

dϕ(x, y) =
K∑

k = 1

d
(
ϕx(k), ϕy(k)

)
Cϕ

, (4)

where ϕx and ϕy are the warping functions of length K (that
remap the time indices of X and Y, respectively), and Cϕ is the
corresponding normalization constant (in this case N + M),
ensuring that the accumulated distortions are comparable along
different paths. The optimal warping path ϕ, chooses the indices
of X and Y in order to minimize the overall accumulated distance.

D (X, Y) = min
ϕ

dϕ (X, Y) , (5)

FIGURE 5 | Overt speech reconstruction accuracy for the

spectrogram-based speech representation. (A) Overall
reconstruction accuracy for each subject using the
spectrogram-based speech representation. Error bars denote standard
error of the mean (s.e.m.). Overall accuracy is reported as the
mean over all features (32 acoustic frequencies ranging from
0.2–7 kHz). The overall spectrogram reconstruction accuracy for the
overt speech was greater than baseline control reconstruction
accuracy in all individuals (p < 10−5; Hotelling’s t-test). Baseline
control reconstruction accuracy was not significantly different from
zero (p > 0.1; one-sample t-test; gray dashed line)
(B) Reconstruction accuracy as a function of acoustic frequency
averaged over all subjects (N = 7) using the spectrogram model.
Shaded region denotes s.e.m. over subjects.

where D is the accumulated distance or global dissimilarity. The
alignment was computed using Rabiner-Juan step patterns (type
3) (Rabiner, 1993). This step pattern constrained the sets of
allowed transitions between matched pairs to:

[ϕx (k + 1)−ϕx (k) , ϕy (k + 1) − ϕy (k)] ∈ {(1, 2), (2, 1), (1, 1)}
(6)

In addition, we assumed that the temporal offsets between covert
speech and original overt speech would be less than 2 s, and thus
introduced a global constraint—the Sakoe-Chiba band window
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FIGURE 6 | Overt speech reconstruction and identification. (A) Top
panel: segment of the original sound spectrogram (subject’s own voice),
as well as the corresponding text above it. Bottom panel: same segment
reconstructed with the decoding model. (B) Identification rank. Speech
segments (5 s) were extracted from the continuous spectrogram. For
each extracted segment (N = 123) a similarity score (correlation
coefficient) was computed between the target reconstruction and each

original spectrogram of the candidate set. The similarity scores were
sorted and identification rank was quantified as the percentile rank of the
correct segment. 1.0 indicates the target reconstruction matched the
correct segment out of all candidate segments; 0.0 indicates the target
was least similar to the correct segment among all other candidates;
(dashed line indicates chance level = 0.5; median identification rank =
0.87; p < 10−5; randomization test).

(Sakoe and Chiba, 1978), defined as follows:

∣∣ϕx (k) − ϕy(k)
∣∣ ≤ T (7)

where T = 2 s was the chosen value that defines the maximum-
allowable width of the window. Finally, to reduce computational
load, the entire time series was broken into 30 s segments, and
warping was applied on each individual pair of segments (overt,
covert, or baseline control reconstruction warped to original
speech representation). The warped segments were concatenated
and the reconstruction accuracy was defined on the full time
series of warped data. The DTW package in R (Giorgino, 2009)
was used for all analyses.

Baseline control condition (resting state)
To assess statistical significance of the covert reconstruction
accuracy, we applied the same decoding steps (sections Covert
speech decoding—Dynamic time warping) to a baseline con-
trol condition taken from data recorded during a separate
resting state recording session. The overt speech decoding
model was applied to neural data from the baseline control,
as follows:

Ŝbaseline(t, p) =
∑

τ

∑
n

g(τ, p, n)Rbaseline(t − τ, n), (8)

where Ŝbaseline(t, p) is the predicted baseline reconstruction at
time t and speech feature p, and Rbaseline(t−τ, n) is the high
gamma neural response during resting state. Finally, g(τ, p, n)
is the linear model trained from the overt speech condition. We
also used DTW to realign the baseline control reconstruction
with the spoken audio signal from the overt condition, allowing
a direct estimate of the control condition decoding predictions
(Figure 3C).

EVALUATION
In the overt speech condition, reconstruction accuracy was
quantified by computing the correlation coefficient (Pearson’s
r) between the reconstructed and original speech representa-
tion using data from the independent test set. For each cross-
validation resample, we calculated one correlation coefficient
for each speech feature over time—leading to 32 correlation
coefficients (one for each acoustic frequency features) for the
spectrogram-based model and 60 correlation coefficients (5
scale × 12 rate features) for the modulation-based model. Overall
reconstruction accuracy was reported as the mean correlation
over resamples and speech components (32 and 60 for the spec-
trogram and modulation representation, respectively). Standard
error of the mean (s.e.m.) was calculated by taking the standard
deviation of the overall reconstruction accuracy across resamples.
To assess statistical significance (see section Statistics for details),
overt speech reconstruction accuracy was compared to the accu-
racy obtained from the baseline control condition (resting state).

In the covert speech condition, we first realigned the
reconstructions and original overt speech representations using
dynamic time warping (Figure 3B). Then, we computed the over-
all reconstruction accuracy using the same procedure as in the
overt speech condition. To evaluate statistical significance (see
section Statistics for details), DTW was also applied to the base-
line control condition prior to assessing the overall reconstruction
accuracy (Figure 3C).

To further assess the predictive power of the reconstruction
process, we evaluated the ability to identify specific blocks of
speech utterances within the continuous recording (Figure 11).
First, 24–140 segments of speech utterances (5 s duration) were
extracted from the original and reconstructed spectrogram rep-
resentations. Second, a confusion matrix was constructed where
each element contained the similarity score between the target
reconstructed segment and the original reference segments from
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the overt speech spectrogram. To compute the similarity score
between each target and reference segment, DTW was applied to
temporally align each pair and the mean correlation coefficient
was used as the similarity score. The confusion matrix reflects
how well a given reconstructed segment matches its correspond-
ing original segment vs. other candidates. The similarity scores
were sorted, and identification accuracy was quantified as the per-
centile smaller than the rank of the correct segment (Pasley et al.,
2012). At chance level, the expected percentile rank is 0.5, while
perfect identification is 1.0.

To define the most informative areas for overt speech decoding
accuracy, we isolated for each electrode its corresponding decod-
ing weights, and used the electrode-specific weights to generate
a separate reconstruction for each electrode. This allowed calcu-
lating a reconstruction accuracy correlation coefficient for each
individual electrode. We applied the same procedure to the base-
line condition. Baseline reconstruction accuracy was subtracted
from the overt values to generate subject-specific informative
area maps (Figure 8). The same technique was used in the covert
speech condition, except that DTW was applied to realign sepa-
rately each electrode-specific reconstruction to the original overt
speech. Similarly, baseline reconstruction accuracy (with DTW
realignment) was subtracted from the covert values to define the
informative areas (Figure 12).

STATISTICS
To assess statistical significance for the difference between overt
speech and baseline control reconstruction accuracy, we used
Hotelling’s t statistic with a significance level of p < 10−5. This
test accounts for the dependence of the two correlations on the
same group (i.e., both correlations are relative to the same original
overt speech representation) (Hotelling, 1940; Birk, 2013). It eval-
uates whether the correlations between overt speech reconstruc-
tion accuracy and baseline reconstruction accuracy differed in
magnitude taking into account their intercorrelation, as follows:

t =
(
rjk − rjh

)√
(n − 3)(1 + rkh)√
2|R| (9)

where rjk is the correlation between original overt speech and
reconstruction, rjh is the correlation between original overt speech
and baseline reconstruction and rkh is the correlation between
overt speech reconstruction and baseline reconstruction; df =
n − 3 is the effective sample size (Kaneoke et al., 2012) and where

|R| = 1 + 2rjk rjh rkh − r2
jk − r2

jh − r2
kh (10)

At the population level (Figure 5A), statistical significance was
performed using Student’s t-tests (p < 10−5) after first applying
Fisher’s Z transform to convert the correlation coefficients to a
normal distribution (Fisher, 1915).

Test of significance in the covert speech condition was equiv-
alent to the overt condition (Equation 9; p < 0.05; Hotelling’s
t-test), except that the reconstructions and original overt speech
representations were first realigned using dynamic time warp-
ing. Since DTW induces an artificial increase in correlation
by finding an optimal warping path between any two signals

FIGURE 7 | Overt speech reconstruction accuracy for the

modulation-based speech representation. (A) Overall reconstruction
accuracy for each subject using the modulation-based speech
representation. Error bars denote s.e.m. Overall accuracy is reported as the
mean over all features (5 spectral and 12 temporal modulations ranging
between 0.5–8 cyc/oct and -32-32 Hz, respectively). The overall modulation
reconstruction accuracy for the overt speech was greater than baseline
control reconstruction accuracy in all individuals (p < 10−5; Hotelling’s
t-test). Baseline control reconstruction accuracy was not significantly
different from zero (p > 0.1; one-sample t-test; gray dashed line).
(B) Reconstruction accuracy as a function of rate and scale averaged over
all subjects (N = 7).

(including potential noise signals), this procedure causes the
accuracy for baseline reconstruction to exceed zero correlation.
However, because the equivalent data processing sequence was
applied to both conditions, any statistical differences between
the two conditions were due to differences in the neural input
signals.

At the population level (Figure 9), we directly compared the
reconstruction accuracy in all three conditions (overt, covert and
baseline control). DTW realignment to the original overt speech
was first applied separately for each condition. Reconstruction
accuracy was computed as the correlation between the respec-
tive realigned pairs. Statistical significance was performed using
Fisher’s Z transform and One-Way ANOVA (p < 10−6), followed
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FIGURE 8 | Overt speech informative areas. Reconstruction accuracy
correlation coefficients were computed separately for each individual
electrode and for both overt and baseline control conditions (see section
Overt Speech: Informative areas for details). The plotted correlation values

are calculated by subtracting the correlation during baseline control from the
overt condition. The informative area map was thresholded to p < 0.05
(Bonferroni correction) (A) Spectrogram-based reconstruction accuracy
(B) modulation-based reconstruction accuracy.

by post-hoc t-test (p < 10−5 for overt speech; p < 0.005 for covert
speech).

For individual subjects, significance of identification rank
was computed using a randomization test (p < 10−5 for overt
speech; p < 0.005 for covert speech; p > 0.5 for baseline con-
trol). We shuffled the segment label in the candidate set 10,000
times to generate a null distribution of identification ranks
under the hypothesis that there is no relationship between
target and reference speech segments. Time-varying speech
representations are auto-correlated. To maintain temporal cor-
relations in the data, and preserve the exchangeability of the
trial labels, the length of the extracted segments was cho-
sen sufficiently longer than the speech representation autocor-
relation (5 s). The proportion of shuffled ranks greater than
the observed rank yields the p-value that the observed accu-
racy is due to chance. Identification accuracy was assessed for
each of the three experimental conditions (overt reconstruc-
tion, covert reconstruction, baseline control reconstruction). At
the population level, significant identification performance was
tested using a one-sided, one-sample t-test (p < 10−5 for overt
speech; p < 0.05 for covert speech; p > 0.5 for baseline con-
trol).

For the informative electrode analysis, statistical significance of
overt speech reconstruction was determined relative to the base-
line condition using Hotelling’s t statistic (Equation 9; Hotelling’s
t-test). Electrodes were defined as “informative” if the overt
speech reconstruction accuracy was significantly greater than
baseline (p < 0.05; Hotelling’s t-test with Bonferroni correction).
The same procedure was used for covert speech informative areas
(Equation 9; p < 0.05; Hotelling’s t-test with Bonferroni cor-
rection), except that DTW was used in both covert speech and
baseline control condition.

To investigate possible anatomical differences between overt
and covert informative areas, all significant electrodes (either
overt, covert or both conditions; p < 0.05; Bonferroni cor-
rection) were selected for an unbalanced Two-Way ANOVA,
with experimental condition (overt and covert) and anatomical
region (superior temporal gyrus, pre- and post-central gyrus) as
factors. Figure 13 shows significant electrodes in these regions

across subjects, co-registered with the Talairach brain template
(Lancaster et al., 2000).

COREGISTRATION
Each subject had post-operative anterior–posterior and lateral
radiographs (Figure 4), as well as computer tomography (CT)
scans to verify ECoG grid locations. Three-dimensional cortical
models of individual subjects were generated using pre-operative
structural magnetic resonance (MR) imaging. These MR images
were co-registered with the post-operative CT images using
Curry software (Compumedics, Charlotte, NC) to identify elec-
trode locations. Electrode locations were assigned to Brodmann
areas using the Talairach Daemon (http://www.talairach.org,
(Lancaster et al., 2000). Activation maps computed across sub-
jects were projected on this 3D brain model, and were generated
using a custom Matlab program (Gunduz et al., 2012).

RESULTS
OVERT SPEECH
Spectrogram-based reconstruction
The overall spectrogram reconstruction accuracy for overt speech
was significantly greater than baseline control reconstruction
accuracy in all individual subjects (p < 10−5; Hotelling’s t-test,
Figure 5A). At the population level, mean overall reconstruction
accuracy averaged across all subjects (N = 7) was also signif-
icantly higher than baseline control condition (r = 0.41, p <

10−5; Fisher’s Z transform followed by paired two-sample t-test).
The baseline control reconstruction accuracy was not significantly
different from zero (r = 0.0, p > 0.1; one-sample t-test; dashed
line; Figure 5A). Group averaged reconstruction accuracy for
individual acoustic frequencies ranged between r =∼ 0.25–0.5
(Figure 5B). An example of a continuous segment of the origi-
nal and reconstructed spectrogram is depicted for a subject with
left hemispheric coverage in Figure 6A. In this subject, the recon-
struction quality permitted accurate identification of individual
decoded speech segments (Figure 6B). The median identifica-
tion rank (0.87, N = 123 segments) was significantly greater than
chance level (0.5, p < 10−5; randomization test). Identification
performance was significant in each individual subject (p < 10−5;
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FIGURE 9 | Overall reconstruction accuracy using dynamic time

warping realignment. Overall reconstruction accuracy for each subject
during overt speech, covert speech, and baseline control conditions after
dynamic time warping realignment. (A) Spectrogram-based representation
(B) Modulation-based representation.

randomization test). Across all subjects, identification perfor-
mance was significant for overt speech reconstruction (Figure 11;
rankovert = 0.91 > 0.5, p < 10−6; one-sided one-sample t-test),
whereas the baseline control condition was not significantly
greater than chance level (rankbaseline = 0.48 > 0.5, p > 0.5 one-
sided one-sample t-test).

Modulation-based reconstruction
We next evaluated reconstruction accuracy of the modulation
representation. The overall reconstruction accuracy was sig-
nificant in all individual subjects (p < 10−5; Hotelling’s t-test
Figure 7A). At a population level, mean overall reconstruction
accuracy averaged over all patients (N = 7) was also significantly
higher than the baseline reconstruction (r = 0.55, p < 10−5;
Fisher’s Z transform followed by paired two-sample t-test). The
baseline control reconstruction accuracy was not significantly dif-
ferent from zero (r = 0.02, p > 0.1; one-sample t-test; dashed
line; Figure 7A). Group averaged reconstruction accuracy for
individual rate and scale was highest for temporal modulations
above 2 Hz (Figure 7B).

Informative areas
Figure 8 shows the significant informative areas (map thresh-
olded at p < 0.05; Bonferroni correction), quantified by the
electrode-specific reconstruction accuracy (see section Evaluation
for details). In both spectrogram and modulation-based repre-
sentations the most accurate sites for overt speech decoding were
localized to the superior temporal gyrus, pre and post-central
gyrus, consistent with previous spectrogram decoding studies
(Pasley et al., 2012).

COVERT SPEECH
Spectrogram-based reconstruction
Figure 9A shows the overall reconstruction accuracy for overt
speech, covert speech, and baseline control after DTW realign-
ment to the original overt speech was applied separately for
each condition. The overall reconstruction accuracy for covert
speech was significantly higher than the control condition in
5 out of 7 individual subjects (p < 0.05; Hotelling’s t-test; p >

0.05 for the non-significant subjects). At the population level,
there was a significant difference in the overall reconstruction
accuracy across the three conditions [overt, covert and baseline
control; F(2,18) = 35.3, p < 10−6; Fisher’s Z transform followed
by One-Way ANOVA]. Post-hoc t-tests confirmed that covert
speech reconstruction accuracy was significantly lower than
overt speech reconstruction accuracy (rcovert = 0.34 < rovert =
0.50, p < 10−5; Fisher’s Z transform followed by paired two-
sample t-test), but higher than the baseline control condition
(rcovert = 0.34 > rbaseline = 0.30, p < 0.005; Fisher’s Z transform
followed by a paired two-sample t-test). Figure 10A illustrates a
segment of the reconstructed covert speech spectrogram and its
corresponding overt segment (realigned with DTW). We next
evaluated identification performance (N = 123 segments) for
covert speech and baseline control conditions in this subject
(Figure 10B). In the covert speech condition, the median iden-
tification rank equaled 0.62, and was significantly higher than
chance level of 0.5 (p < 0.005; randomization test), whereas the
baseline control condition was not significant (median identi-
fication rank = 0.47, p > 0.5; randomization test). Several of
the remaining subjects exhibited a trend toward higher identi-
fication performance, but were not significant at the p < 0.05
level (Figure 11; randomization test). At the population level,
mean identification performance across all subjects was signifi-
cantly greater than chance for the covert condition (rankcovert =
0.55 > 0.5, p < 0.05; one-sided one-sample t-test), and not sig-
nificant for the baseline control (rankbaseline = 0.48 > 0.5, p >

0.5; one-sided one-sample t-test). These results provide prelimi-
nary evidence that neural activity during auditory speech imagery
can be used to decode spectrotemporal features of covert speech.

Modulation-based reconstruction
Reconstruction accuracy for the modulation-based covert speech
condition was significant in 4 out of 7 individuals (p <

0.05; Hotelling’s t-test; p > 0.1 for non-significant subjects;
Figure 9B). At the population level, the overall reconstruc-
tion accuracy across the three conditions (overt, covert, and
baseline control) was significantly different [F(2,18) = 62.1, p <

10−6; One-Way ANOVA]. Post-hoc t-tests confirmed that covert
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FIGURE 10 | Covert speech reconstruction. (A) Top panel: a segment of
the overt (spoken out loud) spectrogram representation. Bottom panel: the
same segment reconstructed from neural activity during the covert
condition using the decoding model. (B) Identification rank. Speech
segments (5 s) were extracted from the continuous spectrogram. For each
target segment (N = 123) a similarity score (correlation coefficient) was
computed between the target reconstruction and each original

spectrogram in the candidate set. The similarity scores were sorted and
identification rank was quantified as the percentile rank of the correct
segment. 1.0 indicates the target reconstruction matched the correct
segment out of all candidate segments; 0.0 indicates the target was least
similar to the correct segment among all other candidates. (dashed line
indicates chance level = 0.5; median identification rank = 0.62; p < 0.005;
randomization test).

FIGURE 11 | Overt and covert speech identification. Median
identification rank for each subject during overt speech, covert speech, and
baseline control conditions (see section Evaluation for more details). At the
group level, rankovert = 0.91 and rankcovert = 0.55 are significantly higher
than chance level (0.5; randomization; gray dashed line), whereas
rankbaseline = 0.48 is not significantly different.

speech reconstruction accuracy was significantly lower than overt
speech reconstruction accuracy (rcovert = 0.46 < rovert = 0.66,
p < 10−5; Fisher’s Z transform followed by a paired two-sample
t-test), but higher than the baseline control condition (rcovert =
0.46 > rbaseline = 0.42, p < 0.005; Fisher’s Z transform followed
by a paired two-sample t-test).

Informative areas
Significant informative areas (map thresholded at p < 0.05;
Bonferroni correction), quantified by the electrode-specific
reconstruction accuracy (see section Evaluation for details) are
shown in Figure 12. As observed in the overt condition, brain

areas involved in covert spectrotemporal decoding were also
concentrated around STG, pre-, and post-central gyri.

Anatomical differences between overt and covert informa-
tive areas were assessed for significant electrodes (either overt,
covert, or both conditions; p < 0.05; Bonferroni correction),
using an unbalanced Two-Way ANOVA, with experimental con-
dition (overt and covert speech) and anatomical region (superior
temporal gyrus, pre- and post-central gyrus) as factors. Figure 13
shows significant electrodes across subject, co-registered with the
Talairach brain template (Lancaster et al., 2000). The main effect
of experimental condition was significant for the spectrogram-
based [F(1,116) =19.6, p < 10−6] and modulation-based recon-
structions [F(1,156) = 16.9, p < 10−4], indicating that the mag-
nitude of reconstruction accuracy for overt speech (spectrogram:
mean difference with baseline (r) = 0.06; modulation: mean dif-
ference = 0.1) was higher than for covert speech (spectrogram:
mean difference = 0.006; modulation: mean difference = 0.01) at
the level of single electrodes. The main effect of anatomical region
was also significant [spectrogram: F(2, 116) = 3.22, p < 0.05, and
modulation: F(2,156) = 3.4, p < 0.05]. However, post-hoc t-tests
with Bonferroni correction indicated no differences in accuracy at
the level of p = 0.05: STG (spectrogram: mean difference = 0.05;
modulation: mean difference = 0.07), pre- (spectrogram: mean
difference = 0.02; modulation: mean difference = 0.05), and
post-central gyrus (spectrogram: mean difference = 0.02; mod-
ulation: mean difference = 0.01). The interaction between gyrus
and experimental condition was significant for the modulation-
based reconstruction [F(2, 156) = 3.6, p < 0.05] and marginally
significant for the spectrogram [F(2, 116) = 2.92, p = 0.058]. In
the modulation representation, the overt condition resulted in
significantly higher accuracy than the covert condition for the
STG (mean difference = 0.12; p < 10−5), but not for the pre-
central (mean difference = 0.06; p > 0.05) or the post-central
gyrus (mean difference = 0.02; p > 0.05). This suggests that STG
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FIGURE 12 | Covert speech informative areas. Reconstruction
accuracy correlation coefficients were computed separately for
each individual electrode and for both covert and baseline control
conditions (see section Overt Speech: Informative areas and
Covert Speech: Informative areas for details). The plotted

correlation values are calculated by subtracting the correlation
during baseline control from the covert condition. The informative
area map was thresholded to p < 0.05 (Bonferroni correction)
(A) Spectrogram-based reconstruction accuracy (B) modulation-based
reconstruction accuracy.

FIGURE 13 | Region of interest analysis of significant electrodes.

Significant electrodes (either overt, covert or both; p < 0.05; Bonferroni
correction) in STG, Pre- and Post-central gyrus across subjects,
co-registered with the Talairach brain template (Lancaster et al., 2000), for
the spectrogram-based (A) and the modulation-based (B) reconstruction.

is the cortical area where the spectrotemporal representations
of overt and covert speech have the largest absolute difference
in reconstruction accuracy. Understanding the differences in the
neural representations of overt and covert speech within STG is
therefore a key question toward improving the spectrotemporal
decoding accuracy of covert speech.

DISCUSSION
We evaluated a method to reconstruct overt and covert speech
from direct intracranial brain recordings. Our approach was
first to build a neural decoding model from self-generated overt
speech, and then to evaluate whether this same model could
reconstruct speech features in the covert speech condition at a
level of accuracy higher than expected by chance. This technique

provided a quantitative comparison of the similarity between
auditory perception and imagery in terms of neural representa-
tions based on acoustic frequency and modulation content. Our
results indicated that auditory features of covert speech could be
decoded from models trained from an overt speech condition,
providing evidence of a shared neural substrate for overt and
covert speech. However, comparison of reconstruction accuracy
in the two conditions also revealed important differences between
overt and covert speech spectrotemporal representation. The pre-
dictive power during overt speech was higher compared to covert
speech and this difference was largest in STG sites consistent with
previous findings of a partial overlap of the two neural repre-
sentations (Huang et al., 2002; Shuster and Lemieux, 2005; Geva
et al., 2011c; Pei et al., 2011). In addition, we compared the qual-
ity of the reconstructions by assessing how well they could be
identified. The quality of overt speech reconstruction allowed a
highly significant identification, while in the covert speech con-
dition, the identification was only marginally significant. These
results provide evidence that continuous features of covert speech
can be extracted and decoded from ECoG signals, providing a
basis for development of a brain-based communication method
for patients with disabling neurological conditions.

Previous research demonstrated that continuous spectrotem-
poral features of auditory stimuli could be reconstructed using
a high gamma neural-based decoder (Pasley et al., 2012). In this
study, we analyzed auditory stimuli from self-generated speech as
opposed to external auditory stimulation. During self-produced
speech, neural activity in human auditory cortex is reported to
be suppressed (Creutzfeldt et al., 1989; Flinker et al., 2010) which
has been attributed to the effect of efference copy or corollary dis-
charge sent from the motor cortex onto sensory areas (Jeannerod,
2003). Despite this effect, we observed that high gamma activity
in the superior temporal gyrus, pre- and post-central gyrus dur-
ing vocalization was sufficient to reliably reconstruct continuous
spectrotemporal auditory features of speech.

There is accumulating evidence that imagery and percep-
tion share similar neural representations in overlapping cortical
regions (Yetkin et al., 1995; Kosslyn and Thompson, 2000; Rosen

Frontiers in Neuroengineering www.frontiersin.org May 2014 | Volume 7 | Article 14 | 12

http://www.frontiersin.org/Neuroengineering
http://www.frontiersin.org
http://www.frontiersin.org/Neuroengineering/archive


Martin et al. Decoding overt and covert speech

et al., 2000; Palmer et al., 2001; Aziz-Zadeh et al., 2005; Geva et al.,
2011c; Cichy et al., 2012). It has been proposed that an efference
copy is generated from the motor cortex through motor simula-
tion and sent to sensory cortices enabling a comparison of actual
with desired movement and permitting online behavioral adjust-
ments (Jeannerod, 2003). Similar accounts have been proposed
in speech processing (Hickok, 2001; Guenther et al., 2009; Price,
2011; Tian and Poeppel, 2012). Higher order brain areas inter-
nally induce lower level sensory cortices activation, even in the
absence of actual motor output (covert). The anatomical results
reported here are in agreement with these models. The relation-
ship between overt and covert speech reconstruction depended
on anatomy. High gamma activity in the superior temporal gyrus,
pre- and post-central gyrus provided the highest information to
decode both spectrogram and modulation features of overt and
covert speech. However, the predictive power for covert speech
was weaker than for overt speech. This is in accordance with
previous research showing that the magnitude of activation was
greater in overt than in covert speech in some perisylvian regions
(Palmer et al., 2001; Pei et al., 2011; Partovi et al., 2012) possi-
bly reflecting a lower signal-to-noise ratio (SNR) for HG activity
during covert speech. Future work is needed to determine the rel-
ative contributions of SNR vs. differences in the underlying neural
representations to account for discrepancies between overt and
covert speech reconstruction accuracy.

A key test of reconstruction accuracy is the ability to use
the reconstruction to identify specific speech utterances. At the
group level, using covert reconstructions, identification perfor-
mance was significant, but at a weaker level (p = 0.032) than
overt speech identification (p < 10−4). At the individual level,
covert speech reconstruction in one subject (out of seven) was
accurate enough to identify speech utterances better than chance
level. This highlights the difficulty in applying a model derived
from overt speech data to decode covert speech. This also indi-
cates that the spectrotemporal neural mechanisms of overt and
covert speech are partly different, in agreement with previous lit-
erature (Aleman, 2004; Shuster and Lemieux, 2005; Basho et al.,
2007; Pei et al., 2011). Despite these difficulties, it is possible
that decoding accuracy may be improved by several factors. First,
a major difficulty in this approach is the alignment of covert
speech reconstructions to a reference speech segment. Variability
in speaking rate, pronunciation, and speech errors can result in
suboptimal alignments that may be improved by better alignment
algorithms or by more advanced automatic speech recognition
techniques (e.g., Hidden Markov Models). Second, a better sci-
entific understanding of the differences between overt and covert
speech representations may provide insight into how the decod-
ing model can be improved to better model covert speech neural
data. For example, the current study uses a simple model that
assumes the auditory representation of covert speech imagery is
equivalent to that of overt speech. If systematic differences in
spectrotemporal encoding can be identified during covert speech,
then the spectrotemporal tuning of the decoding model can be
biased to reflect these differences in order to optimize the model
for covert speech data. Further investigation of the differences in
overt and covert spectrotemporal neural representation offers a
promising avenue for improving covert speech decoding.
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