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Abstract
Brain signals can provide the basis for a non-muscular communication and control system, a
brain–computer interface (BCI), for people with motor disabilities. A common approach to
creating BCI devices is to decode kinematic parameters of movements using signals recorded
by intracortical microelectrodes. Recent studies have shown that kinematic parameters of hand
movements can also be accurately decoded from signals recorded by electrodes placed on the
surface of the brain (electrocorticography (ECoG)). In the present study, we extend these
results by demonstrating that it is also possible to decode the time course of the flexion of
individual fingers using ECoG signals in humans, and by showing that these flexion time
courses are highly specific to the moving finger. These results provide additional support for
the hypothesis that ECoG could be the basis for powerful clinically practical BCI systems, and
also indicate that ECoG is useful for studying cortical dynamics related to motor function.
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1. Introduction

Brain–computer interfaces (BCIs) use brain signals to
communicate a user’s intent [1]. Because these systems
directly translate brain activity into action, without depending
on peripheral nerves and muscles, they can be used by people
with severe motor disabilities. Successful translation of BCI
technology from the many recent laboratory demonstrations
into widespread and valuable clinical applications is currently

substantially impeded by the problems of traditional non-
invasive or intracortical signal acquisition technologies.

Non-invasive BCIs use electroencephalographic activity
(EEG) recorded from the scalp [1–8]. While non-
invasive BCIs can support much higher performance than
previously assumed, including two- and three-dimensional
cursor movement [5, 8–10], their use typically requires
extensive user training, and their performance is often not
robust. Intracortical BCIs use action potential firing rates or
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local field potential activity recorded from individual or small
populations of neurons within the brain [11–19]. Signals
recorded within cortex may encode more information and
might support BCI systems that require less training than
EEG-based systems. However, clinical implementations are
impeded mainly by the problems in achieving and maintaining
stable long-term recordings from individual neurons and by
the high variability in neuronal behavior [20–22]. Despite
encouraging evidence that BCI technologies can actually
be useful for severely disabled individuals [6, 23], these
issues of non-invasive and action potential-based techniques in
acquiring and maintaining robust recordings and BCI control
remain crucial obstacles that currently impede widespread
clinical use in humans.

The capacities and limitations of different brain signals
for BCI applications are still unclear, in particular in light of
the technical and practical constraints imposed by the long-
term clinical applications in humans that are the immediate
goal of BCI research. The further development of most BCIs
based on intracortical recordings is driven by the prevalent
conviction [24–27] that only action potentials provide detailed
information about specific (e.g. kinematic) parameters of
actual or imagined limb movements. It is argued that
the use of such specific movement-related parameters can
support BCI control that is more accurate or intuitive than
that supported by BCIs that do not use detailed movement
parameters. This prevalent conviction has recently been
challenged in two ways. First, it is becoming increasingly
evident that brain signal features other than action potential
firing rates also contain detailed information about the plans
for and the execution of movements. This possibility was
first proposed for subdurally recorded signals by Brindley in
1972 [28]. More recently, several studies [29–31] showed
in monkeys that local field potentials (LFPs) recorded using
intracortical microelectrodes contain substantial movement-
related information and that this information ‘discriminated
between directions with approximately the same accuracy
as the spike rate’ [29]. Furthermore, our own results in
humans [32–37] showed that electrocorticographic activity
(ECoG) recorded from the cortical surface can give both
general and specific information about movements, such as
hand position and velocity. We also found that the fidelity of
this information was within the range of the results reported
previously for intracortical microelectrode recordings in non-
human primates (table 3 in [36]). These results have recently
been replicated and further extended [38, 39]. There has
even been some evidence that EEG and MEG carry some
information about kinematic parameters [40]. Second, it is
still unclear whether information about movement parameters
does in fact extend the range of options for BCI research and
application. Recent studies using EEG and ECoG in humans
([5, 8–10] and [41], respectively) used brain signals that did not
reflect particular kinematic parameters. Nevertheless, these
studies demonstrated BCI performance that was amongst the
best reported to date. In summary, it has become clear that
information about specific movement parameters is accessible
to different types of signals recorded by different sensors,
and there is currently little evidence that any sensor supports
substantially higher BCI performance than the others.

Going forward, a critical challenge in designing BCI
systems for widespread clinical application is to identify and
optimize a BCI method that combines good performance with
ease of use and robustness. Based on the studies listed above
and others [32, 41–44], ECoG has emerged as a signal modality
that may satisfy these requirements. This notion has been
supported in part by our previous study [36], in which we
showed that ECoG can be used to decode parameters of hand
movements. In the present study, we asked to what extent
ECoG also holds information about movements of individual
fingers. There is some evidence in the literature that supports
this hypothesis. When monkeys were prompted to move
individual fingers [45–47], neurons were found to change their
activity in widely distributed patterns. In line with this finding,
another study did not find a focal anatomical representation
of individual fingers in M1 [48]. This widely distributed
and thus relatively large representation has also been shown
in humans, e.g., in fMRI studies [49, 50], lesion studies
[51, 52] and a MEG study [53]. Recent studies have already
begun to attempt to differentiate activity associated with
particular finger movement tasks: in humans, movements
of the index finger could be discriminated from rest using
EEG [54]; the laterality of index finger movements could be
determined using EEG [55, 56], MEG [57], or ECoG [58];
MEG signals were found to correlate with velocity profiles of
movements of one finger [59]; and studies even found some
differences between movements of different fingers on the
same hand using EEG [60], or more robust differences using
ECoG [61, 62] and activity recorded from individual neurons
in monkey motor cortex [63–66].

In this study, we set out to determine whether it is possible
to faithfully decode the time course of flexion of each finger,
i.e. not only the laterality of finger movements or the type
of finger, in humans using ECoG. We studied five subjects
who were asked to repeatedly flex each of the five fingers in
response to visual cues. The principal results show that it is
possible to accurately decode the time course of the flexion
of each finger individually. Furthermore, they confirm the
finding of our previous study [36] that the most useful sources
of information that can be recorded with subdural electrodes
are the local motor potential (LMP) and ECoG activity in high
frequency bands (i.e. from about 70 Hz to about 200 Hz)
recorded from hand and other motor cortical representations.
These results provide strong additional evidence that ECoG
could be used to provide accurate multidimensional BCI
control, and also suggest that ECoG is a powerful tool for
studying brain function.

2. Methods

2.1. Subjects

The subjects in this study were five patients with intractable
epilepsy who underwent temporary placement of subdural
electrode arrays to localize seizure foci prior to surgical
resection. They included three women (subjects A, C and
E) and two men (subjects B and D). (See table 1 for additional
information.) All gave informed consent. The study was
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Figure 1. Estimated locations of recorded electrodes in the five subjects. Subject B’s grid was located on the right hemisphere. We
projected this grid on the left hemisphere. The brain template on the right highlights the location of the central sulcus and Sylvian fissure,
and also outlines relevant Brodmann areas.

Table 1. Clinical profiles. All subjects had normal cognitive capacity and were literate and functionally independent.

Subject Age Sex Handedness Grid location Seizure focus

A 46 F L Left frontal Left frontal
B 24 M R Right frontal Right medial frontal
C 18 F R Left frontal Left frontal
D 32 M R Left fronto-temporal Left temporal
E 27 F R Left fronto-temporal Left temporal

approved by the Institutional Review Board of the University
of Washington School of Medicine. Each subject had a 48-
or 64-electrode grid placed over the fronto-parietal-temporal
region including parts of sensorimotor cortex (figure 1). These
grids consisted of flat electrodes with an exposed diameter of
2.3 mm and an inter-electrode distance of 1 cm and were
implanted for about 1 week. Grid placement and duration
of ECoG monitoring were based solely on the requirements
of the clinical evaluation, without any consideration of this
study. Following placement of the subdural grid, each subject
had postoperative anterior–posterior and lateral radiographs to
verify grid location.

2.2. Experimental paradigm

For this study, each subject was in a semi-recumbent position
in a hospital bed about 1 m from a video screen. Subjects
were instructed to move specific individual fingers of the hand
contralateral to the implant in response to visual cues. The cues
were the written names of individual fingers (e.g. ‘thumb’).
Each cue was presented for 2 s. The subjects were asked
to repeatedly flex and extend the requested finger during cue
presentation. The subjects typically flexed the indicated finger
3–5 times over a period of 1.5–3 s. Each cue was followed
by the word ‘rest’, which was presented for 2 s. The visual
cues were presented in random order. Data were collected
for a total period of 10 min, which yielded an average of 30
trials for each finger. The flexion of each finger was measured
using a data glove (5DT Data Glove 5 Ultra, Fifth Dimension
Technologies) that digitized the flexion of each finger at 12
bit resolution. The effective resolution (i.e. the resolution
between full flexion and extension) averaged 9.6 bits for all
subjects and fingers. Figure 2 shows an example of flexion
patterns for the five fingers acquired using this data glove.
These behavioral data were stored along with the digitized
ECoG signals as described below and were subsequently
normalized by their mean and standard deviation prior to any
subsequent analysis.

2.3. Data collection

In all experiments in this study, we presented the stimuli and
recorded ECoG from the electrode grid using the general-
purpose BCI2000 system [67] connected to a Neuroscan
Synamps2 system. Simultaneous clinical monitoring was
achieved using a connector that split the cables coming from
the subject into one set that was connected to the clinical
monitoring system and another set that was connected to the
BCI2000/Neuroscan system. All electrodes were referenced
to an inactive electrode. The signals were amplified, bandpass
filtered between 0.15 and 200 Hz, digitized at 1000 Hz and
stored in BCI2000 along with the digitized flexion samples for
all fingers [33]. Each dataset was visually inspected and all
channels that did not clearly contain ECoG activity (e.g. such
as channels that contained flat signals or noise due to broken
connections—we did not notice and thus exclude channels
with interictal activity) were removed prior to analysis, which
left 48, 63, 47, 64 and 61 channels (for subjects A–E,
respectively) for our analyses.

2.4. 3D cortical mapping

We used lateral skull radiographs to identify the stereotactic
coordinates of each grid electrode with software [68] that
duplicated the manual procedure described in [69]. We defined
cortical areas using Talairach’s Co-Planar Stereotaxic Atlas
of the Human Brain [70] and a Talairach transformation
(http://www.talairach.org). We obtained a template 3D
cortical brain model (subject-specific brain models were
not available) from the source code provided on the AFNI
SUMA website (http://afni.nimh.nih.gov/afni/suma). Finally,
we projected each subject’s electrode locations on this 3D
brain model and generated activation maps using a custom
Matlab program.
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Figure 2. Example finger flexion. These traces show the behavioral flexion patterns for subject E and each of the five fingers over the first 2
min of data collection. Flexion consisted of movements of individual fingers, accompanied occasionally by minor flexion of other fingers.
Horizontal bars give time and vertical bars give units of standard deviation.

2.5. Feature extraction

We first re-referenced the signal from each electrode using
a common average reference (CAR) montage. To do this,
we obtained the CAR-filtered signal s ′

h at channel h using
s ′
h = sh − 1

H

∑H
q=1 sq . H was the total number of channels and

sh was the original signal sample at a particular time.
For each 100 ms time period (overlapping by 50 ms), we

then converted the time-series ECoG data into the frequency
domain with an autoregressive model [71] of order 20. Using
this model, we calculated spectral amplitudes between 0 and
200 Hz in 1 Hz bins. We also derived the LMP, which
was calculated as the running average of the raw unrectified
time-domain signal at each electrode calculated for each
100 ms time window. Figure 3 demonstrates that there
was practically no (linear) relationship between the LMP and
amplitudes in different frequencies, and generally little relation
between different frequencies. We then averaged the spectral
amplitudes in particular frequency ranges (i.e. 8–12 Hz, 18–
24 Hz, 75–115 Hz, 125–159 Hz, 159–175 Hz). These bins are
similar to what we used in our previous study [36], except that
we abandoned the 35–70 Hz frequency range because it has
been demonstrated to reflect conflicting spectral phenomena
[72] and because its inclusion in preliminary tests decreased
performance. Figure 4 shows an example to demonstrate that
our selected ECoG features at particular locations typically
exhibited correlation with the flexion of individual fingers.

In summary, we extracted up to 384 features (6 features—
the LMP and 5 frequency-based features—at up to 64
locations) using 100 ms time windows from the ECoG signals.
We then decoded from these features the flexion of the
individual fingers. As shown later in this paper, we achieved
optimal performance in decoding finger flexion when we
used brain activity that preceded the actual movement by
50–100 ms. These features were submitted to a decoding
algorithm that is described in more detail below.

2.6. Decoding and evaluation

As described above, we first extracted several time- or
frequency-domain features from the raw ECoG signals. We

0 Hz 20 Hz 40 Hz 60 Hz 80 Hz 100 Hz 120 Hz 140 Hz 160 Hz 180 Hz
LMP
0 Hz
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80 Hz
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Figure 3. Correlation of features. This figure shows the correlation
coefficient r (color coded—see the color bar), calculated for all data
between the LMP and amplitudes in different frequency bands. r is
very low for the LMP and amplitudes in different frequencies, and
generally low for different frequencies.

then constructed one linear multivariate decoder for each
finger, where each decoder defined the relationship between
the set of features and flexion of a particular finger. Each
decoder was computed from the finger movement periods. A
movement period was defined as the time from 1000 ms prior to
movement onset to 1000 ms after movement offset. Movement
onset was specified as the time when the finger’s flexion value
exceeded an empirically defined threshold. Movement offset
was specified as the time when the finger’s flexion value fell
below that threshold and no movement onset was detected
within the next 1200 ms. This procedure yielded 25–48 (31 on
average) movement periods for each finger. We discarded
all data outside the movement periods so as to provide a
balanced representation of movement and rest periods for the
construction of the decoder.
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Figure 4. Example of ECoG features related to finger flexion in subject B. (A) Example traces of the LMP (left) and high gamma
(75–115 Hz, right), corresponding to the 20 locations indicated by the black rectangle shown in (B). These traces show the time course of
ECoG (top traces) as well as the behavioral trace for thumb flexion (trace on the bottom). The traces only show data for the movement
periods, i.e. periods around thumb movements (see scissors symbols). Dashed lines indicate beginning/ends of movement periods.
(B) Locations of the electrodes on the grid shown on the 3D template brain model. The locations that showed correlations with thumb
flexion in A, i.e. channels 20 and 22, are indicated with symbols. (C) Magnification of the first three movement periods. The solid traces on
top and bottom show thumb flexion, and the dotted traces on top and bottom give LMP and high gamma activity, respectively, at channel 20.
The LMP and high gamma activity are correlated with flexion of the thumb.

For each finger, the decoder was constructed and evaluated
using fivefold cross-validation. To do this, each dataset was
divided into five parts, the decoders were determined from
4/5th of the dataset (training set) and tested (i.e. the decoder
was applied) on the remaining 1/5th (test set). This procedure
was then repeated five times—each time, a different 1/5th of
the dataset was used as the test set. The decoder for the
flexion of each finger was constructed by determining the
linear relationship between ECoG features and finger flexion
using the PaceRegression algorithm that is part of the Java-
based Weka package [73]. Unless otherwise noted, we utilized
feature samples that preceded the flexion traces to be decoded.
Specifically, we used a window of 100 ms length that was
centered at −50 ms with respect to the flexion trace, i.e.
causal prediction. Thus, this procedure could be used to
predict the behavioral flexion patterns of each finger in real

time without knowledge of which finger moved or when it
moved. (All decoded flexion traces shown in figures 7 and 8,
and classification time courses shown in figure 11, are shifted
back in time by the 50 ms offset used for decoding to highlight
the fact that cortical signals precede the movements.)

We then computed Pearson’s correlation coefficient r
between the actual and decoded flexion traces for each test
set. Finally, we derived a metric of decoding performance for
each subject and finger by averaging the r values across the
five test sets.

3. Results

3.1. Brain signal responses to finger movements

We first characterized the brain signal responses to finger
flexion. These responses were assessed by determining the
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Figure 5. Brain signal changes between rest and thumb movement for all subjects. Each column (A–E) gives data for the respective subject.
Plots on top show brain signal changes in frequencies between 0 and 200 Hz over time (horizontal axis from 600 ms prior to 600 ms after
movement onset). These changes are given in color-coded values of r2 (see color bars). Plots on the bottom show changes (expressed as r2

values) in the LMP feature over time. Blue traces on the bottom right of each brain indicate the average actual thumb flexion trace. Insets
show magnifications of the areas shown by black rectangles. High frequencies in the ECoG and the LMP give substantial information about
the movement, and some of this information appears to precede the actual movement.
M An MPEG movie of this figure is available from stacks.iop.org/JNE/6/066001

correlation of ECoG features with the task of resting or moving
a finger. The rest dataset included all data from 1800 ms to
1200 ms before each movement onset. For each subject, finger
and feature, we then calculated the value of r2 between the
distribution of feature values during rest and the distribution
of feature values for each time point from 600 ms before to
600 ms after movement onset. Figure 5 shows the results for
flexion of the thumb for all subjects.

The time–frequency plots on top show that in each subject
the amplitudes at particular locations and frequencies (in
particular at frequencies >50 Hz) hold substantial information
(up to an r2 of 0.66) about whether or not the thumb was
flexed. This information was highly statistically significant:
when we ran a randomization test, r2 values of less than 0.02
were significant at the 0.01 level for any subject and time–
frequency or LMP feature. This information about finger
flexion was localized to one or only a few electrode locations.
Furthermore, it is also evident from these plots that ECoG
changes preceded the actual movement. The traces on the
bottom show that the LMP also changed substantially (i.e. up
to an r2 of 0.60) with the movement, and that, again, some of
the changes preceded the actual movement. Activity changes
for different fingers (see supplementary figure 1 available

at stacks.iop.org/JNE/6/066001) showed the same general
topographical and spectral characteristics as shown here for
the thumb movement. At the same time, each finger showed
its own distinctive pattern (e.g. time–frequency changes). As
shown later in section 3.6, these different patterns allowed for
accurate classification of individual fingers.

Figure 5, supplementary figure 1 and the movie (available
from stacks.iop.org/JNE/6/066001) illustrate qualitatively
how ECoG signals differ between rest and finger movement.
We also quantitatively assessed these changes by determining
how many electrodes showed significant activity changes for
the high gamma (75–115 Hz) band and the LMP11. We
applied a three-way ANOVA to determine which factors

11 To compute significance for each electrode, we ran a randomization test
using 100 repetitions of the same procedure that produced figure 5 and
supplementary figure 1 (available at stacks.iop.org/JNE/6/066001), which
resulted in sets of r2 values for actual and randomized data. We then averaged
these r2 values between −600 ms and +600 ms. Separately for the high
gamma (75–115 Hz) band and the LMP, we then fit the randomized r2 data
with an exponential distribution, using a maximum likelihood estimate of
its one parameter. We computed the level of significance α of the actual
r2 value as its percentile within the randomized r2 distribution. A LMP or
high gamma feature was considered significant at a certain channel when its
p-value (p = 1−α) was smaller than 0.01 after Bonferroni-correcting for the
number of channels.
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Figure 6. Relationship of brain signals with thumb flexion. This figure shows the spatial distribution of the confidence index ci for the LMP
(top left) or 75–115 Hz high gamma band (top right) and for each subject and the LMP or high gamma feature (ten brains on the bottom).
The confidence indices are color coded (see color bars).

(subject, finger or feature) were related to the number of
channels with significant signal changes (Ns). The results
showed that Ns was not related to the subjects (p = 0.20)

or the different fingers (p = 0.77). However, the number
of significant electrodes substantially differed for the LMP
(17% of all channels) and high gamma features (5% of all
channels) (p < 0.0001). Notably, we did not find a difference
when we compared Ns for the thumb versus the other fingers
(p = 0.21). This suggests that a potential difference in the
size of the cortical representation of the thumb versus other
fingers is smaller than the spatial resolution (1 cm) available
in this study.

In summary, changes in the LMP and amplitudes at
frequencies higher than 50 Hz over the hand area of motor
cortex are associated with flexion of individual fingers with
different changes for different fingers. Some of these changes
preceded finger flexion. Furthermore, the LMP feature
is spatially broader than the high gamma feature. The analyses
in the next section determined how well each feature was
related to the degree of finger flexion.

3.2. Relationship of ECoG signals with finger flexion

To further characterize the relationship of the ECoG features
with finger flexion, we correlated, for all movement periods,
the time course of the flexion with the time course of each
feature for each finger. We then computed one measure of
the correlation coefficient r and its significance p (determined
using the F-test) for each subject, finger and cross-validation
fold. To get these two measures for each finger of each
subject, we used the results from the four (out of five)

cross-validation folds with the highest r values. We then
converted the associated p values into indices of confidence ci

(ci = −log10(p)) and averaged those across the four cross-
validation folds.

The results of the analyses for thumb flexion are shown
in figure 6. They are representative of the results achieved for
the other fingers, which indicates that the brain signal changes
associated with specific flexion values largely overlap for the
different fingers. The two large brain images on top show
the confidence indices for the LMP and 75–115 Hz (i.e. high
gamma), averaged across all subjects. The ten smaller brain
images on the bottom show results for individual subjects A–
E and the LMP (upper row) and high gamma (lower row)
features.

The high values of the confidence indices over primarily
different motor cortical areas and for the LMP and high gamma
features again document the important role of these locations
and ECoG features, respectively. Similar to our previous
study [36], the topographies of the confidence indices differ
between the LMP and high gamma (see figure 5 in [36])
and are more diffuse for the LMP. Interestingly, the patterns
of confidence indices shown here are spatially much more
widespread than the information shown before in figure 5 that
differentiates movement from rest. See section 4 for further
discussion of this topic. Also, the spatial distribution of the
LMP and high gamma features for subjects A and B appears
to be more spatially widespread than that for the other three
subjects. This is interesting, as subjects A and B used their
non-dominant hand for the finger movement task. The next
section demonstrates how this information about finger flexion

7
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Figure 7. Examples for actual and decoded movement trajectories. This figure shows, for the best cross-validation fold for each finger and
for subject A, the actual (solid) and decoded (dotted) finger flexion traces, as well as the respective correlation coefficients r. These traces
demonstrate the generally close concurrence between actual and decoded finger flexion. They also show that this subject used different
flexion rates for different fingers and/or cross-validation folds and that the decoded traces reflect these different rates. The horizontal bar
gives time and the vertical bar gives units of standard deviation.

Table 2. Decoding performance for all subjects and fingers. This table lists correlation coefficients r, calculated between the actual and
decoded flexion time courses for the indicated finger. The three values for each combination of subject and finger represent the mean,
minimum and maximum value of r for all cross-validation folds. These results demonstrate that reconstruction of the flexion of each of the
five fingers is possible using ECoG signals in humans.

Subjects Thumb Index finger Middle finger Ring finger Little finger Avg.

A 0.75/0.71/0.80 0.61/0.53/0.65 0.49/0.40/0.58 0.54/0.50/0.59 0.43/0.33/0.55 0.57
B 0.66/0.62/0.74 0.61/0.53/0.68 0.51/0.37/0.57 0.58/0.46/0.66 0.53/0.47/0.60 0.58
C 0.60/0.51/0.66 0.62/0.51/0.67 0.60/0.55/0.64 0.49/0.44/0.52 0.39/0.34/0.44 0.53
D 0.37/0.32/0.42 0.55/0.50/0.58 0.54/0.44/0.64 0.36/0.22/0.43 0.23/0.14/0.33 0.41
E 0.42/0.29/0.52 0.60/0.43/0.65 0.56/0.43/0.63 0.54/0.49/0.61 0.54/0.49/0.58 0.53
AVG 0.56 0.60 0.54 0.50 0.42 0.52

supported the successful decoding of individual finger flexion
movements.

3.3. Accurate decoding of finger flexion

Table 2 and figure 7 show the principal results of this study.
Table 2 gives the correlation coefficients calculated for all
finger movement periods (see section 2.6 for a description
of how these periods were determined) between actual and
decoded flexion traces. The given correlation coefficients
represent the mean, minimum and maximum correlation
coefficients calculated for a particular subject and finger
and across all cross-validation folds. When averaged across
subjects, the correlation coefficients range from 0.42 to 0.60
for the different fingers. When averaged across fingers,
the correlation coefficients range from 0.41 to 0.58 for the
different subjects. As reported in table 2, the average decoding
performance (i.e. correlation coefficient averaged across all
subjects and fingers) was 0.52. We also computed this average
decoding performance for individual features, as well as for
the set of all frequency-based features. This resulted in 0.40
(LMP), 0.19 (8–12 Hz), 0.25 (18–24 Hz), 0.45 (75–115 Hz),
0.40 (125–159 Hz), 0.33 (159–175 Hz) and 0.49 (all frequency
features). Furthermore, and in contrast to our previous study
[36], the application of the CAR filter had only a modest

effect: e.g. for the LMP alone, we achieved 0.40/0.41 (with
CAR/without CAR, respectively) and for all features, we
achieved 0.52/0.54 (with CAR/without CAR, respectively).

These results demonstrate that it is possible to accurately
infer the time course of repeated, rhythmic finger flexion using
ECoG signals in humans. Results shown later in this paper
also show that these flexion patterns are highly specific to the
moving finger. Furthermore, for a particular subject and finger,
the correlation coefficients only modestly varied across cross-
validation folds. This indicates that the decoding performance
is robust during the whole period of data collection.
Figure 7 shows examples for actual and decoded flexion traces.
Because the calculation of decoding parameters only involved
the training dataset, but not the test dataset, similar results
can be expected in online experiments, at least for durations
similar to those in this study.

3.4. Decoding finger flexion for different flexion speeds

While this study was not designed to systematically vary the
speed of the finger flexions, the subjects varied that speed
substantially for different fingers and/or at different times
(see traces for the thumb and little fingers in figure 7). To
study decoding at different flexion speeds, we first estimated
the speed for each movement period by calculating the period
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Figure 8. Average actual and decoded flexion traces for three different flexion speeds. The traces in A, B and C show actual (blue solid) and
decoded (red dashed) flexion traces, averaged across all subjects and fingers, and corresponding to the 0–10th, 45–55th and 90–100th
percentile of flexion speeds, respectively. Shaded bands indicate the standard error of the mean. The minimum and maximum amplitudes of
the average decoded traces were scaled to match those of the actual traces to facilitate comparison. All traces begin 100 ms prior to detected
movement onsets (which are indicated with arrows). The decoded traces are shifted back in time by the 50 ms offset used for decoding to
highlight the fact that cortical signals precede the movements.

from the onset of the movement (that was detected as described
earlier in the paper) to the offset of the first flexion (which
was detected as the first time the flexion value fell below the
same threshold that was used for detecting the onset). We
then compiled the flexion speeds from all subjects, fingers and
movement periods and selected the flexion patterns according
to flexion speeds in three categories. These categories
corresponded to the 0–10th, 45–55th and 90–100th percentile
of estimated flexion speeds. Figures 8(A)–(C) show the
averaged flexion traces (solid) and corresponding averaged
decoded traces (dashed) for the three different speed bins,
respectively. These results demonstrate that the decoded
traces accurately track the flexion dynamics at different flexion
speeds. They also show that the brain signals precede the
actual flexion by approximately 100 ms.

3.5. Optimal decoding offset

We also studied the effect of the decoding offset, i.e. the
temporal offset of the 100 ms window that was used for
decoding the flexion of a particular finger at a particular time.
Unless otherwise noted, we used an offset of −50 ms for
the analyses throughout the paper, i.e. brain signals from a
100 ms window centered at 50 ms prior to time t were used to
decode finger flexion at time t. We evaluated the effect of that
offset (−300, −250, −200, −150, −100, −50, 0, +50 ms) on
decoding performance by calculating the resulting correlation
coefficient r for a particular subject, finger and cross-validation
fold. We then averaged these correlation coefficients across
subjects and cross-validation folds. The color-coded r values
are shown in figure 9 for each finger. They show that for
the different fingers, decoding performance (i.e. the averaged
value of r) peaked around −100 to −50 ms. (In this figure,
the values at −50 ms correspond to the values of r averaged
across subjects in table 2.) These results provide support for
the hypothesis that the ECoG features we assessed were related
primarily to movement and not to sensory feedback produced
by the moving fingers.

3.6. Information about individual fingers

We finally studied the amount of information that is captured
in the ECoG about different fingers because the results
shown up to this point (except for the finger-specific ECoG
responses shown in supplementary figure 1 (available at
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Figure 9. Correlation coefficients for different fingers and decoding
offsets. Correlation coefficients r (color coded and averaged across
subjects and cross-validation folds) for different decoding offsets
and fingers. The highest correlation coefficients are achieved when
we used a 100 ms window that preceded the decoded flexion values
by 50–100 ms.

stacks.iop.org/JNE/6/066001)) do not exclude the possibility
that our decoding results simply detected movement of any
finger. We investigated this possibility in two ways.

First, we determined the degree of interdependence of
finger flexion for the actual and decoded flexion, respectively.
To do this, we calculated the correlation coefficient r for the
actual (i.e. behavioral) or decoded movement traces between
all pairs of fingers. The results are shown in confusion matrices
in figure 10. Each of the color-coded squares gives, for the
indicated subject and for actual (top) or decoded (bottom)
flexion, the correlation coefficient r calculated for the whole
time course of finger flexion for a particular combination of
fingers. The thumb and little finger correspond to the left-most
and right-most columns, and to the top-most and bottom-most
rows, respectively. If the actual or decoded movements of the
different fingers were completely independent of each other,
one would expect a correlation coefficient of 1 in the diagonal
running from top left to bottom right, and a correlation
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Figure 10. Interdependence of actual and decoded finger flexion. Each of the ten figures shows color-coded correlation coefficients,
calculated for actual and decoded finger flexion time courses for the indicated subject across all finger combinations (thumb: first
row/column, little finger: last row/column).
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Figure 11. Discrete classification of finger movements. The top row shows the classification accuracy (i.e. the fraction of all finger
movements that were correctly classified) for each subject A–E as a function of time relative to the movement onset. Movement onset is
marked by the dotted line. Accuracy due to chance (i.e. 20%) is marked by the dashed line. The bottom row shows the confusion matrix of
classification at the time of the peak classification accuracy for each subject. In each matrix, each row represents the finger that actually
moved (from top to bottom: thumb, index, middle, ring and little finger). Each column represents the finger that we classified (from left to
right: thumb, index, middle, ring and little finger). In each cell, the color indicates the fraction of all movements of a particular finger that
was assigned to the particular classified finger.

coefficient of 0 in all other cells. The results on top show that
there was some degree of interdependence between the actual
movements of the different fingers, in particular between index
finger and middle finger and between ring finger and little
finger. The results for decoded flexion on the bottom show a
similar pattern, although the degree of interdependence of the
decoded movements was modestly higher than that calculated
for actual movements.

Second, we also determined to what extent it is possible
to determine from the ECoG signals which finger was moving.
We did this using a five-step procedure: (1) we first detected
movement onsets for each finger using the procedure described
earlier in this paper, and labeled the period from 2 s before to
2 s after movement onset as the movement period of that finger.
(2) We then decoded flexion traces for each finger using the
50 ms offset used for other analyses in this paper, and
normalized the decoded traces for each finger by subtracting
each trace’s mean and dividing the result by the standard
deviation. (3) We then smoothed each trace using a zero
delay averaging filter of width 500 ms. (4) We then classified,
at each time during each movement period, the smoothed

decoded flexion values into five finger categories by simply
determining which of the five decoded flexion values (i.e. the
five values corresponding to the five fingers) was highest at
that point in time. (5) We finally determined classification
accuracy by calculating the fraction of all trials in which
the actual and classified finger matched. The results are
shown in figure 11. The maximum classification accuracies
(i.e. the classification accuracy at the best time for each
subject) were 90.6%, 89.9%, 76.4%, 68.1% and 76.7% for
each subject, respectively. The average of those accuracies
is 80.3% (accuracy due to chance is 20%). The best times
were 0 ms, +150 ms, +50 ms, +0 ms and +500 ms relative to
movement onset, for each subject, respectively. When we used
the same common optimal offset for each subject (i.e. without
optimizing for each subject individually), the mean accuracy
was 77.3% at +150 ms and the median accuracy was 76.4%
at +50 ms relative to movement onset. The mean accuracy at
0 ms was 77.1%. When we did not smooth the decoded traces
prior to classification, the mean accuracy at 0 ms was 67.5%.
In summary, our results show conclusive evidence that ECoG
signals hold substantial information about the time course of
the flexion of each individual finger.
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4. Discussion

In this study, we showed that ECoG signals can be used to
accurately decode the time course of the flexion of individual
fingers in humans. The information in the ECoG that was
most reflective of the movement preceded it by 50–100 ms.
The results presented in this paper also further support the
findings of our previous study [36]—in particular, that the
LMP and amplitudes in the high gamma range hold substantial
movement-related information. This information allowed us
to accurately decode the flexion of each finger, even at different
flexion speeds, using short windows of 100 ms. These results
provide further evidence to support the hypothesis that the
movement information encoded in ECoG signals exceeds that
provided by EEG (see also figure 7 in [40]). Furthermore,
our results suggest that both the fidelity of movement-
related information in ECoG and its potential clinical
practicality should position ECoG well for neuroprosthetic
applications. In particular, previous efforts to classify finger
movements used activity recorded sequentially from individual
neurons (i.e. in successive recordings) in non-human primates
[63–66]. These studies demonstrated robust but only discrete
decodings, i.e. inferring which finger flexed or extended but
not the temporal flexion patterns of each finger as we showed
here. The results in our present study are particularly appealing
given that the patients in this study were under the influence
of a variety of external factors, and that the experiments did
not control for other relevant factors that may increase signal
variance, such as eye position, head position, posture, etc.

The successful decoding of finger movements achieved in
this study depended substantially on the LMP component and
on amplitudes in gamma bands recorded primarily over hand-
related and other areas of motor cortex. This is similar to the
findings reported in two recent studies that decoded kinematic
parameters related to hand movements using ECoG [36, 38].
In contrast to the cosine tuning reported for hand movements
in humans using ECoG [36] or EEG/MEG [40], in the present
study we assessed the linear relationship of ECoG features
with finger flexion. We did this because auxiliary analyses
demonstrated that a linear function was better able to explain
the relationship of ECoG features with finger flexion compared
to a cosine function or finger velocity.

In this study, we found that gamma band activity differed
markedly between movement of a particular finger and rest
in one or only a few electrodes (e.g. figure 5, supplementary
figure 1 available at stacks.iop.org/JNE/6/066001). This is
in contrast to the spatial distribution of the LMP feature that
tended to be broader. These differences support the hypothesis
that the LMP and amplitudes in gamma bands are governed
by different physiological processes. The information shown
in figure 5 is also different from the spatial distribution of the
information related to the degree of finger flexion shown in
figure 6. This discrepancy suggests that the brain represents
the general state of finger movement (i.e. any flexion or rest)
differently from the specific degree of flexion. While the
LMP component appears to be a different phenomenon from
frequency-related components (see figures 3, 5 and 6 in this
paper, and figure 5 in [36]), the physiological origin of the

LMP component is still unclear. Thus, further studies are
needed to determine the origin of the LMP and its relationship
with existing brain signal phenomena, in particular to activity
in the gamma band. While activity in the gamma band has
been related to motor or language function in several studies,
there still exists considerable debate about its physiological
origin [74, 75].

In our experiments, subjects were cued to move only one
finger at a time. Thus, aside from residual movements of
other fingers that were due to mechanical or neuromuscular
coupling [76–78], the subjects moved each finger in isolation.
It is not clear whether the results presented in the paper
would generalize to more natural and completely self-paced
movements. Because ECoG detects mainly neuronal activity
close to the cortical surface, rather than subcortical structures
or the spinal cord, it is likely that the performance of decoding
of particular parameters of movements will depend on to
what extent the cortex is involved in preparing for and
executing these movements. Thus, successful BCI- or motor-
related studies, and practical implementations derived from
those studies, will depend on the design of protocols that
appropriately engage sizable areas of cortex.

The present paper confirms and significantly extends the
results presented in recent studies [32, 36, 38, 39], which
demonstrated that ECoG holds information about position and
velocity of hand movements, by showing that it is possible to
derive detailed information about flexion of individual fingers
in humans using ECoG signals. This information could be
used either in an open-loop fashion to provide a real-time
assessment of actual or potentially even imagined or intended
movements, or in a closed-loop fashion to provide the basis
for a brain–computer interface system for communication and
control.

In this study, we showed that recordings from electrodes
with relatively coarse spacing (1 cm) in patients who are under
the influence of medications and a variety of other external
influences can provide detailed information about highly
specific aspects of motor actions in relatively uncontrolled
experiments. While such results are appealing, this situation
is most likely substantially limiting the potential information
content and usefulness of the ECoG platform for BCI purposes.
Clinical application of ECoG-based BCI technology will
require optimization of several parameters for the BCI purpose
and also evaluation of other important questions. Such efforts
should include: optimization of the inter-electrode distance
(there is evidence that much smaller distances may be optimal
[43, 79]) and recording location (i.e. subdural versus epidural,
different cortical locations); long-term durability effects of
subdural or epidural recordings; and the long-term training
effects of BCI feedback.

In summary, the results shown in this paper provide
further evidence that ECoG may support BCI systems with
finely constructed movements. Further research is needed
to determine whether ECoG also gives information about
different fingers in more complex and concurrent finger flexion
patterns and to determine the optimum for different parameters
such as the recording density. We anticipate that such studies
will demonstrate that ECoG is a recording platform that
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combines high signal fidelity and robustness with clinical
practicality.
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