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Abstract
Brain-computer interfaces (BCIs) allow their users to communicate or control external devices using
brain signals rather than the brain's normal output pathways of peripheral nerves and muscles.
Motivated by the hope of restoring independence to severely disabled individuals and by interest in
further extending human control of external systems, researchers from many fields are engaged in
this challenging new work. BCI research and development have grown explosively over the past two
decades. Efforts have recently begun to provide laboratory-validated BCI systems to severely
disabled individuals for real-world applications. In this review, we discuss the current status and
future prospects of BCI technology and its clinical applications. We will define BCI, review the BCI-
relevant signals from the human brain, and describe the functional components of BCIs. We will also
review current clinical applications of BCI technology, and identify potential users and potential
applications. Finally, we will discuss current limitations of BCI technology, impediments to its
widespread clinical use, and expectations for the future.

1. Introduction
The possibility of establishing a direct communication and control channel between the human
brain and computers or robots has been a topic of scientific speculation and even science fiction
for many years. Over the past twenty years, this idea has been brought to fruition by numerous
research and development programs, and has evolved into one of the fastest-growing areas of
scientific research. This technology, called brain-computer interface (BCI) technology,
provides a new output channel for brain signals to communicate or control external devices
without using the normal output pathways of peripheral nerves and muscles. A BCI recognizes
the intent of the user through the electrophysiological or other signals of the brain.
Electrophysiological signals may be recorded over the scalp, underneath the scalp, or within
the brain; other types of physiological signals may be recorded by magnetic sensors or other
means. In real time, a brain signal is translated into output commands that accomplish the desire
of the user. The most common example of use of such technology is the direct control of a
computer cursor by a person or animal using a BCI based on electrophysiological signals.

A BCI allows a person to communicate with or control the external world without using
conventional neuromuscular pathways. That is, messages and control commands are delivered
not by muscular contractions but rather by brain signals themselves. This BCI feature brings
hope to individuals who are suffering from the most severe motor disabilities, including people
with amyotrophic lateral sclerosis (ALS), spinal cord injury, stroke, and other serious
neuromuscular diseases or injuries. BCI technology holds promise to be particularly helpful
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to people who are “locked-in,” cognitively intact but without useful muscle function.
Restoration of basic communication capabilities for these people would significantly improve
their quality of life as well as that of their caregivers, increase independence, reduce social
isolation, and potentially reduce cost of care [1].

BCI research has undergone an explosive growth in recent years. At present, there are over
400 groups worldwide engaging in a wide spectrum of research and development programs,
using a variety of brain signals, signal features, and analysis and translational algorithms [2].
In this review, we discuss the current status and future prospects of BCI technology and its
clinical applications. We will define BCI, review the BCI-relevant source signals from the
human brain, and describe the functional components of BCIs. We will also review current
clinical applications of BCI technology, and identify potential users and potential applications.
Finally we will discuss current limitations of BCI technology, impediments to its widespread
clinical use, and expectations for the future.

2. BCI Definition, Signal Types, and Operation
Definition of a BCI

A brain-computer interface (BCI), also sometimes referred to as a brain-machine interface
(BMI), is a communication and/or control system that allows real-time interaction between the
human brain and external devices. A BCI user's intent, as reflected by brain signals, is translated
by the BCI system into a desired output: computer-based communication or control of an
external device.

The term “Brain-computer Interface” was first introduced by the pioneering works of Dr. J.
Vidal [3,4] in the early 1970's. Motivated by the hope of creating an alternative output pathway
for severely disabled individuals and an interest in further extending human direct control of
external systems, BCI researchers have engaged in this new challenging work. Researchers
hail from a large variety of fields, including clinical neurology and neurosurgery, rehabilitation
engineering, neurobiology, engineering, psychology, computer science, and mathematics, and
have led to an explosive growth in BCI research and development over the past two decades
[3,5-22].

A BCI is defined as a system that measures and analyzes brain signals and converts them in
real-time into outputs that do not depend on the normal output pathways of peripheral nerves
and muscles [23]. Systems that measure electrical activity generated by muscles do not satisfy
the above definition, and therefore are not BCIs. Systems that measure brain activity that
depends on muscle control are not pure, or independent BCIs, but might rather be called
dependent BCIs. Thus, for example, a system that uses visual evoked potentials (VEPs) to
detect gaze direction [24,25] is a dependent BCI because it requires neuromuscular control of
eye (or head) movements. (It should be noted that several recent studies [26-28] indicate that
some VEP-based BCI systems are not totally dependent on gaze direction, and thus are to a
limited degree independent.)

BCIs do not read minds. Rather, a BCI changes electrophysiological signals from mere
reflections of central nervous system (CNS) activity into messages and commands that act on
the world and that, like output in conventional neuromuscular channels, accomplish the
person's intent. Thus, a BCI replaces nerves and muscles and the movements they produce with
hardware and software that measure brain signals and translate those signals into actions
[14].

Successful BCI operation depends on the interaction of two adaptive controllers: the user, who
produces specific brain signals that encode intent and the BCI, which translates these signals
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into output that accomplishes the user's intent. Aiming to replace the conventional
neuromuscular output channels, a BCI must function as an adaptive close-loop control system.
It must provide real-time feedback to the user, by which the user can fine-tune the brain signals
in order to optimize the desired output. It should be noted that a system that simply records
and analyses brain signals and does not provide the results of the analysis to the user in a real-
time interactive way is not a BCI [29].

Types of Brain Signals
In principle, a variety of neurophysiologic signals reflecting in-vivo brain activities might be
recorded and used to drive a BCI. Depending on the biophysical nature of the signal source,
these signals can be broadly grouped into three categories: electrophysiological, magnetic, and
metabolic.

Electrophysiological Signals
Electrophysiological signals resulting from brain activity can be broadly classified according
to the degree of invasiveness of the recording device [30]. Figure 1 illustrates BCI systems
based on electrophysiological signals measured by noninvasive (EEG), cortical surface
(ECoG), and intracortical recording devices. Each of the recording methods has its own
advantages and disadvantages. Electroencephalographic (EEG) signals are recorded from the
scalp. Since EEG-based BCIs are non-invasive, they provide the simplest and safest BCI
recording methods. However, EEG has limited frequency range and spatial resolution, and it
is more susceptible to powerline interference and other artifacts like electromyographic (EMG)
signals from cranial muscles or electrooculographic (EOG) activity. Figure 1a shows two
noninvasive BCI systems based on different EEG signal features. Electrocorticographic
(ECoG) signals are recorded from electrodes surgically placed on the surface of the cortex.
These electrodes measure the same signals as in EEG, but their closer proximity to the brain
and the elimination of the insulating features of the skull and dura result in greater signal
amplitude, wider detectable frequency range, and better topographical resolution. Figure 1b
shows an example of human ECoG signals and topographies during two-dimensional
movement control. Finally, intracortical methods can be used for a BCI by recording local field
potentials (LFPs) and neuronal action potentials (spikes). These intracortical methods
represent the most invasive BCI methods since they record electrical activity from electrodes
implanted in the brain. Figure 1c shows a microelectrode array for intracortical recording, its
placement location in human motor cortex, and results from intracortical BCI studies in
monkeys. Both ECoG and intracortical recordings provide wider frequency range, higher
topographical resolution, and better signal quality and dimensionality than EEG. However,
both methods require surgery, and issues such as risk of tissue damage and infection, and long-
term recording stability arise [18,30]. It remains possible that intracortical recording might not
produce speed and accuracy of performance substantially greater than what can be achieved
with EEG, a non-invasive method not requiring surgery or any of its attendant risks [31]. The
comparative merits of noninvasive (EEG) methods and invasive (ECoG and intracortical)
methods remain unresolved at present. With each method having its strengths and weaknesses,
the decision of a potential BCI user for one method over the other may ultimately depend on
the overall goal of the individual's BCI use [32].

Most studies of BCI clinical applications in humans have been performed with EEG-based
BCIs. These have shown that EEG-based BCIs can allow a person to control a computer cursor
in at least three dimensions, to select letters to perform word-processing, to run computer-based
Windows™ programs, and to perform environmental control. Several people severely disabled
by ALS have begun using the Wadsworth Center's EEG-based BCI at home for everyday,
independent use [33]. Human ECoG studies have been performed with volunteers who are
under evaluation for epilepsy surgery. Prior to surgery, the neurosurgeons evaluate the patient's
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brain activity using an array of ECoG electrodes to localize critical cortical functions [16,20,
34,35]. If a patient volunteers, a BCI researcher can perform BCI studies during the patient's
evaluation period, which usually lasts only one or two weeks. Thus, the availability of ECoG
research subjects is somewhat limited and is always secondary to the clinical needs of the
patients [36]. Moreover, the location of the ECoG electrode array is based solely on the patient's
clinical needs, and thus might not include cortical regions associated with brain patterns useful
for BCI [37]. Despite these obstacles, impressive results have emerged from short-term ECoG
studies, focusing mainly on the capacities of ECoG signals for use in a human BCI [16,20,
34,35,38-48]. Most intracortical BCI data to date have been obtained from animals, primarily
from monkeys [45-52]. While monkeys have been shown to be able to use intracortical signals
to control a robotic arm, comparable human data are very limited [8,18,49]. Due to the present
practical limitations on invasive BCI studies in humans, BCI clinical applications to date have
used primarily scalp-recorded EEG signals.

Magnetic and Metabolic Signals
Magnetoencephalography (MEG) was recently proposed as a potential new source of brain-
derived signals to operate a BCI [50-53]. MEG is attractive because it is non-invasive, able to
detect frequency ranges above those available in EEG recordings [54], and has slightly higher
spatial resolution than EEG [55]. MEG measures very small magnetic fields produced by the
electrical activity of the brain [56]. Researchers have explored the potential of MEG BCI in
the rehabilitation of stroke patients with encouraging initial results [17,50]. Recent BCI
research using MEG signals demonstrated reliable self-control of sensorimotor rhythm
amplitude [51] and satisfactory two-dimensional BCI control [53]. Despite its wider frequency
range and excellent spatiotemporal resolution, MEG currently requires bulky and expensive
equipment and a protected environment, and thus is at present impractical for widespread
clinical use [30].

In recent years, there has been growing interest in BCIs based on metabolic signals derived
from the brain [57-69]. Metabolic activity is assessed by measuring blood oxygenation (the
blood oxygen level dependent (BOLD) response) through functional magnetic resonance
imaging (fMRI) or near-infrared spectroscopy (NIRS). These measures are known to be
correlated with neural activity in the brain [17,70-72]. They take advantage of the fact that
during mental activation there is an increase in oxyhemoglobin and a decrease in
deoxyhemoglobin.

Weiskopf et al [63] showed that a person can control the fMRI BOLD response from
circumscribed cortical and subcortical regions. Studies have repeatedly demonstrated that there
is a tight correlation between voluntary changes in brain metabolism and behavior (for review
see [73]). Benefiting from fMRI's high spatial resolution and recent advances in simultaneous
acquisition, analysis, and visualization of whole brain images, researchers have successfully
trained human subjects to volitionally control localized brain regions using feedback from a
real-time fMRI BCI (for complete review see [74,75]). Furthermore, recent work by Lee et al.
[59] has demonstrated the possibility of two-dimensional real-time control of a robotic arm
through a motor imagery task by human subjects, using an fMRI-based BCI.

Despite the above mentioned outstanding features of MEG and fMRI in acquiring valuable
neural information from the brain, their clinical application in BCI systems for real-life daily
use is currently not realistic, due to the high cost and size of the equipment, and the technical
difficulties involved [76]. Furthermore, the BOLD response is a relatively low-frequency signal
(<1 Hz) compared to EEG or MEG, and this limits its BCI information-carrying capacity. At
present, MEG and fMRI's use remains reserved for identification of function-specific foci for
subsequent placement of cortical electrodes [60], for rehabilitation training of patients, and for
other non-BCI research purposes.
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Near-infrared (NIRS) spectroscopy, which also measures blood oxygenation, is another
potential BCI method. In NIRS, light in the near infrared range (700-100nm) [73] tracks neural
metabolism by monitoring the relative amounts of oxyhemoglobin and deoxyhemoglobin. An
inrush of oxygen-rich blood occurs in an active area and in surrounding tissue [70]. Thus far,
NIRS-based BCIs have not matched the performance of EEG-based BCIs [67]. Nevertheless,
they are promising because, unlike fMRI and MEG, NIRS is inexpensive and portable [65,
67-69]. Thus, NIRS BCI methods might be of practical value for clinical applications in the
near future.

BCI Operation
Any BCI, regardless of its recording methods or applications, consists of four essential
elements, as described by Wolpaw [14] : 1) signal acquisition, 2) feature extraction; 3) feature
translation; and 4) device output. Figure 2 illustrates the essential elements and operation of
a BCI system, as well as its clinical applications. These four elements are managed through
the system's operating protocol. Since BCIs based on electrophysiological signals are in the
most advanced state of development and have resulted in some clinical applications, the
remainder of this article focuses on BCIs of this type.

Signal Acquisition
Signal acquisition is the measurement of the neurophysiologic state of the brain. In BCI
operation, the recording interface (i.e., electrodes, for electrophysiological BCI systems) tracks
neural information reflecting a person's intent embedded in the ongoing brain activity. As
discussed in the last section, the most common electrophysiological signals employed for BCI
systems include: EEG recorded by electrodes on the scalp; ECoG recorded by electrodes placed
beneath the skull and over the cortical surface; and local field potentials (LFPs) and neuronal
action potentials (spikes) recorded by microelectrodes within brain tissue. The brain electrical
signals used for BCI operation are acquired by the electrodes, amplified, and digitized.

Feature Extraction
The signal-processing stage of BCI operation occurs in two steps. The first step, feature
extraction, extracts signal features that encode the intent of user. In order to have effective BCI
operation, the electrophysiological features extracted should have strong correlations with the
user's intent. The signal features extracted can be in the time-domain or the frequency-domain
[6,11,49,77-80], or both [81]. The most common signal features used in current BCI systems
include: amplitudes or latencies of event-evoked potentials (e.g., P300), frequency power
spectra (e.g., sensorimotor rhythms), or firing rates of individual cortical neurons. An algorithm
filters the digitized data and extracts the features that will be used to control the BCI. In this
step, confounding artifacts (such as 60-Hz noise or EMG activity) are removed to ensure
accurate measurement of the brain signal features.

Feature Translation
The second step of signal processing is accomplished by the translation algorithm, which
converts the extracted signal features into device commands. Brain electrophysiological
features or parameters are translated into commands that will produce output such as letter
selection, cursor movement, control of a robot arm, or operation of another assistive device.
A translation algorithm must be dynamic to accommodate and adapt to the continuing changes
of the signal features and to ensure that the possible range of the specific signal features from
the user covers the full range of device control [14,82,83].
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Device Output
The signal features thus extracted and translated provide the output to operate an external
device. The output might be used to operate a spelling program on a computer screen through
letter selection [6,11], to move a cursor on a computer screen [12,84,85], to drive a wheelchair
[86,87] or other assistive devices [88], to manipulate a robotic arm [89,90], or even to control
movement of a paralyzed arm through a neuroprosthesis [15,91]. At present, the most
commonly used output device is the computer screen, and it is used for communication.

Operating Protocol
The operating protocol determines the interactive functioning of the BCI system. It defines the
onset/offset control, the details of and sequence of steps in the operation of the BCI, and the
timing of BCI operation. It defines the feedback parameters and settings, and possibly also any
switching between different device outputs. An effective operating protocol allows a BCI
system to be flexible, serving the specific needs of an individual user. At present, since most
BCI studies occur in laboratories under controlled conditions [1], investigators typically control
most of the parameters in the protocol, providing simple and limited functionality to the BCI
user. More flexible and complete operating protocols will be important for BCI use in real life,
outside of the laboratory.

3. BCI Clinical Applications
Potential BCI Users

Individuals who are severely disabled by disorders such as ALS, cerebral palsy, brainstem
stroke, spinal cord injuries, muscular dystrophies, or chronic peripheral neuropathies might
benefit from BCIs. To help determine the value of BCIs for different individuals, Wolpaw et
al [30] suggested that potential BCI users be categorized by the extent, rather than the etiology,
of their disability. Evaluated in this way, potential BCI users fall into three reasonably distinct
groups: (1) people who have no detectable remaining useful neuromuscular control and are
thus totally locked-in; (2) people who retain only a very limited capacity for neuromuscular
control such as weak eye-movements or a slight muscle twitch; and (3) people who still retain
substantial neuromuscular control and can readily use conventional muscle-based assistive
communication technology.

It is not yet clear to what extent BCIs can serve people in the first group, those who are totally
locked-in (e.g., by late-stage ALS or severe cerebral palsy). Resolution of this issue requires
extensive and prolonged evaluation of each individual in order to resolve basic issues of
alertness, attention, visual or auditory capacities, and higher cortical function. While it has
been hypothesized that the totally locked-in state constitutes a unique BCI-resistant condition
[17], the issue remains unresolved at present. It is worth mentioning that researchers have
speculated that individuals in this group might be able to retain the capacity for BCI use if they
begin it before becoming totally locked-in [17,30].

At present, people in the second group constitute the primary prospective user population for
current BCI systems. This group, which outnumbers the first group, includes people with late-
stage ALS patients who rely on artificial ventilation as their disease progresses, people with
brainstem strokes, and people with severe cerebral palsy. Typically, they retain only very
limited, easily fatigued, and/or unreliable eye movements or other minimal muscle function
and thus cannot be adequately served by conventional muscle-based assistive communication
technology. For people in this group, BCI systems may be able to provide basic communication
and control that is more convenient and reliable than that provided by conventional technology
[30].
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The third and largest group of potential BCI users consists of people who retain substantial
neuromuscular control. For most in this group, present-day BCI systems, with their limited
capacities, have little to offer. These individuals are usually much better served by conventional
technology. Nevertheless, some in this group, such as those with high-cervical spinal cord
injuries, may prefer a BCI over conventional assistive devices that coopt their remaining
voluntary muscle control (e.g., systems that depend on gaze direction or EMG from facial
muscles). In the future, as the capacities, reliability, and convenience of BCI systems continue
to improve, more people in this group could find them of value, and the number of people using
BCIs could substantially increase.

The different conditions mentioned above impair the CNS in different ways, and different BCIs
depend on different aspects of brain activity. Thus, some people may be better served by one
BCI than by another. For example, people who have sensorimotor cortex impairment due to
severe cerebral palsy may not be able to use BCIs based on EEG or single-neuron activity from
these cortical areas. In such people, BCI systems that use other EEG components (e.g., P300
[6,11,19,92]) or neuronal activity from other brain regions might be good alternatives.

Possible BCI Uses
It is important to distinguish between a BCI and its applications [23]. The term BCI refers to
the system that records, analyzes, and translates the input (i.e., the user's brain signals) into
device commands. In contrast, the term application refers to the specific purposes or devices
to which the output commands are applied. Recent focus on the real-world applications of BCI
technology [93,94] is speeding the transition of BCI research from the laboratory to clinical
products useful in everyday life. Although BCI applications could conceivably be clinical or
non-clinical (e.g., computer games), this review discusses clinical applications only.

The potential clinical uses of BCIs can be classified as: (1) direct control of assistive
technologies; and (2) neurorehabilitation. Since the BCI serves as a replacement of normal
neuromuscular pathways, the most obvious BCI applications are those that activate and control
assistive technologies that are already in place to enable communication and control of the
environment. These applications of BCIs to assistive technology encompass the areas of
communication, movement control, environmental control, and locomotion. The possible uses
of BCIs in neurorehabilitation have just begun to be explored [29,73].

Communication
Communication for people who are “locked in” probably represents the most pressing area in
need of intervention with BCI technology [93,95]. Although other applications are under
development, restoring communication has been the main focus of the BCI research
community to date [83,96,97].

Distinguished from one another by the specific electrophysiological features measured, three
types of EEG-based BCI systems have been tested in human subjects for the purpose of
communication, specifically those based on: 1) slow cortical potentials (SCPs); 2) P300 event-
related potentials; and 3) sensorimotor rhythms (SMRs). Both the SCP BCI and the SMR BCI
require significant training of the users to gain sufficient control of their brain activity to
produce signals that can be effectively applied to BCI use. In contrast, a P300 BCI measures
the brain's response to stimuli (visual or auditory) of special significance and requires minimal
user training.

SCPs are slow voltage changes in cortex. They occur over 0.5–10.0 sec and are among the
lowest-frequency features of EEG. Negative shifts of SCPs represent cortical activation
associated with movement or other functions, while positive SCP shifts accompany reduced
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cortical activation [98,99]. Early studies [100] confirmed the importance of the anterior brain
regions in physiological regulation of SCP signals, and suggested these areas are important for
successful use of this type of BCI [73]. With extensive training, sometimes months [17], the
user learns to control SCP positive or negative voltage shifts. The BCI translates these voltage
shifts into vertical movement of a cursor or an object on a computer screen. By this means,
binary selection or control can be achieved. Based on this principle, Birbaumer et al. developed
an early BCI-controlled spelling device [10,101]. A series of studies in people with ALS and
other severe neurological diseases in different stages of physical impairment confirmed the
ability of the SCP BCI to provide basic communication capability [102-104]. Despite these
achievements, SCPs provide only very slow communication (e.g., one minute per letter [17]).
Moreover, a comparative study [17] suggested that, for people severely disabled by ALS, an
SMR-based or P300-based BCI system is a better option than an SCP-based BCI.

Sensorimotor rhythms (SMRs), also recorded by EEG, have also proved to provide features
suitable for BCI-enabled communication and have been used successfully by several research
groups [37,83,85]. Typically, the SMRs are recorded over sensorimotor cortex and the features
useful for BCI are the μ rhythm (8-12 Hz) and the β rhythm (18-26 Hz). Figure 1a (i) illustrates
a BCI based on SMRs. Changes in μ and β rhythm amplitudes are referred to as event-related
desynchronization (ERD) (i.e., decrease) and event-related synchronization (ERS) (i.e.,
increase). Typically, changes in μ and β rhythms are associated with movement, sensation, and
motor imagery. The rhythms decrease or desynchronize with movement or its preparation, and
increase or synchronize after movement and with relaxation [105]. However, people can learn
to use motor imagery, rather than actual movement, to change SMR amplitudes, and can use
that control to operate a BCI. Work in several laboratories has shown that an SMR-based BCI
can enable basic word processing and icon selection [7,12,37,83,85,106-111]. These studies
amply demonstrate that, with training, most people with or without motor disabilities can use
SMR amplitudes to select targets by controlling the one, two, or three dimensional movements
of a cursor [22,83].

The third major type of EEG-based BCI communication uses the well-studied P300 even-
related brain potential [6,11] to indicate the response to a salient or infrequent stimulus within
a stream of frequent standard stimuli. Figure 1a (ii) illustrates a BCI based on P300. Detected
in EEG recordings over the central and parietal regions, the P300 signal is a positive deflection
of brain wave at a latency of about 300 msec [112-114]. The stimuli used in most P300 BCI
systems reported to date are visual, and are based on the P300 speller first developed by
Donchin et al. [11,112]. In this BCI, the user faces a 6 × 6 matrix of letters, numbers, symbols,
and/or function keys. The rows and columns in the matrix flash in a random order, and the user
attends to the matrix item s/he wishes to select. By detecting the row and column that elicit the
largest P300, the BCI recognizes the user's target letter/symbol. Because the P300 response
occurs normally, use of a P300 BCI does not require substantial training. This quality,
combined with the relative ease of acquisition of brain signals by EEG, makes a P300-based
BCI potentially very practical for clinical use. Sellers et al. [19] and Nijboer et al. [92] have
reported that ALS patients are able to communicate using a P300 speller. Successful use of a
P300 BCI has also been reported for people with disabilities resulting from stroke, spinal cord
injury, cerebral palsy, multiple sclerosis, and other disorders [115,116]. In these systems,
communication can be greatly enhanced by appropriate software such as a text-to-speech
synthesizer and a word-prediction program. A P300 BCI system based on auditory stimuli
would be useful for patients with limited or restricted eye movement or eyesight; and such
BCIs are currently under development [19,21,117,118].
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Movement control
Restoration of motor control in paralyzed patients is another key application of BCI and is the
main goal of many researchers in the field. The research in this clinical application is sparse
and has used mainly SMR-based systems. Wolpaw and his colleagues have demonstrated one-
dimensional, two-dimensional [83], and even three-dimensional cursor control using an SMR
system [22] and have done preliminary experiments with SMR control of a robotic arm
[119]. These experiments indicate that SMR BCI systems might be able to support
multidimensional control of the movement of motor neuroprosthesis or an orthotic device such
as a robotic arm. Pfurtscheller and colleagues tested an SMR-based BCI for restoration of motor
control in paralyzed patients (for review see [37]). A tetraplegic patient was trained to control
an electrically driven hand orthosis with EEG signals recorded over sensorimotor cortex
[120]. By learning to generate separable motor imagery tasks, this patient was able to open and
close his paralyzed hand with the hand orthosis.

Functional electrical stimulation (FES) can also be used for restoration of motor function in
paralyzed patients with intact lower motor neuron and peripheral nerve function. With the goal
of further enhancing motor restoration in paralyzed patients, Pfurtscheller and his colleagues
combined the SMR BCI with FES systems and tested the combined system in two patients
with high spinal cord injury [67,68].

Environmental Control
BCI-based environmental control could greatly improve the quality of life of severely disabled
people. People with severe motor disabilities are often home-bound. Effective means for
controlling their environments (e.g., controlling room temperature, light, power beds, TV, etc.)
would increase their well-being and sense of independence [88,93,121]. A recent pilot study
by Cincotti et al [88] attempted to integrate BCI technology into a domestic environmental
control system. With unified control through EEG-based BCI technology, the user is able to
operate remotely domestic devices such as neon lights and bulbs, TV and stereo sets, a
motorized bed, an acoustic alarm, a front door opener, and a telephone, as well as to monitor
the surrounding environment through wireless cameras. The clinical validation of the system
prototype took place in a simulated home environment in an occupational therapy department.
Fourteen healthy normal subjects and four subjects suffering from spinal muscular atrophy
type II (SMA II) or Duchenne Muscular Dystrophy (DMD) were tested. The patients were able
to control the system with an average accuracy of 60-75% over the last three testing session
(8-12 sessions in total). Preliminary findings from this study suggested that the self-control of
the domestic environment realized with BCI technology increased the patient's sense of
independence. Also, caregivers could be relieved to some extent from the need to be continually
present.

Locomotion
Restoration of independent locomotion is another important issue for paralyzed people. In light
of this, several BCI research groups have attempted to develop BCI-driven wheelchairs in order
to restore some form of mobility. Tanaka et al. developed an electric wheelchair controlled by
EEG [122]. Directional commands were detected by EEG and were then applied to direct
control of the wheelchair. Such precise control may be quite demanding on the user. Rebsamen
et al. reported a wheelchair controlled by a P300-BCI system [123] in which the user simply
selects a destination from a menu of destinations. While this approach is less demanding for
the user, the capacity for real-time directional control of the wheelchair is limited by the
selections, and prior definition of the possible paths is needed. Millán and his group studied a
BCI-controlled wheelchair that is based on the EEG activity associated with various mental
tasks and a shared control system [86,124]. It employed intelligent algorithms to assist the user
in obtaining continuous command of the system during wheelchair navigation. Further work
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is required to confirm the usability of a BCI-driven wheelchair in the real-world environment.
For this application, due to considerations of safety, there must be stricter requirements for
accuracy than for many other BCI applications.

Neurorehabilitation
In addition to their uses for communication and control, BCI systems also have potential to
serve as therapeutic tools to help people whose neuromuscular function has been impaired by
trauma or disease to relearn useful motor function. Neurorehabilitation using BCI systems
promotes functional recovery and may improve quality-of-life (QoL) [95]. This specific
application of BCI systems seeks to augment current rehabilitation therapies by reinforcing
and thereby increasing effective use of impaired brain areas and connections [125,126]. This
approach to rehabilitation was first evaluated with MEG signals in people with strokes, and
found cortical reorganization after BCI-based training [50].

In a recent review, Daly and Wolpaw [29] classified the possible BCI-based motor learning
strategies into two categories. In the first, patients are trained to produce more normal brain
activity to control motor function. This strategy is based on the idea that more normal activity
will result in more normal CNS function, and will thereby improve motor control. Since
preliminary results in stroke patients demonstrate that they can gain control of specific brain
activity patterns [50,73], a BCI might be used to enhance this control by measuring and
extracting EEG features that can be translated into feedback to the user. Daly and coworkers
[127] measured EEG activity from stroke patients before and after this EEG-based
neurorehabilition. After the motor re-learning intervention, EEG features were found to change
in parallel with improvement in motor function. Moreover, a recent study by Enzinger and
colleagues [128] reported that sensorimotor rehabilitation using BCI training and motor
imagery improved motor function after CNS injury.

The second strategy for producing improved motor control is to use the output from a BCI to
activate a device that assists movement. This approach is based on the hypothesis that the CNS
plasticity induced by the sensory input produced during the improved motor function provided
by the device will lead to improved motor control. In past studies, neurorehabilitation training
with robotic devices that assisted movement has been effective in stroke patients [129]. Daly
and coworkers have done promising preliminary work combining BCI with FES or assistive
robotics for motor re-learning in stroke patients [130]. BCI-based therapy might provide a
useful complement to standard neurorehabilitation methods, and might lower cost by reducing
the need for the constant presence of a rehabilitation therapist.

4. Limitations of Current BCIs
All of the BCIs currently under development have limitations. Issues of safety and the long-
term stability of the recording electrodes used in invasive BCI systems remain to be resolved
satisfactorily. Some, but not all of these concerns may be resolved when it becomes possible
to fully implant a telemetric device to transmit the recorded brain signals. Nevertheless, the
electrodes can be implanted in only a relatively small number of areas and can record from
relatively limited populations of cells. In contrast, EEG-based BCI systems, which are
noninvasive and do not require surgery or the long-term maintenance of implanted electrodes,
do not have the risks of surgery or the questions of long-term stability of the electrodes since
the electrodes are external and easily replaced. On the other hand, the brain signals detected
by EEG-based systems are relatively weak and of limited frequency range. Nevertheless, EEG-
based BCIs are currently adaptable for practical independent use by disabled people outside
of the laboratory [131] and are in fact currently in use by a small number of paralyzed people
at home in their daily lives [33]. Despite this achievement, continuing development of practical
EEG-based BCI systems is needed to address existing issues. The extent of available

Mak and Wolpaw Page 10

IEEE Rev Biomed Eng. Author manuscript; available in PMC 2010 May 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



independent control channels in such recordings remains to be determined. Continued
development of noninvasive BCI systems with multiple independent control channels could
substantially expand the capacity of BCI applications (e.g., multidimensional control of
neuroprosthesis).

Another possible obstacle to moving BCI technology into practical use is their demand on the
user's attention. Rapid fatigue of users has been previously reported in certain studies of BCI
control [49,123] and inconsistent performance by individual users is characteristic of most
methods. Ongoing changes in the user's performance (due to fatigue, distraction, disease
progression, etc.) require continuing adaptation of the BCI system. Some BCI applications
currently require an exhaustive series of user commands (e.g., different mental activation
tasks); these might be reduced by development of intelligent adaptation and learning
algorithms. Further advances in other areas, such as speed, accuracy, consistency, convenience,
and cosmesis, are also important for successful implementation of practical BCI systems.

5. Problems of Dissemination and Support
All current BCIs require significant efforts to set up, calibrate, and operate [1]. The kind and
degree of effort vary substantially across BCIs. LFP-, spike- or ECoG-driven BCIs require
surgery and constant monitoring of the scalp-port through which the wires run to the electrodes.
EEG electrodes, which can be applied in a few minutes, require periodic reapplications. Daily
recalibration may be needed (particularly for intracortical BCIs). A number of key issues have
to be addressed in order to transfer BCI technology from the laboratory to clinical setting
[30]. These include the ease and convenience of daily use, cosmesis, safety, reliability,
usefulness of the BCI applications in the user's daily life, and the need for ongoing expert
technical oversight. The cost of ongoing technical support may be high, and such support may
only be available from a few research groups. Therefore, the development of standardized BCI
systems with reduced complexity and minimal need for ongoing technical support is essential
for the widespread dissemination of BCI technology.

The physical and social circumstances of potential BCI users, including their home situation,
families, friends, and caregivers are also important. Unlike laboratory BCI systems, home BCI
systems must be compact and able to fit into the user's environment with little or no
inconvenience or disruption. In addition, home BCI systems must perform reliably in complex
and unstable environments that often contain sources of electronic noise such as ventilators.
Family or employed caregivers play an important role in the daily operation and maintenance
of BCI systems. For EEG-based systems to be used at home, it is necessary to train caregivers
in electrode application, recognition and correction of poor EEG signal quality, and initiation
of software operation. The development of more user-friendly electrodes, such as dry,
capacitance-based electrodes [132-134], could reduce the demands on caregivers.
Customization of BCI systems to suit the needs of the individual user is important. In addition,
to avoid unrealistic expectations and disappointment, users and their families should be made
aware of the modest capacities of present-day BCI technology [1]. Thus, thorough preliminary
discussions with prospective BCI users and their families and caregivers are important.

6. Expectations for the future
BCI research and development is a multidisciplinary effort involving neuroscientists,
engineers, applied mathematicians, computer scientists, psychologists, neurologists, and
clinical rehabilitation specialists. Although most of the published BCI literature to date
concerns development of improved signal processing or other engineering facets of BCI
technology, incorporation of professionals from all the above mentioned disciplines is critical
for success [135].
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As a field of practice and a subject of study, BCI technology is still in its infancy. Further
research on different components of BCI development is ongoing and challenging. These
include explorations of: useful brain signals; signal recording techniques; feature extraction
and translation methods; methods for engaging short- and long-term adaptations between user
and system so as to optimize performance; appropriate BCI applications; and clinical
validation, dissemination, and support.

Efforts have recently begun to translate laboratory-validated BCI technologies into home
systems for severely disabled individuals [33]. These home systems are currently limited to
applications for simple communication (e.g., word processing, speech synthesizing, and email,
etc) and simple environmental control (e.g., TV, room temperature, etc.) Widespread
dissemination of these BCI systems may be difficult, since the fact that the limited capacities
of current BCIs make them useful to only relatively small populations of users means that they
are unlikely to attract significant commercial interest. In response to this problem, a new
noncommercial option for BCI dissemination has recently been initiated
(www.braincommunication.org). Other BCI applications, such as restoration of motor
function, have been confined mainly to laboratory settings or limited lab-based demonstrations,
and are not yet being used in everyday life [17]. Further work in all these areas is needed for
BCIs to be validated and shown to be practical for the real-life environments of home-bound
users. The use of BCI applications in neurorehabilitation is another promising area that is as
yet still in its infancy.
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1.
(a) EEG-based BCI systems: i) Sensorimotor rhythm (SMR) BCI [83,109]. EEG activity is
recorded over the sensorimotor cortex. Users are trained to control the amplitude of the μ
rhythm (8-12 Hz) or the β rhythm (18-26 Hz) in order to move a computer cursor to a top target
or a bottom target on a computer screen. Frequency spectra for vertical cursor movement (top
or bottom target) indicate that the user's control focuses in the μ-rhythm frequency band.
Sample EEG traces (bottom) show that the μ rhythm is prominent with top targets and minimal
with bottom targets. An SMR BCI can provide two or even three-dimensional movement
control. (Adapted from Wolpaw JR et al [136], with permission from the Institute of Electrical
and Electronics Engineers); ii) P300 event-related potential BCI [6,19]. A matrix of possible
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selections is shown on a computer screen. EEG activity is recorded over the centroparietal
cortex while these selections flash in succession. Only the selection desired by the user elicits
a P300 potential (e.g., a positive voltage deflection about 300ms after the flash). (Adapted from
Donchin E et al [11], with permission from the Institute of Electrical and Electronics
Engineers);
(b) ECoG-based BCI systems: Sample topographies of vertical and horizontal control using
ECoG signals. These topographies show the color-coded correlation (i.e., r2 values) of the
cortical activity with vertical or horizontal movement. The level of task-related control of
different cortical areas is indicated. Actual and imagined tongue movements were used for
vertical control, while actual and imagined hand movements were used for horizontal control.
The traces below each topography show r2 values for the locations (stars) used online. The
frequency bands used online are indicated by yellow bars. Actual and imagined tasks presented
similar activity patterns over locations active with motor and motor imagery tasks. (Adapted
from Schalk G et al [20], with permission from the Institute of Physics Publishing);
(c) Intracortical-based BCI systems:
Top left panel - An example of a 100-microelectrode array for chronic implantation in human
motor cortex to record neuronal action potentials and/or local field potentials. Top right panel
- Placement of an electrode array in the human motor cortex (arrow). (Adapted from Hochberg
LR et al [18], with permission from Macmillan Publisher Ltd.) Bottom panel - three-
dimensional cursor movements by groups of individual neurons in the motor cortex of a
monkey; (left) average correlation of the firing rate of a single cortical neuron with target
direction over daily training sessions; (right) resulting improvement in BCI performance,
measured as the mean target radius required to maintain a 70% target hit rate. The size of the
target needed decreased as the correlations of the firing rates of the neurons controlling cursor
movement with the target direction increased. (Reproduced from Taylor DM et al [13], with
permission from the American Association for the Advancement of Science.)
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2.
Essential elements and operation of a BCI system (modified from Wolpaw JR et al [14], and
Leuthardt EC et al [36], with permission from Elsevier and Wolters Kluwer respectively). Brain
signals that carry the intent of the user are first acquired by electrodes placed on the scalp
(EEG), beneath the skull and over the cortical surface (ECoG), or within brain tissue
(intracortical). These brain signals are digitized, and specific signal features are extracted. The
extracted signal features are translated into device commands that activate and control assistive
technology used for: communication (e.g., spelling on a computer screen); movement control
(e.g., robotic arm) (Credit: Copyright Fraunhofer IPA)); environmental control (e.g., TV, light,
temperature, etc); locomotion (e.g., electric wheelchair); or neurorehabilitation (adapted from
Daly JJ et al [129], with permission from the Journal of Rehabilitation Research and
Development).
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