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Gamma oscillations of the electromagnetic field of the brain are known to be involved in a variety of
cognitive processes, and are believed to be fundamental for information processing within the brain. While
gamma oscillations have been shown to be correlated with brain rhythms at different frequencies, to date no
empirical evidence has been presented that supports a causal influence of gamma oscillations on other brain
rhythms. In this work, we study the relation of gamma oscillations and the sensorimotor rhythm (SMR) in
healthy human subjects using electroencephalography. We first demonstrate that modulation of the SMR,
induced by motor imagery of either the left or right hand, is positively correlated with the power of frontal
and occipital gamma oscillations, and negatively correlated with the power of centro-parietal gamma
oscillations. We then demonstrate that the most simple causal structure, capable of explaining the observed
correlation of gamma oscillations and the SMR, entails a causal influence of gamma oscillations on the SMR.
This finding supports the fundamental role attributed to gamma oscillations for information processing
within the brain, and is of particular importance for brain–computer interfaces (BCIs). As modulation of the
SMR is typically used in BCIs to infer a subject's intention, our findings entail that gamma oscillations have a
causal influence on a subject's capability to utilize a BCI for means of communication.
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Introduction

Higher-frequency oscillations of the electromagnetic field of the
brain, known as γ oscillations, have been associatedwith a diversity of
cognitive processes including attention (Bauer et al., 2006; Gruber
et al., 1999; Sokolov et al., 2004), short-term memory (Tallon-Baudry
et al., 1998, 1999; Jokisch and Jensen, 2007), motor control
(Crone et al., 1998; Pfurtscheller et al., 2003), and the integration of
different object features into a coherent percept (Engel et al., 2001;
Tallon-Baudry and Bertrand, 1999). One explanation for the ubiquity
of γ rhythms in cognitive processes is provided by the hypothesis that
γ rhythms constitute a fundamental mechanism of cortical informa-
tion processing, dynamically routing signals within a fixed anatomical
network (Fries et al., 2007). This hypothesis has gained further
support by recent evidence that γ oscillations are indeed linked to
performance in behavioral paradigms, providing information on
successful encoding of new verbal- (Sederberg et al., 2007) and
declarative memories (Osipova et al., 2006). It remains unclear,
however, how γ rhythms interact with other brain rhythms. While
recent studies have demonstrated cross-frequency correlations of γ
rhythms with electromagnetic oscillations at different frequencies
(Osipova et al., 2008; Canolty et al., 2006; Darvas et al., 2009; de Lange
et al., 2008), to date there is no direct evidence for a causal influence of
γ oscillations on other brain rhythms.

In this work, we study the relation of γ oscillations and the
sensorimotor rhythm (SMR) in healthy human subjects using
electroencephalography (EEG). The SMR is of particular importance
for research on brain–computer interfaces (BCIs), as modulation of
the SMR, typically induced by motor imagery (Pfurtscheller and
Neuper, 2001), constitutes the most frequently used paradigm in
research on BCIs (Mason et al., 2007). We first demonstrate that
modulation of the SMR, induced by motor imagery of either the left or
right hand, is positively correlated with the power of frontal and
occipital γ oscillations, and negatively correlated with the power of
centro-parietal γ oscillations. We then proceed to investigate the
causal relation of the SMR and γ oscillations, based on the framework
for causal inference developed by Pearl, Spirtes, and others (Pearl,
2000; Spirtes et al., 2000). Specifically, we investigate the dependency
structure of our empirical observations, and present strong evidence
that the observed dependence of γ oscillations and the SMR has been
generated by a causal structure in which γ oscillations exert a causal
influence on the SMR.We thereby present the first empirical evidence
for a cross-frequency causal influence of γ oscillations on other brain
rhythms, which supports the fundamental role attributed to γ
oscillations for information processing within the brain.

Our findings are furthermore of particular significance for research
on BCIs based on motor imagery. Since in BCIs modulation of the SMR
is typically used to infer a subject's intention, our findings entail that γ
oscillations have a causal influence on a subject's capability to utilize a
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BCI for means of communication. We thereby provide the first non-
trivial neurophysiological explanation for the large variation of BCI-
performance across subjects, which we consider to be crucial for
addressing the problem of “BCI-illiteracy”, i.e., the incapability of
about 20% of subjects to reliably communicate by means of a BCI
(Popescu et al., 2008). Specifically, our results indicate that subjects
should be trained to volitionally shift γ power from centro-parietal to
frontal and occipital regions in order to learn how to communicate by
means of a BCI.

Methods

Experimental paradigm

Subjects participated in an experiment consisting of right- and
left-hand motor imagery. Subjects were placed in a dimly-lit and
shielded room, approximately 1.5 m in front of a screen. Each trial
started with a centrally-displayed fixation cross. After three seconds,
the fixation cross was superimposed by an arrow pointing either to
the left or to the right, instructing subjects to initiate haptic motor
imagery of the left (class label −1) or right hand (class label +1),
respectively. The arrow was removed after further seven seconds,
indicating the end of one trial and instructing subjects to cease motor
imagery. A total of 150 trials per class were recorded for each subject
in pseudo-randomized order.

Data acquisition

Ten healthy subjects participated in the experiment (two female,
25.6±2.5 years old, eight right-handed). One subject (S3) had
already participated twice in a motor imagery experiment. All other
subjects had no previous experience with motor imagery or brain–
computer interfaces. No feedback was provided to the subjects during
the course of the experiment. During the experiment, a 128-channel
electroencephalogram (EEG) was recorded at 500 Hz sampling rate
using four BrainAmp amplifiers (BrainProducts GmbH, Munich).
Electrodes were placed on the scalp according to the extended 10–
20 systemwith electrode Cz used as the initial reference. EEG datawas
temporally filtered using a high-pass filter with a time constant of
10 s. For each subject, electrode impedances were below 10 kΩ at the
start of the experiment.

Data pre-processing

For each subject, we spatially filtered all channels of recorded EEG
data using a center-surround spatial sharpening filter or surface
Laplacian (McFarland et al., 1997). For each subject, trial, and spatially
filtered recording channel, we then estimated logarithmic bandpower
(using Welch's method) in the last seven seconds of each trial,
corresponding to the phase during which motor imagery was actually
performed, in frequency bands of 2 Hz width ranging from 7 to 85 Hz.
We performed no baseline correction, since baseline correctionwould
remove any non-task-specific modulatory effects. For the group-level
analysis, we standardized the logarithmic bandpower values of each
subject, channel and frequency band across the trials that comprised
that subject's dataset, and then pooled all trials across subjects,
resulting in a total of 3000 trials.

SMR lateralization score

In order to cope with the between-subject variation, we chose a
machine learning approach to compute the SMR. Specifically, we used
Fig. 1. Subject-specific classification accuracies and associated p-values (second column), sp
topographies of Pearson's correlation coefficients of broad-band γ power and subject perfo
a linear support vector machine (SVM) to classify the data segments
according to whether they corresponded to imagined left- or right-
hand movements. The input to the classifier consisted of logarithmic
bandpower features in the range of 7–40 Hz. We employed a leave-
one-trial-out procedure, in which we successively put each trial aside
and used the features of the remaining trials to learn theweight vector
of a linear SVM. Specifically, this was a ν support vector classifier
(Schölkopf et al., 2000), whose regularization parameter ν was found
by 10-fold cross-validation within the 299-trial training set each time.
For the group-level analysis, we performed a 10-fold cross-validation
rather than a leave-one-trial-out procedure due to computational
resources. The resulting weight vector was then applied to the feature
vector of the left-out trial(s). We thereby obtained a continuous-
valued score for each of the 300 trials of a given subject's dataset, or for
each of the 3000 trials in the group-level analysis. This score is
subsequently termed the SMR lateralization score, as its sign is
predictive of whether the trial is a left-hand (class label −1) or
right-hand (class label +1) trial and its absolute value reflects the
extent of SMR lateralization. Subjects' capability to modulate their
SMR was assessed by computing the mean classification accuracy, i.e.,
the percentage of trials in which the sign of the SMR lateralization
score coincided with the true class label.
SMR quality score

To obtain a trial-wise measure of how successfully subjects
modulated their SMR, we multiplied the SMR lateralization score
(positive for trials interpreted as right-, and negative for trials
interpreted as left-hand motor imagery) by the intended class label,
i.e. +1 for trials on which the subject was instructed to perform right-
hand imagery, and −1 for trials on which the instruction was to
perform left-hand imagery. A large positive value of the resulting SMR
quality score therefore indicates good, easily detectable motor-
imagery performance, a small value indicates undetectable motor
imagery, and a negative score would indicate motor imagery that
would actually be interpreted as the wrong class.
Correlation analysis

To investigate potential relations of γ oscillations with the extent
of SMR modulation, we computed Pearson's correlation coefficients
between the leave-one-out-estimated SMR quality score and broad-
band (55–85 Hz) γ power at each recording channel, resulting in a
topographic correlation map of γ power and SMR modulation. Note
that the definition of the γ band (in terms of lower and upper
frequencies) varies substantially in the literature. We chose 55 Hz as
the lower bound to avoid contamination by line noise and an arbitrary
upper bound of 85 Hz. In order to avoid multiple comparisons in
testing for a significant dependence of γ oscillations and the SMR, we
computed a global measure of γ power, weighted according to the
topographic correlation map. Specifically, we successively used all
except one trial to compute Pearson's correlation coefficients of the
SMR quality score with γ power at each recording channel, and then
linearly combined the resulting coefficient vector with the vector of γ
power across channels in the remaining trial. We thereby obtained
300 scalar values for each single-subject analysis (or 3000 for the
group-level analysis), corresponding to a global measure of γ power
correlated with SMR modulation. Subsequent statistical tests in the
Correlation of γ oscillations and SMR modulation section as well as in
the Causal influence of γ oscillations on SMRmodulation section refer
to this global measure of γ power.
atial and spectral features of the sensorimotor rhythm (third and fourth column), and
rmance as measured by the SMR quality score (fifth column).
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Statistical analysis

To test for statistically significant SMR modulation (i.e. classifica-
tion accuracy), we employed a binomial distribution to test the null-
hypothesis that classification accuracy Pe does not exceed chance
level, i.e., H0:Pe=50%. Statistical significance of Pearson's correlation
coefficients was assessed by performing a permutation analysis with
np=104 permutations after rejecting outliers not within two standard
deviations of the sample median. Non-linear independence tests in
the Causal influence of γ oscillations on SMRmodulation section were
based on the Hilbert–Schmidt independence criterion (HSIC) (Gretton
et al., 2008). The HSIC test utilizes a kernel independence measure,
capable of detecting linear as well as non-linear dependencies
between arbitrary input variables. The p-values of the HSIC tests
were computed using a permutation analysis with np=104 permuta-
tions. The kernel size for the HSIC tests was set to the median distance
between points in input space (Gretton et al., 2008).

Results

In order to assess the subjects' capability to modulate their SMR, we
computed group-level as well as single-subject classification accuracies
(percentage of trials in which the sign of the SMR lateralization
score corresponds to the intended movement imagination) and
associated p-values for rejecting the null-hypothesis that classification
accuracy equals chance level (second column of Fig. 1). With the
exception of subject S7, all subjects performed significantly above
chance level, with p-values close to or below the limits of 64-bit
precision. Classification results were also found to be highly significant
on the group level (top row of Fig. 1). The third and fourth column of
Fig. 1 show the subject-specific weighting assigned by the SVM training
procedure to each recording channel and frequency band: these were
obtained by averaging the absolute values of the weighting coefficients
over frequency or over electrodes, respectively. In agreement with
previous reports in literature on the SMR (Pfurtscheller and Neuper,
2001), logarithmic bandpower over sensorimotor areas in the so-called
μ band (roughly 9–14 Hz), and to a smaller extent in the β frequency
range (roughly 20–35 Hz), provided most information on the type of
motor imagery performed by a subject in a certain trial.

Having established that, with the exception of subject S7, subjects
were capable of intentionally modulating their SMR, we first present
single-subject as well as group-level results correlating γ power with
SMR modulation. We then proceed to present evidence that γ power
is not only correlated with SMR modulation, but does indeed exert a
causal influence on it.

Correlation of γ oscillations and SMR modulation

Topographic maps of Pearson's correlation coefficients between
the SMR quality score and bandpower in the γ range (55–85 Hz) are
shown in the fifth column of Fig. 1. On the group level (top row), this
revealed a distinct spatial structure with frontal and occipital γ power
positively correlated and centro-parietal γ power negatively corre-
lated with the SMR quality score. This structure is also readily visible
in the scalp maps of three out of ten subjects (S4–S6). Statistical tests
for significant correlation (as described in the Methods section)
rejected the null-hypothesis that the SMR quality score and γ power
were uncorrelated at significance level α=0.01 on the group level
(ρGroup=0.0786, pGroup=9.998×10−5, n=3000) as well as for
subjects S1, S3, S4, S5, and S6 on the single-subject level (ρS1=
− 0.2680, pS1= 9.998 × 10− 5; ρS2= 0.0809, pS2= 0.0904;
ρS3=0.1674, pS3=0.0026; ρS4=0.3715, pS4=9.998× 10− 5;
ρS5=0.1834, pS5=0.0008; ρS6=0.1621, pS6=0.0028; ρS7=
−0.0062, pS7=0.4579; ρS8=0.0267, pS8=0.3326; ρS9=0.0667,
pS9=0.1341; ρS10=0.0417, pS10=0.2355, n=300 for all single-
subject tests). We hence found a highly significant correlation of
SMR modulation and γ power on the group level as well as in five out
of ten subjects on the single-subject level.

Causal influence of γ oscillations on SMR modulation

The observed correlation of γ power and the SMR quality score is
not sufficient to establish a causal influence of γ oscillations on the
SMR. However, this causal influence can be determined (according to
the framework for causal inference developed by Pearl, Spirtes and
others (Pearl, 2000; Spirtes et al., 2000) by investigating which causal
structures are not supported by the empirical evidence. Let V={c,
SMRl, γ} the set of variables between which we wish to identify
cause–effect relations, with c denoting the instruction given to the
subject, i.e., c∈{−1, +1} representing motor imagery of the left or
right hand, SMRl the SMR lateralization score as discussed in the
Methods section, and γ the cross-validated estimates of power in the
broad γ band as described in the Correlation analysis section. Note
that the causal analysis in this section is based on the SMR laterality
score rather than on the SMR quality score that was employed for the
correlation analysis in the preceding section. This is motivated by the
consideration that the SMR quality score, being a function of the SMR
laterality score and the true class label of the respective trial, is not an
original brain signal, but rather an auxiliary variable that was
constructed to identify brain signals correlated with SMRmodulation.
In the causal analysis, however, wewish to identify causal interactions
between original brain signals and thus revert to the SMR laterality
score. This score, being computed by a cross-validation procedure, is
not confounded by the true class label of the respective trial, and thus
constitutes an unconfounded measure of the SMR. The argument put
forward in this section is based on the group-level analysis. Single-
subject results are presented in Supplementary Fig. 1.

In order to infer the causal structure that generated V, we require
the dependency structure between the elements of V. This informa-
tion can then be used to reject causal structures that are not in
agreement with the observed dependency structure. Importantly,
linear correlation test are not sufficient to obtain such a dependency
structure, as these might fail to detect non-linear dependencies and
may thus lead to incorrect causal conclusions. Accordingly, subse-
quent statistical independence tests utilize the non-linear HSIC
independence test introduced in the Methods section.

First, we performed an HSIC test for determining dependence of c
and γ. This test revealed that we cannot reject the null-hypothesis
that c and γ were independent (p=0.4415, HSIC=0.0542×10−3,
n=3000). Next, we tested c and SMRl. An HSIC test rejected the null-
hypothesis that c and SMRl were independent with p=9.998×10−5

(HSIC=26.9581×10−3, n=3000). This is in agreement with the fact
that we could infer c from SMRl above chance level, as indicated by the
classification accuracy score in the second column of Fig. 1. Third, we
performed anotherHSIC test for determiningdependence ofγ and SMRl.
This test rejected thenull-hypothesis thatγ and SMRlwere independent
with p=1.9996×10−4 (HSIC=0.3924×10−3, n=3000). We hence
found strong evidence for a dependence between c and SMRl as well as
for a dependence between SMRl and γ, as indicated by the highly
significant p-values. Conversely, we found no support for a dependence
between c and γ, with a p-value close to 0.5. Strictly, of course, the latter
finding on its own cannot be interpreted as conclusive proof for
independence, since it is impossible to quantify the evidence for the
acceptance of a null-hypothesis in the same way as one can for its
rejection. However, taken together these findings lead us to interpret
the data as supporting independence of c and γ. Accordingly, we
propose the dependency structure of V to be given by c↔SMRl↔γ,
where the presence of a ↔ denotes an observed dependence relation.

It then remains to orient the arrows in a way that reflects the
causal structure that generated V. The first arrow between c and SMRl

can be oriented as c→SMRl by prior knowledge, since we know by
virtue of the experimental paradigm that the instruction given to the



Fig. 2. Inferred causal graph (a) and proposed causal graph taking into account hidden
variables (b). SMR denotes modulation of the sensorimotor rhythm (as measured by
the SMR lateralization score), c denotes the type of motor imagery performed within
each trial, and γ denotes global broad-band (55–85 Hz) γ power within each trial,
weighted according to the spatial correlation structure as shown in the fifth column of
Fig. 1.
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subject is a cause of SMRl and not vice versa. Concerning the causal
relation between γ and SMRl, note that if the causal structure that
generated V were given by c→SMRl→γ, then γ and c would have to
be dependent. Since our data provide no support for rejecting
independence of c and γ, this strongly suggests the causal structure
c→SMRl←γ (Fig. 2.a). Accordingly, we propose that in the motor
imagery paradigm considered in this study, γ rhythms had a causal
influence on modulation of the SMR.

Discussion

In this work, we have provided empirical evidence that γ rhythms
have a causal influence on SMRmodulation during motor imagery. As
such, this study presents the first empirical evidence for a causal
influence of γ oscillations on other brain rhythms, supporting the
fundamental role attributed to γ rhythms for information processing
within the brain.

To provide a more intuitive understanding of the discovered
relation between γ oscillations and the SMR, Fig. 3 shows the actual
values of the SMR laterality score and γ power (as derived in the
Fig. 3. Relationship of the SMR laterality score and γ power (as derived in the Correlation a
300 trials.
Correlation analysis section) for all trials of subject S4. There are two
important issues to note in this figure. First, it appears that the relation
between the SMR laterality score and γ power is quadratic, i.e., highly
non-linear. This stresses the importance of the non-linear indepen-
dence tests employed in the causal analysis, as a linear correlation
analysis would have failed to detect this quadratic dependence.
Second, it is noteworthy that the values of the SMR laterality score of
both conditions are densely clustered for low values of γ power, but
are well separated across conditions for the high γ power regime.
Accordingly, classification of trials as left or right hand motor imagery
can be performed in subject S4 with almost perfect accuracy for high γ
power, yet it is very unreliable for low γ power.While we have chosen
to illustrate these issues on the subject showing the most prominent
relation of γ power and the SMR laterality score, the same (albeit
more noisy) relations can also be identified on the group level.

Regarding the causal analysis, it should be noted that the con-
clusion of a causal influence of γ oscillations on the SMR assumed no
hidden variables to be present. It is possible that both, γ oscillations
and the SMR, are not causally effective themselves, but are generated
by one or several unobserved causally effective processes. Indeed, it
is sensible to assume that the SMR is generated by some neural
substrate of motor imagery, while the observed γ rhythms are due to
neuronal networks subserving attentional processes. This causal
graph is shown in Fig. 2.b. Importantly though, even in this case the
empirical evidence suggests that the attentional processes, giving rise
to the γ rhythms, have a causal influence on the neural substrate of
motor imagery: a reversed causal influence of the neural substrate of
motor imagery on attentional processes would imply a dependence
between c and γ, for which we found no empirical evidence.

Naturally, it is still possible to construct architectures that deliver
the same results as those we observe, yet which are based on a causal
structure of the form c→SMRl→γ. For example, consider the causal
model SMRl=θ1c+�1 and γ=θ2|SMRl|+�2, for some constants-of-
proportionality θ and noise terms �. This model implies independence
of c and γ despite a causal influence of SMRl on γ. Note, however, that
the formulation required to explain the data in this way has a very
nalysis section) for subject S4 (dimensionless units). Each dot denotes one of a total of
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specific parameterization, relative to the much larger class of
mappings that can be chosen to explain the data given the causal
structure c→SMRl←γ. Occam's razor, also termed stability (Pearl,
2000) or faithfulness (Spirtes et al., 2000) in this context, therefore
leads us to favor the latter.

In principle, further evidence for this causal structure could be
provided by means of a multivariate analysis. As the causal structure
c→SMRl←γ implies the testable prediction that c and γ, though
independent in a bivariate analysis, are dependent when conditioning
on SMRl, a conditional independence test could provide further
support for a causal influence of γ oscillations on the SMR.
Unfortunately, a linear multivariate analysis, e.g., as in a structural
equation modeling framework, is not appropriate here due to the
non-linear relation of γ power and the SMR laterality score. Non-
linear conditional independence tests, on the other hand, are
currently limited in their practicality by the requirement to partition
(or in some way cluster) the variable to be conditioned on (cf.
(Fukumizu et al., 2008) for recent work on non-linear conditional
independence tests). Accordingly, non-linear conditional indepen-
dence tests remain unreliable for limited amounts of data. Ultimately,
only an interventional test, e.g., by neurofeedback programmes
enabling volitional control of γ power, can prove a causal influence
of γ rhythms on the SMR.

Regarding practical implications, our results are of particular
significance for development of BCIs. As modulation of the SMR is
typically used in BCIs to infer a subject's intention, our findings
imply that γ oscillations have a causal influence on a subject's
capability to utilize a BCI for means of communication. This may
provide a means to address the problem of so-called “BCI-illiteracy”
(Popescu et al., 2008): it is unknown why about 20% of all subjects
are incapable of modulating their SMR sufficiently to achieve reliable
communication by means of a BCI. Our results suggest that this
incapability is (at least partially) caused by an insufficient shift of γ
power from centro-parietal to frontal and, to a lesser extent, to
occipital regions.

The behavioral correlate of this topographic alteration of γ power,
however, remains unknown. Increased γ power over frontal areas has
been associated with selective attention in auditory paradigms
(Tiitinen et al., 1993) as well as with stimulus retention in short-
term memory (Tallon-Baudry et al., 1998). Analogously, we speculate
that the shift of γ power from centro-parietal to frontal and occipital
regions reported here also reflects attentional processes. However, as
this is the first report of the involvement of frontal γ oscillations in a
motor-related paradigm, the specific role of this shift for motor
imagery requires further investigation. Accordingly, we propose to
provide subjects with feedback on the topographic distribution of γ
power in order to determine the attentional processes associated with
a shift of γ power from centro-parietal to frontal and occipital regions.
These insights might then be used to provide BCI-illiterate subjects
with specific instructions on how to alter the topographic distribution
of γ power and hence enhance BCI-performance.

It is furthermore noteworthy that our results may help in the
discrimination of intentional-control from no-intentional-control states
(the latter meaning situations in which the user is not paying
attention to the interface, or is taking time to think without wanting
the interface to detect an action).

Finally, it is worth pointing out that the methodology employed
here to uncover causal relations in brain imaging data can in principle
be applied to a wide range of problems: if two brain processes A and B
are found to be dependent, yet a set of experimental conditions C can
be found that affect only A, then this supports the hypothesis that B is
a cause of A by means of the causal analysis employed in this study.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.neuroimage.2010.04.265.
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