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Brain–computer interfaces in neurological rehabilitation
Janis J Daly, Jonathan R Wolpaw

Recent advances in analysis of brain signals, training patients to control these signals, and improved computing 
capabilities have enabled people with severe motor disabilities to use their brain signals for communication and 
control of objects in their environment, thereby bypassing their impaired neuromuscular system. Non-invasive, 
electroencephalogram (EEG)-based brain–computer interface (BCI) technologies can be used to control a computer 
cursor or a limb orthosis, for word processing and accessing the internet, and for other functions such as environmental 
control or entertainment. By re-establishing some independence, BCI technologies can substantially improve the 
lives of people with devastating neurological disorders such as advanced amyotrophic lateral sclerosis. BCI technology 
might also restore more eff ective motor control to people after stroke or other traumatic brain disorders by helping to 
guide activity-dependent brain plasticity by use of EEG brain signals to indicate to the patient the current state of 
brain activity and to enable the user to subsequently lower abnormal activity. Alternatively, by use of brain signals to 
supplement impaired muscle control, BCIs might increase the effi  cacy of a rehabilitation protocol and thus improve 
muscle control for the patient.

Introduction
Motor recovery is not possible at present for patients with 
progressive diseases, such as amyotrophic lateral sclerosis 
(ALS), multiple sclerosis, or Parkinson’s disease, or for 
many patients with severe trauma due to stroke, cerebral 
palsy, or injury to the spinal cord or brain. Although 
some innovative rehabilitation strategies have shown 
potential in randomised controlled trials,1–5 available 
rehabilitation methods do not restore normal or near 
normal motor function and quality of life in most 
patients. Therefore, it is important to develop more 
eff ective alternative methods for people with motor 
disabilities. 

Recently, there has been much interest in developing 
brain–computer interface (BCI) technology to help 
improve the quality of life and to restore function for 
people with severe motor disabilities. There are two ways 
that BCI systems can facilitate rehabilitation in people in 
whom disease or trauma has abolished or severely 
impaired muscle control. The fi rst strategy is 
straightforward and has already been the focus of a 
considerable body of research. BCI systems can substitute 
for the loss of normal neuromuscular outputs by enabling 
people to interact with their environment through brain 
signals rather than through muscles.6 Thus, for example, 
a person can use electrophysiological signals such as 
electroencephalographic (EEG) activity or cortical 
neuronal activity to indicate “yes” or “no” to control a 
cursor on a computer screen or to control a neuroprosthetic 
arm. The second use of BCI technology is more complex 
and has only recently started to be studied. BCIs might 
restore motor function by inducing activity-dependent 
brain plasticity to restore more normal brain function; 
they could help to guide brain plasticity by aff ecting 
motor learning, for example, by demanding close 
attention to a motor task or by requiring the activation or 
deactivation of specifi c brain signals. 

The recent, rapid growth of BCI research and 
development eff orts suggests the confl uence of four 
factors. The fi rst is the increased understanding of the 

characteristics and possible uses of brain signals gained 
from extensive research in animals and human beings 
over the past decades. The second factor is the recognition 
that activity-dependent plasticity occurs throughout the 
CNS and across the lifespan, and thus can have a 
substantial infl uence in determining the (positive or 
negative) functional eff ects of disease and trauma. The 
third factor is the widespread availability of powerful 
low-cost hardware and software programs for recording 
and analysing brain signals during real-time online 
activities. The fi nal factor is the increased societal 
interest and appreciation of the serious needs and 
impressive potential of  people with severe motor 
disabilities. 

This Review describes the principles of BCI technology 
and discusses the current status and future prospects of 
BCI methods for providing non-muscular control and 
communication to people with severe motor disabilities. 
The status and future prospects of BCI methods for 
inducing and guiding brain plasticity to restore eff ective 
neuromuscular function to people with severe motor 
disabilities will also be reviewed. 

BCI technologies
BCI systems enable a new real-time interaction between 
the user and the outside world. Signals that indicate the 
brain activity of the user are translated into an output (eg, 
cursor movement). The user receives feedback on this 
output, which in turn aff ects the user’s brain activity and 
infl uences subsequent output. Therefore, if a person 
uses a BCI to control a neuroprosthetic arm, the position 
of the arm after each movement will infl uence the 
person’s intent for the next movement and aff ect the 
brain signals that encode that intent. A system that 
simply records and analyses brain signals and does not 
provide the results of the analysis to the user in a real-
time interactive way is not a BCI. Figure 1 shows the 
main components of a BCI system. The description of 
BCI methods (see below) can be applied to BCIs that 
either substitute for or enhance neuromuscular output.
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Brain signals for BCIs
Brain signals can be detected and measured in many 
ways; these include the use of methods for recording 
electrical or magnetic fi elds, functional MRI, PET, and 
functional near-infrared imaging (fNIR). At present, 
magnetoencephalography, functional MRI, and PET are 
not suitable for widespread everyday use owing to their 
complex technical requirements, expense, and limited 
real-time capabilities. Only electrical fi eld recording and 
possibly fNIR8,9 are likely to be of practical value for 
clinical use in the near future.

Figure 1 shows that the electrical fi elds that result 
from brain activity can be recorded at the scalp (EEG 
activity), at the cortical surface (electrocorticographic 
[ECoG] activity), or within the brain (local fi eld potentials 
or neuronal action potentials [spikes]). Each method 
has its own advantages and disadvantages. EEG 
recording is simple and non-invasive, but has limited 
topographical resolution and frequency range. In 
addition, EEG recordings are susceptible to 
contamination from electro-oculographic or electro-
myographic activity from cranial muscles. ECoG and 
intracortical methods have better topographical 
resolution and wider frequency ranges, but implantation 
of electrode arrays on the cortical surface or within the 
brain is needed. Concerns about safety, the risk of tissue 

reaction, and long-term recording stability still need to 
be addressed.

The ultimate practical value of each of these methods 
will depend on which communication and control 
applications can be supported and on the extent to which 
the disadvantages can be overcome. The problem in 
determining the comparative value of non-invasive (ie, 
EEG) methods, moderately invasive (ie, ECoG) methods, 
and more invasive (ie, intracortical) methods has not yet 
been resolved. Although it is possible that practical, stable, 
and safe methods for the long-term recording of signals 
within the brain will soon be available, the speed and 
precision of communication and control that are possible 
with intracortical recording might not be much higher 
than is possible with less invasive methods.10 At present, it 
seems probable that diff erent recording methods will be 
useful for diff erent applications, diff erent users, or both. 
Careful and comprehensive assessments of the 
characteristics and capabilities of each of the alternatives 
are crucial. Experience of BCI research in human beings 
has so far primarily involved non-invasive EEG-based 
investigations.6 There are a few reports of short-term 
ECoG studies:11 so far, only limited data are available from 
people who have had intracortical electrode implants,12–14 
and most intracortical BCI data have been obtained from 
animal studies (primarily from monkeys).15–20 
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Figure 1: Overview of a BCI system
(A) Design and operation of a BCI system. Electrophysiological signals that indicate brain activity are obtained from the scalp, the cortical surface, or within the 
brain and are analysed to derive particular signal features (such as amplitudes of event-related potentials, EEG rhythms, or fi ring rates of single neurons). These 
features are translated into commands that operate an output device, such as a word-processing program, a wheelchair, or a neuroprosthetic limb. Adapted 
from Wolpaw JR et al,6 with permission from Elsevier. (B) Recording locations for electrophysiological signals used by BCI systems. EEG activity is recorded using 
electrodes on the scalp. ECoG activity is recorded using electrodes on the cortical surface. Action potentials from single neurons or LFPs are recorded using 
electrode arrays implanted in the motor cortex or in other brain areas. Adapted from Wolpaw JR et al,7 with permission from Cambridge University Press. 
LFP=local fi eld potential.
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Signal processing
BCI technology is used to record and analyse brain 
signals to determine the output that is desired by the 
user (eg, which letter to select for spelling a word, which 
direction to move a cursor, and so on). This signal 
processing stage has two phases. The fi rst phase is 
feature extraction, which is the measurement of the 
characteristics of the signals that encode the output. 
These features can be simple measures, such as the 
amplitudes of particular evoked potentials (eg, P300) or 
of particular rhythms (eg, sensorimotor rhythms) in the 
EEG, or the fi ring rates of individual cortical neurons, 
or they can be more complex measures, such as spectral 
coherences. To provide eff ective BCI performance, the 
feature-extraction component of the signal processing 
stage needs to focus on features that encode the relevant 
output (eg, the letter the user wants for spelling a word) 
and needs to extract those particular features 
accurately.

The second phase of BCI signal processing is the 
translation of these signal features into device commands 
using a translation algorithm. Brain signal characteristics 
such as rhythm amplitudes or neuronal fi ring rates are 
translated into commands that specify outputs, such as 
letter selection, cursor movement, or prosthesis 
operation. Translation algorithms can be simple (eg, 
linear equations) or complex (eg, neural networks, 
support vector machines).

An eff ective translation algorithm ensures that the 
user’s range of control of the chosen features enables 
selection of the entire range of device commands. For 
example, the characteristic feature might be the amplitude 
of a 21–24 Hz β-rhythm in the EEG recording over the 
left sensorimotor cortex, which the user can vary over a 
range of 1–5 μV. Therefore, if the application is designed 
for a horizontal cursor movement, the translation 
algorithm must ensure that the 1–5 μV range enables the 
user to move the cursor to both the right and left edges of 
the screen. Furthermore, the algorithm must 
accommodate spontaneous variations in the user’s range 
of control, such as those due to diurnal change or fatigue. 
Finally, the translation algorithm should also be able to 
accommodate and advance improvements in the control 
of the user. Thus, if the user’s range of control improves 
from 1–5 μV to 1–8 μV, the algorithm should use this 
improvement to increase the speed and precision of 
cursor movement.

The ability of BCI technology to accommodate and 
facilitate adaptations of the system to the user and of 
the user to the system is crucial. Thus, the ability of the 
translation algorithm to continually adjust for 
spontaneous adaptations and for other changes in the 
signal features is important. New algorithms must be 
evaluated online (ie, in real-time use) as well as offl  ine 
(ie, through analysis of past data) so that the eff ects on 
BCI performance of the adaptive interactions of the new 
algorithm with the user can be determined. Online 

evaluation should take place over short-term and long-
term periods, because important adaptive interactions 
often develop gradually. Furthermore, simple algorithms 
(eg, linear equations21) have an inherent advantage 
because the essential ongoing adaptation of the 
algorithm to the user is typically simpler and more 
eff ective than for the more complex algorithms, such as 
neural networks22 or support vector machines.23 Simple 
algorithms should be replaced by more complex 
alternatives only if online and offl  ine evaluations 
suggest that they provide superior long-term support 
without continual and arduous recalibration 
procedures.24

Learning to use BCIs 
Plasticity in neurons and synapses of the CNS supports 
the learning of new information and the acquisition of 
new skills. Adaptive changes occur in neurons and 
synapses throughout the CNS from the cortex to the 
spinal cord25,26 in initial development and across the 
lifespan.27–29 The cognitive abilities and motor skills that 
indicate the intent of a person (eg, speaking, walking, or 
playing the piano) are acquired and maintained by these 
normal and ongoing adaptations in the CNS.  

When the pathways for normal motor function are 
interrupted, BCIs can use brain signals as an alternative 
channel for communication or device control, or 
potentially as a way to infl uence brain plasticity processes 
that could induce recovery of normal motor control. The 
process of learning to operate a BCI device depends on 
principles of neural plasticity that are similar to those for 
a conventional learning process. In this case, the learning 
system is composed of two adaptive controllers: the brain 
of the BCI user and the BCI software. The BCI user 
produces brain signals that encode his or her intent and 
the BCI system brings about translation of these brain 
signals into commands that carry out the desired action. 
For example, people learning to use a sensorimotor 
rhythm-based BCI system typically begin by using various 
kinds of motor imagery to modify rhythm amplitudes. As 
training proceeds, the actual or imagined movements 
become less important, the use of a BCI system becomes 
more automatic (similar to conventional muscle-based 
skills), and the user controls the cursor with brain signals 
alone, without muscle activity. Virtual reality environments 
might be useful in facilitating control of these 
applications.30

Therefore, the eff ective use of a BCI is a skill that both 
the user and the system acquire and maintain. The user 
encodes intent within brain signal features that the BCI 
can measure, and the BCI measures these signal features 
and translates them into output commands. The ongoing 
dependence on the mutual adaptation of the user to the 
system and the system to the user is a basic principle of 
BCI operation. Proper management of this adaptation is 
one of the most diffi  cult and important challenges of BCI 
research and development.
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BCIs for communication and device control
As described above, three types of BCI technologies have 
been developed on the basis of diff erent brain signal 
recording methods: scalp recordings (EEG-based BCIs); 
cortical recordings (ECoG-based BCIs); and recordings of 
neuronal action potentials or local fi eld potentials within 
the brain (intracortical BCIs). Here, we review these types 
of BCI technologies, their potential users, and their 
applications. 

EEG-based BCIs
Three kinds of EEG-based BCI technologies have been 
tested in human beings. These types of BCIs are 
distinguished by the particular EEG features that they use 
to determine the user’s intent. Figure 2A shows an EEG-
based BCI31,33 that focuses on the P300 event-related brain 

potential. The P300 signal appears in the EEG recording 
over central cortical areas about 300 ms after a salient or 
attended stimulus. In most P300-based BCI technologies 
described so far, the stimulus is visual. In the typical P300 
BCI format, letters, numbers, or other visual stimuli are 
arranged in a matrix, and the rows and columns of the 
matrix fl ash in rapid succession while the user focuses 
attention on the item that he or she wishes to select. Only 
the row and column that contain the specifi c item will 
produce a P300 potential. By recognising this P300 
potential, the BCI system can determine the user’s 
selection. At present, this BCI method can enable users to 
communicate at rates of 20–30 bits/min.37,38 In 
combination with appropriate software (eg, word 
prediction), this system can support word processing at 
rates of up to 2–4 words/min. Even though these 
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Figure 2: EEG-based BCI systems 
(A) P300 event-related potential BCI.31,32 A matrix of possible selections are shown on a screen. Scalp EEG signals are recorded over the centroparietal cortex while these 
selections fl ash in succession. The left panel shows that only the selection desired by the user will evoke a large P300 potential (ie, a positive potential about 300 ms after the 
fl ash). Adapted from Donchin E et al,33 with permission from the Institute of Electrical and Electronics Engineers. The right panel shows involvement of the centroparietal 
cortex. (B) Sensorimotor rhythm BCI.6,21,34,35 Scalp EEG signals are recorded over the sensorimotor cortex. Trained users control the amplitude of a 8–12 Hz μ-rhythm (or a 
18–26 Hz β-rhythm) to move a cursor to a target at the top or bottom of the screen, or to targets at intermediate locations on the screen. The left panel shows the frequency 
spectra (top) for targets at the top and bottom of the screen and that this user’s control is focused in the μ-rhythm frequency band. In addition, the left panel shows sample 
EEG traces (bottom) and that the μ-rhythm is prominent with the target at the top of the screen and minimal with the target at the bottom of the screen. Adapted from 
Wolpaw JR et al,36 with permission from the Institute of Electrical and Electronics Engineers. In the right panel, scalp topography indicates that control is focused over the right 
sensorimotor cortex. Users who are well trained with BCI systems can also control movement in two or three dimensions. 



1036 www.thelancet.com/neurology   Vol 7   November 2008

Review

communication rates are low, by restoring the ability for 
independent communication, a P300-based BCI can 
greatly improve the quality of life of the user and of family 
members and caregivers.39 Continuing improvements in 
stimulation formats and brain signal analysis are likely to 
increase these communication rates substantially in the 
future.

Figure 2B shows a BCI system using sensorimotor 
rhythms.21,22,34,35,40–43 These rhythms are 8–12 Hz (μ) and 
18–26 Hz (β) oscillations in the EEG signals recorded 
over sensorimotor cortices. μ-rhythm and β-rhythm 
amplitudes typically change with movement, sensation, 
and during motor imagery. Results from BCI studies 
have shown that people can learn to control μ-rhythm or 
β-rhythm amplitudes in the absence of any movement or 
sensation, and can use this control to move a cursor to 
select letters or icons on a screen or to operate a simple 
orthotic device. Both one-dimensional and two-
dimensional cursor control,21 and even three-dimensional 
cursor control,44 can be achieved. Similar to P300-based 

BCIs, sensorimotor rhythm-based BCIs can support 
basic word processing or other simple functions. These 
systems might also support multidimensional control of 
the movements of a neuroprosthetic limb or a device 
such as a robotic arm. At present, the speed and precision 
of the multidimensional movement control achieved in 
human beings by sensorimotor-rhythm-based BCIs21,44 

equals or exceeds that achieved so far with invasive 
methods.12,14 An EEG-based BCI can also recognise and 
use slow cortical potentials (SCPs), which last from 
300 ms to several seconds.45–47 In normal brain function, 
negative SCPs accompany preparatory depolarisation of 
the underlying cortical network, whereas positive SCPs 
are thought to refl ect cortical disfacilitation or inhibition. 
With substantial training, control of SCPs to produce 
positive or negative voltage shifts can be learnt and used 
for basic word processing and other simple control tasks, 
such as accessing the internet.45–47

Available P300-based, sensorimotor rhythm-based, or 
SCP-based BCIs rely mainly on visual stimuli and visual 
feedback. Thus, although they do not depend on eye 
movements, they do need the user to be able to see and to 
maintain gaze. People who are severely disabled might 
not have the visual acuity or gaze stability needed to see 
the visual stimuli associated with BCI use, particularly if 
the stimuli change rapidly. Thus, BCI systems that use 
auditory rather than visual stimuli would be preferable, 
or even crucial, for some users, and such systems are 
being investigated.48

ECoG-based BCIs
Figure 3 shows a BCI system that uses sensorimotor 
rhythms in ECoG signals from electrode arrays on the 
cortical surface to implement a desired action.11,49 ECoG 
recordings include μ-rhythms and β-rhythms, as well as 
the higher frequency gamma (30–200 Hz) rhythms, 
which are small or not visible in EEG recordings. With 
adequate electrode spacing, ECoG recordings can be 
used to detect activity limited to only a few mm² of 
cortical surface. At present, ECoG studies have been 
limited to short-term experiments in patients who were 
temporarily implanted with electrode arrays before 
surgery for epilepsy.11,49 The results from these studies 
show sharply focused ECoG activity associated with 
movement and sensation and with motor imagery. 
Furthermore, the use of motor imagery to infl uence 
ECoG rhythm amplitudes to control cursor movements 
can be learnt with only a few minutes of training.

Some characteristics of ECoG-based BCI technologies 
suggest that they might provide substantially better 
communication and control than do EEG-based BCIs. 
One characteristic is the speed of learning of the user, 
which seems to be faster than that typically found with 
sensorimotor rhythms in scalp-recorded EEGs; 
furthermore, ECoG-based BCIs have a superior 
topographical resolution and wider spectral range than 
EEG-based BCIs, and an absence of contamination from 
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Figure 3: An ECoG-based BCI
ECoG control of vertical cursor movement using specifi c motor imagery to move the cursor up and rest (ie, no 
imagery) to move it down. The electrodes used for control are circled and the spectral correlations of their 
respective ECoG activity with target location (ie, top or bottom of screen) are shown. The specifi c imagined actions 
used are indicated. The signifi cant levels of control achieved with diff erent kinds of imagery are apparent (the 
dashed horizontal lines indicate signifi cance at p=0·01). The solid and dotted r² spectra shown for patients B and C 
correspond to the sites indicated by the dotted and solid line locators, respectively. Modifi ed from 
Leuthardt EC et al,11 with permission from the Institute of Physics.
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electromyographic, electro-oculographic, or other non-
brain signals. Widespread use of ECoG-based BCIs will 
need the development of fully implanted systems (ie, 
systems that use telemetry and thus do not have wires 
passing through the skin) and defi nitive evidence that 
these systems can function safely and reliably for many 
years.

Intracortical BCIs
Figure 4 shows a multi-electrode array for intracortical 
recording and the placement of the array within the motor 
cortex. Results from intracortical BCI studies in monkeys 
and, to a lesser extent, in human beings, show that single-
neuron activity recorded from multi-electrode arrays can 
be used to move a cursor in one, two, or three 
dimensions.12,13,15–20 Local fi eld potentials, which can be 
detected by these arrays and indicate nearby synaptic and 
neuronal activity, might be able to provide similar 
multidimensional cursor control.50 The standard approach 
in intracortical single-neuron and local fi eld potential 
studies has been to defi ne the neuronal activity that 
accompanies standardised limb movements, to use this 
activity for simultaneous control of comparable cursor 
movements, and to show that neuronal activity alone can 
control cursor movements without actual limb 
movements. As shown in fi gure 4, the relation between 
neuronal activity and cursor movements can change over 
time; ideally, neuronal activity adapts over training 
sessions to improve cursor control. This adaptation, as 
with the adaptations seen with EEG-based and ECoG-
based BCI technologies, shows the need for the initial 
and continuing mutual adaptation of the system to the 
user and the user to the system. 

The main concerns that must be dealt with before 
intracortical BCI technologies can be used clinically 
include the following: long-term safety; the stability and 
duration of the signals; tissue reactions to the implanted 
electrodes; the long-term usefulness of the signals; and 
the extent to which the control capabilities of the device 
(eg, for control of a neuroprosthetic limb) can exceed 
those of less invasive BCI systems. With regard to this last 
concern, a comparison of two videos51,52 indicates that a 
non-invasive EEG-based BCI that uses sensorimotor 
rhythms51 can provide cursor control that is similar in 
speed and accuracy to that achieved with intracortical 
methods.52

Potential users
At present, BCI technologies are likely to be useful mainly 
for people for whom conventional assistive communication 
methods are not eff ective, because severe motor 
disabilities will preclude their use of voluntary muscle 
control on which conventional methods depend. Those 
most likely to benefi t include people with ALS who decide 
to accept artifi cial ventilation to prolong life as the disease 
progresses, children and adults with severe cerebral palsy 
who do not have useful muscle control, patients with 

brainstem strokes who have only minimal eye movement 
control, individuals with severe muscular dystrophies or 
peripheral neuropathies, and possibly people with acute 
disorders causing extensive paralysis (eg, Landry-Guillain-
Barré syndrome). People with slightly less severe 
disabilities, such as patients with high cervical spinal cord 
injuries, might also prefer BCI technology to conventional 
assistive communication methods because conventional 
methods require use of their remaining voluntary muscle 
control (eg, methods that depend on gaze direction or 
electromyographic activity of facial muscles). The extent 
to which future BCI technologies can benefi t people with 
less severe disabilities will depend on the speed and 
precision of the control that the BCI systems can provide 
and on the reliability and convenience of the BCI 
technology.

The specifi c BCI methods that are most eff ective for 
people with diff erent disabilities might vary according to 
individual needs or brain signals aff ected as a result of 
the particular underlying CNS abnormality.53 For example, 
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Figure 4: Intracortical BCIs
The top left panel shows an example of an array of 100 microelectrodes that would be chronically implanted in the 
motor cortex of a human being to record neuronal action potentials and local fi eld potentials to control a cursor or 
other device. The top right panel shows the placement of an array in the motor cortex of a human being (arrow). 
Adapted from Hochberg LR et al,14 with permission from Macmillan Publishers Ltd. The bottom panel shows 
control of three-dimensional cursor movements by individual neurons in the motor cortex of a monkey. In the left 
graph, improvement over daily training sessions is shown, measured as the average correlation of the fi ring rate of 
a single cortical neuron with target direction. In the right graph, the resulting improvement in motor function is 
shown, measured as the mean target radius required to maintain a 70% target hit rate. As the fi ring rates of the 
neurons that are controlling cursor movement become more strongly correlated with target direction, the size of 
the target can be reduced. Reproduced from Taylor DM et al,17 with permission from the American Association for 
the Advancement of Science. 
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the pathology in the motor cortex that can occur in 
patients with ALS or the subcortical damage that is 
present in patients with severe cerebral palsy might 
impair the generation or control of sensorimotor rhythms 
or single-neuron activity (although available data suggest 
that this might not be true for ALS54). In these patients, 
other brain signals (eg, P300 potentials or neuronal 
activity from other brain areas) might be eff ective 
alternatives.

Many other factors might considerably aff ect the success 
of BCI applications. For example, the decision to adopt a 
BCI system and use it in everyday life might depend on 
concerns such as the convenience and complexity of the 
steps required for applying and removing electrodes and 
for accessing the BCI applications, or the user’s appearance 
while operating the BCI.

Applications
BCI technologies have many possible applications, 
ranging from simple to complex. Simple BCI applications 
have been validated in the laboratory and are in limited 
clinical use. These include systems for answering “yes” 
or “no” to questions, managing basic control of the user’s 
environment (eg, lights and temperature), controlling a 
television, or opening and closing a hand orthosis. These 
simple systems can be confi gured for basic word 
processing, sending emails, accessing the internet, or 
operating a motorised wheelchair. Such basic BCI 
applications might enable people who are almost totally 
paralysed (ie, “locked-in”) to have a higher quality of life 
that can also be productive. Many studies have indicated 
that, with proper supportive care and the capability for 
basic communication, severely paralysed patients can 
have what they regard to be a reasonable quality of life 
and are only a little more likely to be depressed than are 
people without motor disabilities.54–57 Some people who 
are severely disabled currently use EEG-based BCI 
systems for important purposes in their daily lives—for 
example, a neuroscientist with ALS has used a BCI 
system to run his National Institutes of Health-funded 
research programme since 2006.58 

BCI technologies might also support more complex 
applications such as the operation of a robotic arm or a 
neuroprosthetic limb that provides multi dimensional 
movement to a paralysed limb. Although many eff orts 
are focusing on developing invasive BCI systems for 
these complex uses,11–13,15–20,49 non-invasive EEG-based 
BCIs might also serve these purposes.21,44 The future 
importance of such BCI applications will depend on their 
capacities, practicality, and reliability, their acceptance by 
particular groups of users, and on the extent to which 
they have substantial advantages over conventional 
assistive technology.

Careful assessment is needed to establish the practical 
value of BCI technologies to restore communication and 
control: the long-term reliability of BCIs, the extent to 
which people use them in their daily lives, and whether 

use improves mood, quality of life, and productivity of 
the user need to be proven. Specifi c applications that 
focus on each user’s individual needs, desires, and 
physical and social environments will need to be 
confi gured frequently, particularly in the early stages of 
development of a BCI. Although the cost of BCI 
equipment is modest, current systems require substantial 
and ongoing technical support, which is very expensive 
and available only from a few research groups. Therefore, 
BCI systems are not available to most potential users at 
present. Widespread dissemination of BCI systems to 
those who would benefi t from them will depend on the 
extent to which the need for continuing technical support 
can be minimised—BCI systems need to be easy to set 
up, easy to use, and easy to maintain if they are to have a 
substantial salutary eff ect on the lives of people with 
severe motor disabilities. 

BCIs for restoring normal CNS function
Since the fi rst description of EEG by Berger,59 these brain 
signals have been used mainly for clinical diagnosis and 
for investigating brain function. At the same time, there 
have been investigations into the therapeutic use of EEG 
signals. For example, in work fi rst initiated several 
decades ago, training people to control EEG features was 
studied as an intervention to decrease seizure frequency 
in people with epilepsy, to ameliorate attention-defi cit 
hyperactivity disorders, or to treat other disorders.60–65 
These studies have focused mainly on producing long-
term unidirectional changes (ie, an increase or decrease 
in particular EEG features) rather than on producing the 
rapid bi-directional changes needed for the real-time 
control of a BCI system. The history and current status of 
these eff orts are dealt with elsewhere.60–65 We focus on a 
new potential BCI therapeutic initiative that has begun 
only in the past several years and is generating substantial 
interest—the use of EEG-based BCI protocols to improve 
volitional motor control that has been impaired by trauma 
or disease.

When developing new methods to restore motor 
function, it is important to use available scientifi c 
evidence and target the impairment or pathology as 
directly as possible.66 The most credible, evidence-based 
framework for creating an eff ective motor re-learning 
intervention after brain injury is that of activity-dependent 
CNS plasticity.25–29 In an intact nervous system, activity-
dependent CNS plasticity results in learning that changes 
motor function. Activity-dependent CNS plasticity is not 
limited to the healthy nervous system and can occur with 
trauma or disease; this plasticity can include changes at 
synaptic, neuronal, and circuit levels.67–81 Stroke is 
followed by extensive plasticity in the cortex and 
elsewhere, as has been shown in animals25,29,82–86 and in 
human beings.87–94 After CNS disease or damage (such as 
after stroke), activity-dependent plasticity can positively 
or negatively aff ect the nervous system. Plasticity might 
lead to the restoration of more normal motor function 
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but if repetitive abnormal movements are made, activity-
dependent plasticity might solidify or even exacerbate 
abnormal motor function. 

For successful restoration of CNS function, interventions 
that induce activity-dependent brain plasticity must be 
properly identifi ed and targeted.66 Current standard care 
approaches to restoring motor function focus on 
interventions at the periphery of the body, specifi cally the 
upper and lower limbs. The expectation is that repetitive 
movement practice will infl uence activity-dependent CNS 
plasticity that restores more normal function. By contrast, 
BCI-based approaches use EEG signals (or other direct 
measures of brain activity) to encourage and guide CNS 
plasticity to improve motor function. 

Two BCI-based motor learning strategies are under 
study. The fi rst strategy, similar to the early studies with 
BCI technologies to reduce seizure frequency, is to train 
patients to produce more normal brain activity (eg, as 
measured by specifi c EEG features; fi gure 5A). The 
hypothesis is that by infl uencing CNS plasticity that  
produces more normal activity, more normal CNS 
function will be restored and thus motor control will 
improve. The second strategy uses brain activity to 
activate a device that assists movement (fi gure 5B); by 
improving motor function, this movement is postulated 
to produce sensory input that induces CNS plasticity and 
leads to restoration of normal motor control (fi gure 5C).

Training of brain signal characteristics
The plausibility of the fi rst strategy (fi gure 5A) is 
supported by extensive evidence from animals and 
human beings (summarised above). These studies show 
that appropriate conditioning regimens can change 
brain signal features, including features of EEG, ECoG, 
or single-neuron activity.11,17,19,21,95 In animals, motor 
recovery after stroke is associated with structural and 
functional changes, such as neurite outgrowth in the 
intact region immediately surrounding the infarct,67,68 
increased synaptogenesis,68 and increased axonal 
sprouting.69 Neuronal functional changes, such as 
increased excitability70 and sequential expression of 
growth-promoting genes associated with axonal 
sprouting,71 are also seen in these animals (including in 
older animals72). Similar mechanisms of neuronal 
plasticity seem to occur in human beings.73–76 Larger 
infarcts, and more severe persistent motor defi cits in 
particular, are likely to be associated with abnormal 
changes in activity to the non-lesioned hemisphere.73  
Changes can occur in regions distant from the infarct 
and include hyperexcitability of neurons in both 
hemispheres,77 reorganisation of cortical sensory and 
motor maps,78,79 sprouting of abnormal connections and 
new connections among cortical areas,80 and re-routing 
of normal intrahemispheric and interhemispheric 
connections among motor regions.81 Some studies have 
provided new insights into neural learning mechanisms 
and processes, describing processes such as the 

“training neuron” array, which can teach another array 
of neurons to become activated,96 and the modulation of 
complex pathways in real-time (eg, pain perception97). 
These studies might help to refi ne training protocols, 
adding to earlier evidence for the principles of motor 
learning practice of closer to normal movements,83 
focused attention,98 repetition of desired movements,99–102 
and training specifi city.103 By inducing changes in the 
features of brain activity, BCI protocols might be able to 
guide this plasticity to promote recovery of motor 
function. 

So far, early results are promising: preliminary 
studies have shown that individuals who have had a 
stroke could gain control of specifi c EEG features.104–106 
In an associated study of three individuals who had 
survived a stroke,107 Daly and co-workers recorded EEG 
activity while the patients planned and undertook a 
reaching task with the arm that had been aff ected by 
the stroke. EEG data were obtained before and after a 
motor learning training regimen. Cortical planning 
latency and cortical signal amplitude on EEG were 
measured during preparation for the reaching task. 
These EEG features improved in parallel with 
improvement in motor activity. However, so far, there 
is no information on whether training a patient to 
produce more normal brain signal features will improve 
motor function that involves the same areas that 
produce those signals.
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Figure 5: Two BCI-based training strategies to encourage and guide CNS plasticity to improve motor function
(A) This training strategy translates specifi c features of brain activity into an action (eg, cursor movement) and 
uses that action as feedback to train patients to produce more normal brain activity. The hypothesis is that the 
plasticity that produces this more normal activity will also restore more normal CNS function and will therefore 
improve motor control. (B) This training strategy uses specifi c features of brain activity to activate a device that 
assists movement that can compensate for the patient’s impaired neuromuscular control during motor tasks. The 
hypothesis is that, by improving motor function, this assistance will produce sensory input that induces CNS 
plasticity to restore more normal motor control. (C) The fi rst strategy aims to normalise brain activity with the 
expectation that this will be accompanied by improved motor function, whereas the second strategy uses brain 
activity to assist practice of more normal neuromuscular control with the expectation that the more normal 
sensory input produced by the better motor function will induce plasticity that improves neuromuscular control.
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Control of brain signals to activate a device that assists 
movement
The second training strategy (fi gure 5B) uses brain signals 
to activate a device that assists movement. This strategy is 
supported by evidence that practising or observing 
movements that are as close to normal as possible might 
help to improve motor function,83,108,109 and help to guide 
newly sprouting axons to the appropriate cortical regions.110 
After brain injury, normal movement is often not possible 
and, therefore, other means to practise more normal 
movements are needed. Several randomised controlled 
trials have indicated that assistance of movement by 
functional electrical stimulation through surface 
electrodes can substantially improve upper limb function 
in individuals who have been mildly to moderately3,4 or 
severely2 impaired by stroke. Another promising approach 
is to combine movement training with robotic devices 
that assist movement.2 Although these methods have 
proven to be eff ective in individuals aff ected by stroke 
with moderate or severe defi cits, not all patients improved, 
and, in those patients who did improve, normal motor 
control was not regained in all individuals.2–5 

Furthermore, the improvement in motor control that 
was shown entailed the high cost of many therapy 
sessions that needed close attention of staff ; thus, 
alternative approaches, such as a BCI-based method, 
would be attractive. Brain signals might be used to 
activate a device that assists functional electrical 
stimulation or assists robotics that would enable practice 
of a movement that is closer to normal. BCI assistance 
would initially be confi gured to depend on the generation 
of a more normal brain signal. Although preliminary 
studies have provided variable results, taken together 
these studies suggest that this approach could be 
successful in some patients.104,106,111,112

Eff orts to use BCI support to encourage and guide the 
restoration of motor function after brain injury are just 
beginning, and several gaps in our understanding need 
to be resolved. These unknown factors include the extent 
to which patients have detectable brain signals that can 
support one or both of the training  strategies (fi gure 5); 
which brain signal features are best suited for use in 
restoring motor functions and how these features can be 
used most eff ectively; and what the most eff ective formats 
are for the BCIs aimed at improving motor functions (eg, 
what guidance should be provided to the user to maximise 
training that produces benefi cial changes in brain 
signals). The eventual value of BCI technologies for 
improving motor function in individuals who have 
strokes or other neurological disorders depends on 
adequate answers to these questions.

Expectations for the future
EEG-based BCIs have begun to provide basic 
communication and motor control abilities to people with 
severe motor disabilities, such as patients with ALS who 
decide to accept long-term ventilation. The eff ect of these 

simple non-invasive BCI technologies will depend on 
further improvements in the ease and convenience of 
their daily use and on whether the need for continuing 
technical support can be further reduced. Both non-
invasive and invasive BCI technologies are being 
developed and are likely to improve substantially in their 
capabilities for communication and control. Their future 
potential and importance will depend on what functions 
they can provide (eg, control of neuroprostheses), and the 
safety, convenience, and reliability of their long-term use. 

BCI systems might also help to restore motor function 
after stroke or in other chronic CNS traumatic injuries or 
disease. They might be used to translate brain signals 
into outputs that can induce and guide activity-dependent 
CNS plasticity to promote the return of useful motor 
function. These eff orts, which have just begun, mainly 
depend on the characteristics and strength of the relation 
between brain activity indicated by signal features (eg, 
EEG rhythms or single-neuron fi ring rates) and eff ective 
motor function. Improvements in our understanding of 
this relation will enable us to predict the extent of the 
potential success and eventual applications of BCI 
technology in rehabilitation protocols.
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Search strategy and selection criteria

References for this Review were identifi ed from searches by 
the authors done over the past 25 years, as well as through 
exhaustive searches of Ovid Medline and PubMed by use of 
the search terms “brain–computer interface”, “BCI”, “brain–
machine interface”, and “BMI”, both alone and in 
combination with each of the following search terms: 
“communication”, “environment control”, “device control”, 
“robot”, “prosthetic”, “prosthesis”, “FES”, “functional electrical 
stimulation”, and “stimulator”, from January 2000 until April 
2008. Only papers published in English were reviewed. The 
fi nal reference list was generated on the basis of relevance to 
the topics covered in this Review.
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