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Guest Editorial
Brain–Computer Interface Technology:

A Review of the Second International Meeting
Abstract—This paper summarizes theBrain–Computer Inter-

faces for Communication and Control, The Second International
Meeting, held in Rensselaerville, NY, in June 2002. Sponsored by
the National Institutes of Health and organized by the Wadsworth
Center of the New York State Department of Health, the meeting
addressed current work and future plans in brain–computer
interface (BCI) research. Ninety-two researchers representing 38
different research groups from the United States, Canada, Europe,
and China participated. The BCIs discussed at the meeting use
electroencephalographic activity recorded from the scalp or
single-neuron activity recorded within cortex to control cursor
movement, select letters or icons, or operate neuroprostheses.
The central element in each BCI is a translation algorithm that
converts electrophysiological input from the user into output that
controls external devices. BCI operation depends on effective
interaction between two adaptive controllers, the user who
encodes his or her commands in the electrophysiological input
provided to the BCI, and the BCI that recognizes the commands
contained in the input and expresses them in device control.
Current BCIs have maximum information transfer rates of up to
25 b/min. Achievement of greater speed and accuracy requires
improvements in signal acquisition and processing, in translation
algorithms, and in user training. These improvements depend on
interdisciplinary cooperation among neuroscientists, engineers,
computer programmers, psychologists, and rehabilitation spe-
cialists, and on adoption and widespread application of objective
criteria for evaluating alternative methods. The practical use
of BCI technology will be determined by the development of
appropriate applications and identification of appropriate user
groups, and will require careful attention to the needs and desires
of individual users.

Index Terms—Augmentative communication, brain–computer
interface (BCI), electroencephalography (EEG), rehabilitation.

I. INTRODUCTION

A BRAIN–COMPUTER interface (BCI) allows a person
to communicate or to control a prosthesis without using

nerves and muscles. In the last 15 years, the pace of BCI re-
search has grown rapidly. Encouraged by growing recognition
of the needs and potentials of people with disabilities, new
understanding of brain function, and the advent of powerful,
low-cost computers, researchers have concentrated on devel-
oping new communication and control technology for people
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with severe motor disorders (for example, amyotrophic lateral
sclerosis (ALS), brainstem stroke, cerebral palsy, and spinal
cord injury). Current BCIs use electroencephalographic (EEG)
activity or cortical single-neuron activity to control cursor
movement, select letters or icons, or operate neuroprostheses.

BCI research is an inherently interdisciplinary field, involving
neuroscience, psychology, engineering, mathematics, computer
science, and clinical rehabilitation. Forums to discuss results
and issues common to BCI researchers from these disparate
disciplines have been scarce to date. In 1999, the National
Institutes of Health (NIH) sponsored, and the BCI group at
the Wadsworth Center of the New York State Department of
Health organized, an international conference held in Rensse-
laerville, NY entitledBrain-Computer Interface Technology:
Theory and Practice. It drew 50 researchers from 22 labora-
tories around the world to present their findings and discuss
issues important to BCI research, and was summarized in 16
papers in a Special Section in the June 2000 issue of the IEEE
TRANSACTIONS ONREHABILITATION ENGINEERING. Last year,
the Wadsworth Center organized the second such conference,
entitled Brain-Computer Interfaces for Communication and
Control, Second International Meeting: Moving Beyond Demon-
strations. Held in Rensselaerville in June, 2002, it drew 92
people from 38 laboratories in the U.S., Canada, Europe, and
China, to participate in a three-and-a-half day meeting. The NIH
again provided major funding. Additional support came from
the Eastern Paralyzed Veterans Association, the Department
of Defense Advanced Research Project Agency (DARPA), the
Whitaker Foundation, and the Deutsche Forschungsgemein-
schaft (DFG). The central purpose was to sum up advances in
this rapidly growing field and to provide a forum for discussion
of the major issues it faces. The organizing theme was the need
to “move beyond demonstrations,” that is, to begin to undertake
methodical and comprehensive studies aimed at improving BCI
technology and establishing its practical value.

On the first day of the conference, each of the 38 groups
presented a concise description of its current research. The
substance of these presentations is contained in the peer-re-
viewed papers that comprise the bulk of this Special Issue of the
IEEE TRANSACTIONS ON NEURAL SYSTEMS REHABILIATION

ENGINEERING. The papers include descriptions of: functioning
EEG-based or single-neuron based BCIs; promising signal-pro-
cessing methods; software developments; issues important for
applications; and training protocols for clinical application.
Together, these papers constitute a comprehensive review of
the present state of BCI research. The next two and a half
days of the conference featured six panel-led discussions,
four focused debates, four special-issue satellite sessions,
many demonstrations of BCI technology, and numerous poster
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presentations, including a student poster contest with both
technical and scientific design categories.

The six panel discussions focused on four key themes of BCI
research:

1) two panels discussed the available brain signals and their
BCI applications;

2) one panel discussed alternative methods for translating
these signals into device commands;

3) two panels discussed potential applications, their value to
various users, and issues involved in user training;

4) one panel discussed standards for designing studies and
for assessing and comparing their results.

The high level of interest in signals and in applications allowed
us to have two panels on each of these subjects, thus giving
us the advantage of two relatively different approaches to each
topic.

In each of the four debates, two debaters and one moderator
addressed an important and highly controversial issue. These
four controversies were: 1) spikes (i.e., single-neuron activity)
versus field potentials (i.e., EEG and related signals) as BCI
control signals; 2) linear versus nonlinear methods for BCI
signal processing; 3) behavioral versus cognitive approaches
to understanding BCI operation; and 4) importance versus
unimportance of developing a standard BCI taxonomy and
standard benchmarks for research and development.

The four satellite sessions were led by research groups rep-
resenting four different disciplines (psychology, neuroscience,
computer science, and signal-processing) and each focused on
an important topic of general interest. These were, respectively:
1) the training of BCI users; 2) implantable microelectrodes for
BCI systems; 3) human–computer interactions and BCI opera-
tion; 4) a BCI signal-processing competition. Each session dis-
cussed the interests and perspectives of the presenting group
as well as what the group had learned over the course of the
meeting. It provided an opportunity for researchers to discuss
BCI development in the context of common practice in their
respective fields. These discussions also provided new perspec-
tives to researchers from other disciplines. The results of these
sessions are incorporated in the papers contained in this Special
Issue.

The next sections of this paper summarize the six panel dis-
cussions and the four debates. These summaries, together with
the 28 papers that constitute the rest of this issue, encompass
the current state of BCI research, explicate the most important
and controversial issues, and address the factors critical for fur-
ther progress and for development of valuable applications. The
reader should be aware that this paper attempts to present in a
cogent fashion what was a very dynamic process. These sum-
maries represent exchange between panel members, debaters,
and conference attendees. We have attempted to maintain the
flavor of the exchange whenever possible and in many cases not
attempted to reference the bases of what, in some instances, may
appear to be rather strong statements of fact. We expect that this
paper will be read as a companion to the accompanying papers
in which many of these topics are covered in much more detail.
Our hope is that these proceedings will facilitate and guide con-
tinued BCI research and development.

II. PANEL AND DEBATES

A. Panel 1: SIGNALS I—The Relative Advantages
and Disadvantages for BCI Use of Different Brain
Signals and Different Signal Recording Technologies.
(Chair—W. Heetderks. Panelists—G. Gaal, C. Guger,
T. Hinterberger, D. Kipke, B. Mensh, M. Mojarradi,
P. Nunez, and R. Rosipal.)

Panel 1 was charged with discussing the relative advantages
and disadvantages of different brain signals, different signal-
recording technologies, and different signal-analysis methods
for use in a BCI. To develop effective and useful BCIs, it is
important to determine the electrophysiological features (EEG
rhythms, evoked potentials (EPs), or single or multiple neuron
activity) that people are best able to control, to characterize these
features fully, and to develop improved methods for detecting
and measuring them. In preparation for the session, the Signals I
panel met to discuss the spectrum of potential signals that might
be used to provide the input signal to a BCI. After a spirited dis-
cussion among the panel members, it was decided that advan-
tages and disadvantages of signals could best be discussed in the
context of specific target applications. To facilitate this discus-
sion, the panel proposed developing two or three target applica-
tions that could provide the framework for a discussion of the
signal advantages and disadvantages. Further discussion then
focused on three specific BCI applications: an environmental
controller, a speller, and a robot arm controller with three-di-
mensional (3-D) spatial positioning and grasp.

When this approach to the problem was outlined during the
symposium discussion, it became clear that there was no con-
sensus among all participants regarding either the relevance of
the proposed target applications or what the details of perfor-
mance should be for a specific application. In addition, some
participants supported discussion of signal advantages and dis-
advantages outside the context of specific applications. The re-
port that follows represents an attempt to capture both the initial
thoughts of the panel and the range of ideas put forward in the
discussion of this important issue.

1) Universe of Potential Signals:Normal human brain
activity produces a wide variety of signals that can be mea-
sured and that have potential for use in a BCI. These signals
include electrical, magnetic, metabolic, chemical, thermal,
and mechanical responses to brain activity. These signals can
be detected with appropriately designed sensors for potential
use in a BCI. Electrical currents produced by synchronized
synaptic currents can be measured by (in order of increasing
invasiveness) scalp EEG, epidural electrodes, and electrocor-
ticography (ECoG). Action potentials from individual neurons
can be recorded using microelectrodes that penetrate the
brain. Neural activity also produces associated magnetic fields
that can be recorded using magnetoencephalographic (MEG)
activity. Metabolic consequences of neural activity include
changes in blood flow and metabolism, which can be imaged
using functional magnetic resonance imaging (fMRI), positron
emission tomography (PET), and recently developed optical
techniques, including infrared imaging. The chemicals released
by neurons and glia can be measured using magnetic resonance
spectroscopy and invasive probes. Small physical movements
and temperature fluctuations of brain tissue may also provide a
measurable signal related to underlying activity.
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In addition to these actual brain signals, the outflow of neural
information through nerves to their effectors is a potential
source of signals that reflect brain activity, using techniques
such as peripheral nerve recording, electromyographic (EMG)
recording, galvanic skin response, and simple video recording
of the physical movements of the body.

2) Signal Attributes and Problems With Specific Signal
Sources: All physical and biological signals have several
fundamental attributes, including spatial and temporal scale
and signal-to-noise ratio (SNR). For example, the temporal
scale of raw EEG digitized at 500 Hz is 0.002 s, whereas the
scale of a typical P300 waveform is 10 s as a result of the
necessary averaging process. In the latter example, temporal
resolution is sacrificed to improve SNR. The spatial scale of
an intracortical electrode ( 10 m–1 mm) depends on the
size of the electrode tip, whereas the scale of unprocessed
scalp EEG ( 6–10 cm) is largely independent of electrode
size. Scalp EEG scale may be reduced (to 2–3 cm) by
using a combination of multiple electrode arrays (64–128
electrodes) and high-resolution EEG algorithms (Laplacian or
dura imaging). The skull causes most of the spatial smearing
of intracortical potentials, thereby increasing measurement
scale. Thus, skull electrodes with tips just inside the inner skull
surface may achieve millimeter-scale resolution.

Intracortical electrodes achieve higher spatial resolution at
the expense of spatial coverage and significant increase in cost
and risk. Thus, arguments about invasive versus noninvasive
electrodes depend strongly on the volume of tissue producing
useful information. The argument also depends on the ability
of the intracortical electrode to be located in the appropriate
tissue masses (cells or columns) and on the ability of scalp
EEG analysis to produce stable, robust, intentional signals that
have appropriate bandwidths and response times and are also
independently controllable.

3) Performance Criteria:System performance can be
measured as: 1) speed and accuracy in specific applications
and 2) theoretical performance measured as information transfer
rate. Information transfer rate, as defined by Shannon [1], [2], is
the amount of information communicated per unit of time. This
parameter encompasses speed and accuracy in a single value.
The bit rate can be used for comparing different BCI approaches
and for the measurement of system improvements. If the speed
and the accuracy of a BCI can be substantially increased, the
number of users and the applications would increase.

In addition to considering information transfer rates, devel-
opers must consider how well the BCI can be integrated with
the individual user’s other remaining communication and motor
channels. For example, some systems may require concentrated
focus and, therefore, not allow an individual to attend to a con-
versation while using the BCI.

Importantpoints inevaluatingdifferentBCIapproachesarethe
system costs including the learning effort for the individual. The
ideal BCI approach should ensure that the user can learn some
level of control within a few weeks and that the control is stable
or improves over months after initial learning. (For example, if
a BCI is the only communication channel for a totally paralyzed
individual, reliable long-term performance is essential.) BCIsys-
temsmustalsobeabletooperatewithoutexpertoversight.Family
members must be able to help in operation of the BCI system on a

daily basis. Therefore, the systems must be easy to use. System
appearance and how the users look while employing it are also
important constraints on the signal acquisition system.

BCIs require some degree of normal brain function and sen-
sory input. Thus, specific disabilities could affect a user’s ability
to achieve control of cortical potentials, mu or beta rhythms, or
cortical neurons. Therefore, specific BCIs may be needed for
specific user groups. At the same time, to be practical, a BCI
approach must be suitable for a significant fraction of the pa-
tients in a specific user group.

4) Test Beds:The panel discussed the need to identify and
develop a small set of test-bed applications that would enable
comparison and cross-validation of diverse BCI systems. Three
test beds that span a range of system performance require-
ments were proposed and outlined: a) environmental control;
b) speller; and c) continuous robotic control.

The environmental control test bed (e.g., TV remote) involves
a set of switches that could be independently controlled and
mapped to various actuators. A universal television remote con-
trol unit is a particular example for this test bed. The discus-
sion by the panel suggested that this test bed—and the other
test beds as well—could be quantitatively described in terms
of the general system performance metrics: channel dimension-
ality, channel bit rate (channel capacity), degree of bidirectional
control (feedback), degree of reliability, and cost effectiveness.
The environmental control test bed, as formulated, was thought
to present the lowest overall system performance criteria.

A spelling task represents a repetitive 1-of-selection
process. In contrast to the environmental control where a few
selections might result in a significant outcome such as turning
a light on or off, spelling typically requires many successive
selections to spell out a sentence and even more to create a
paragraph. Factors such as the level of concentration required
will be important for this application where prolonged use
may occur only if the level of concentration required is not
excessive. In comparing speller performance, it would be
valuable to agree on a standard size for.

A third potential test bed—robotic control—involves control
of an artificial arm producing 3-D arm movement with hand
grasp. The panel suggested an arm that could reach to a point
in 3-D space and then grasp an object. Factors that will be im-
portant in this application include the bit rate of data transfer, di-
mensionality, closed-loop feedback, short- and long-term relia-
bility, and redundancy. Feedback, in addition to visual feedback,
may be very useful for touch and grasp. Wheelchair control was
considered as a potential alternative to arm control as a test bed.
In some ways it is simpler, but still involves real-time control
with implicit requirements for reliability and redundancy and a
need to be able to respond to some events quickly.

5) Critical Problems: Several criteria for a BCI signal must
be fulfilled to achieve a robust, portable, and easy-to-use system
for communication or environmental control in daily life. These
criteria can be subdivided into three groups.

a) The signal acquisition system should be easy to set up so
that anyone can use the system without extensive training.
It should be small enough to be portable and inexpensive
enough to be affordable for those who need a BCI.

b) Each signal source has associated noise sources and ar-
tifacts that should be eliminated or, at least, minimized.
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The SNR, which determines the reliability of a desired
response, should be high. The predefined intention of a
BCI user should be correlated to the signal controlled by
the user or to a component derived from the signal.

c) Signal properties such as the latency of the response
and properties of the experimental paradigm should be
adapted to the individual application.

At present, physical dimensions and costs are prohibitive for
fMRI and MEG. Both systems are large, very expensive, and re-
quire a magnetically shielded environment. Although real-time
fMRI appears to provide a method to successfully self-regulate
the blood oxygenation level-dependent (BOLD) signal of spe-
cific brain areas [3], the preprocessing, especially the correction
of movement artifacts that must be carried out online, is very
time-consuming (up to several seconds) even on modern com-
puters. When focusing on a small area, preprocessing can be ac-
complished in less than one second. A basic limit to the speed
of a response is given by the high latency of the BOLD response
(2–6 s). Similar to fMRI, MEG could presumably be used as a
BCI by teaching a person to self-regulate MEG activity. Both
methods are beginning to be investigated (e.g., Birbaumeret al.
[37]). Optical spectroscopy is a new method that has some po-
tential, but at present is expensive and has an SNR that may
not be sufficient for use in a BCI. Long latencies between in-
tention and signal response also occur in skin conductance and
heart-rate modulation, rendering those variables of minimal use
as communication systems in many applications.

EEG offers the easiest method to detect brain signals from
cortical areas. Whether a BCI is using spectral EEG (e.g., the
mu-rhythm or alpha activity), slow cortical potentials, EPs or
steady-state EPs, the most critical problems are the moderate
SNR and artifacts caused by movements or muscle activity.
Face movements (e.g., eye or tongue) and breathing may cause
considerable artifacts in slow cortical potentials, and, thus,
have to be either prevented, or recognized and removed [4].
Muscular tension (e.g., in neck, forehead, or jaw muscles)
can cause artifacts in higher frequencies. The system user
can readily control most of these artifacts. Thus, unless they
are avoided or detected, they may masquerade as activity and
lead to misleading conclusions about the users’ ability to use
EEG for communication and control. Another issue is that
while EEG sensorimotor rhythms have response latencies of
about 0.5 s, some EEG components have response latencies of
two and more seconds. In addition, when using event-related
potentials (ERPs) such as the P300, several ERPs have to be
accumulated to obtain a reliable response or the poor SNR can
result in response classification problems (reviewed in [5]).

The SNR can be increased substantially by invasive technolo-
gies such as ECoG [6] and single-neuron recordings which show
much higher amplitudes than noninvasive recordings. However,
people may be reluctant to agree to brain implants for research
purposes especially because, at present, successful control or
communication with an invasive BCI cannot be guaranteed.

Other problems may occur when combining different types
of signals. As long as different signals can be controlled inde-
pendently, each signal provides additional possibilities for com-
munication or control. However, it might not be possible to use
different signals as independent control channels. For example,
mu-rhythm control may cause simultaneous shifts in slow cor-

tical potentials. A combination of two correlated signals might
be used to increase extracted information. To date, few studies
have examined the combination of signals, so a detailed consid-
eration is not yet possible.

6) Conclusions:The diversity of the signal sets available for
establishing interfaces between the brain and computer, coupled
with the fact that BCI is a very young research field, reduces
the need for a set of standard test beds at this time. However,
test beds in general can assist the BCI community to under-
stand and catalog the limitations/usefulness of each signal set
and its proper use. The panel’s attempts to probe the audience
regarding the standard test beds produced an interesting obser-
vation. While everyone agreed with the need for standard test
beds, there was no concurrence on their definitions. The panel’s
suggestion for using a TV remote, a speller, and a robotics con-
trolled arm as test beds met with mixed reactions. The strong
diversity of opinions on this subject is a clear reflection of the
early state of this rapidly advancing field. The panel felt that a
set of universal test beds for looking at BCI signals would nat-
urally evolve as a result of further progress in the field.

B. Panel 2: SIGNALS II—The Relative Advantages and
Disadvantages for BCI Use of Different Brain Signals and
Different Signal Recording Technologies. (Chair—L. Trejo.
Panelists—X. Gao, J. Pineda, J. Principe, F. Cincotti, P. Sajda,
D. Peterson, B. Wilhelm.)

Panel 2 also considered the relative advantages and dis-
advantages of using different brain signals and different
signal recording techniques in BCI. This panel broke down
the problem of BCI signals and recording techniques into
four interrelated domains: 1) applications; 2) signal classes;
3) methods and features; and 4) classifiers and algorithms.
It then described each of these domains as a framework of
ordered concepts. From the perspective of this framework, the
panel generated a list of eight discussion points which address
current trends in BCI research. These points were discussed
by the panel and then reported to the entire group. During this
general session, workshop participants contributed comments
that extended or revised the panel’s initial findings. The report
presented here summarizes the discussions.

The choice of BCI signals and recording techniques depends
strongly on the interaction of the four conceptual domains listed
previously. For example, the choice of signals depends on the
recording technology; different sensors are required for surface
EEG signals than for intracranial recordings or neuronal spike
trains (e.g., [38]–[40]). The choice of signals can also be af-
fected by the application. For precise control functions, such as
rapid motion of physical devices, the relatively slow changes of
some EEG signals may be inadequate, whereas the more rapid
dynamics of neuronal spike trains may suffice. However, such
a choice forces another tradeoff: surface electrodes are conve-
nient and involve little risk whereas implantation of electrodes
in the brain is invasive and, therefore, involves more risk.

Once a balance is struck between application and signal
class, one can address the question of which methods or
signal features offer the most reliable information, and which
classifiers or algorithms offer practical and robust performance.
Here again, there is interdependence. Some features, such as
oscillatory waves, including mu rhythms, are more amenable
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to frequency-domain methods such as linear filters and autore-
gressive (AR) models [41]. Other properties of signals, such
as nonlinear measures of complexity that do not depend on
specific oscillation frequencies, are better handled by nonlinear
dynamic estimators, such as the coarse entropy rate. At the
NASA Ames Research Center, initial studies have shown that
some users can learn control of a one-dimensional cursor
motion task with a linear filter of EEG signals, whereas others
benefit more from nonlinear EEG measures [42]. Such choices
introduce additional tradeoffs. Nonlinear methods may require
longer times than linear methods to provide stable estimates,
i.e., slowing the response of the BCI system [43].

Thus, it is impossible to prescribe signals and methods for
BCI without considering the four domains and weighing the
tradeoffs associated with different choices. The presentations
and discussions at this meeting showed that signals, methods,
and algorithms of several types are available for a range of ap-
plications. We discuss some of these in the next section.

1) Applications, Signals, Methods, and Algorithms:The
panel considered the applications domain as a continuum that
runs from a binary switch (one bit, on or off) at one end to
complex robotics at the other. Along this continuum, more
and more degrees of control appear, and these may show finer
gradations of control—going from binary on–off to analog po-
sitioning. For example, several groups at this meeting presented
data on BCI spelling paradigms, which use either mu rhythms
or slow cortical potentials. (These data are reported in other
papers in this issue.) Each of these paradigms provides a signal
that positions a pointer to select letters for spelling. A simple
binary-control system could move the pointer up or down at a
constant rate, always being either on or off. A more complex
system could translate the BCI signal into a precise level that
holds the pointer at one of more than two positions. Further
along this continuum lie applications that involve motion in
two or three dimensions. Several groups have now shown that
groups of motor neurons in rat and monkey motor cortex can
learn 2- or 3-D control ([7], [8], and [44]). Two-dimensional
(2-D) control is also possible with scalp-recorded mu rhythms
[45]. It is possible that the degrees of freedom required for
adaptive automation of cognitive tasks, prosthetics, and com-
plex robotics may lie beyond the range of current BCI signals
and methods.

The panel also considered that the signals domain forms a
partial continuum of neuronal signals, and an ordered set of
other signals. Neuronal signals range from action potentials or
spikes to the macroscopic summation of these signals in volume
currents measured by EEG or by MEG. Along this continuum,
the level of summation increases with the scale and position of
the sensor, as with multineuron activity and the ECoG. This con-
tinuum maps almost inversely with that of applications: com-
plex control may require neuronal signals at smaller scales. In
addition to neuronal signals, we considered that other measures,
such as optical or magnetic resonance (MR) sensing of cerebral
blood flow, may offer yet another class of signals for BCI, but
that such signals will be at the coarse end of this continuum and
their utility is as yet uncertain.

The methods domain corresponds to a set of features that
can be analyzed at a given signal scale. For electrophysiolog-
ical signals, the features may include oscillatory sources, such

as periodic spiking or EEG rhythms. ERPs are another class of
electrophysiological feature that requires time locking to an ex-
ternal event. In some applications, the presence of such an event
may be convenient and useful, such as in the case of a blinking
cursor on a computer screen, or the flashing rows and columns
of the Farwell–Donchin P300-based BCI system for spelling
[30]. A combination of oscillatory sources and ERPs is provided
by the steady-state ERP or SSERP, in which the modulation of
an external event is rhythmic, and demodulation of the neuronal
signal provides control. The work of Gaoet al. in Beijing (see
[46]) is a very nice demonstration of this method. For complete-
ness, we mentioned that blood flow methods may offer some
potential for BCI and that features include optical and magnetic
consequences of blood flow change. Of these two, the optical
method offers the most promise for BCI applications, because
of the relatively small size and cost of the sensors.

The fourth domain—classifiersand algorithms—isan ordered
set which ranges from systems analysis approaches (linear and
nonlinear) to machine-learning approaches of many types. The
traditional systems methods have performed quite well for cur-
rent BCI systems. However, to extend BCI functions to higher
degreesof control and tomake themmore reliable, other methods
may be needed. Here, there is a scientific and engineering de-
bate. Systems methods often seek to model the underlying bio-
physical system, whereas machine-learning methods need not
create a mechanistic model. Machine-learning methods may ac-
tually work well for an application without offering much insight
into the underlying system. Both approaches will probably be
needed. In the near term, machine-learning algorithms may pro-
vide useful solutions for BCI signal processing; in the long term,
the models developed by systems approaches may offer better in-
sight and generate hypotheses for future experiments. To better
harness the information provided by neuronal signals for BCI
applications, we might need entirely new ways of describing
brain activity. The search for methods specific to this biological
problem should be encouraged.

2) Discussion Points:The discussion of signals and
methods was opened to all meeting participants and was orga-
nized into treatment of eight major questions. The following is
a synopsis of these discussions.

a) Should the scope of BCI be expanded to include other
signals such as the EMG?The majority of meeting par-
ticipants felt that the BCI enterprise should not expand its
scope beyond brain signals. There was a fear that using
other methods would converge back to just another kind of
keyboard control. However, a minority argued that since
residual EMG and other nonbrain signals are available
even in some locked-in patients, BCI designers should
use whatever signal is available. In this regard, some also
argued that we should distinguish between BCI and what
we want to do for people with disabilities—the two may
have different objectives [47]. To make the case against
expanding BCI to include other signals, participants ob-
served that we need to record other signals, like EOG and
EMG, to remove artifacts, and ensure that we are working
with brain activity. That is, we have to protect against
claims that brain activity is being used for control and
communication when instead there is another physiolog-
ical signal that is, in fact, transmitting the information.
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To make the case for expanding BCI to include other
signals, some argued that hybrid systems might use
mixtures of neuronal and nonneuronal signals to achieve
higher degrees of control than is possible with either
signal class alone. This may be important for new,
multimodal interfaces for computers or other systems
that respond to user intentions as well as to their actions.

b) Is it too early to rule out entire classes of signals or
methods?There was unanimous agreement that it is too
early to rule out any class of signals.

c) Does the application determine the choice of signal and
method?There were mixed opinions concerning to what
extent an application determines the choice of signal and
method.

d) Is it better to focus on system-modeling and identifica-
tion instead of massive search and machine-learning?
Several interesting observations were made concerning
this question. First, it was suggested that we need to do
careful training of signal-processing methodologies since
high-dimensional data can result in a high probability
of over-fitting the data. Second, theoretical and system
models need to be used to verify machine-learning ap-
proaches. Thus, the two approaches should interact. An-
other observation was that it would be better to consider
using modeling in addition to machine-learning, rather
than choosing one approach over the other. Finally, there
was some discussion about a need for new methods to de-
scribe point processes, clustering of spikes, and correla-
tions as carriers of BCI-relevant information, as compared
to rate and amplitude information.

e) Is it necessary to invent new methods for bio-signal anal-
ysis?There was some discussion of the fact that existing
signal-processing methods are not appropriate for BCI.
Biological systems work differently from man-made sys-
tems, yet most signal-processing methods were invented
to deal with man-made signals. Therefore, we must con-
sider biological signals in new and different ways. One of
these ways is to make use of recursion and recurrence in
the algorithms that detect and measure features for BCI
applications.

f) Should “maximalist” approaches be used to set things up
and “minimalist” approaches be used for applications?
This question addressed the idea that existing BCI data
are quite splintered, varied, and highly dependent on the
desires of the labs from which they come. An alternative
approach is to coordinate BCI research at a high level, and
have the labs work in concert on a few “big problems.”
No one argued for “mega-projects” at this time. However,
choosing standard data sets and using them to test pro-
cessing methods may be valuable (e.g., [48]). Though it
may still be too early to choose standard methods, it is not
too early for standard data that can be used to compare al-
gorithms. Other technologies (e.g., mammography) have
been hurt by not having standards early enough in their
development. BCI data sets tend to be more varied than
those typical of other technologies, but we can neverthe-
less find a few that allow for testing of algorithms. Stan-
dard data sets will be limited to specific tasks, but we can
choose the ones that we think will be important for ap-

plications in the near future, e.g., mu-rhythm data, P300
data, and slow cortical potential data.

g) and h)Is it necessary to create standards for signal pro-
cessing (and should such standards be used to conduct
competitions between methods)? Should cost functions be
allowed to supplement evaluation criteria such as the bit
rate?Several discussants argued that methods need met-
rics, including standard evaluation criteria and cost func-
tions. For example, the cost of hits and false alarms is
task-dependent, so measures of BCI performance such as
bit rate should take this into account.

Other responses included discussion of the following issues:
a) modularizing systems and selecting performance criteria

accordingly;
b) distinguishing between tools and applications;
c) learning from the practice of software engineering, which

has rigorous methods for validation and verification of
modules;

d) the need for theoretical or model-based methods for com-
paring applications;

e) consideration of the idea that bit rate is not necessarily the
only criterion for evaluation.

C. Panel 3: METHODS—Alternative Methods for Measuring
Brain Signals and for Translating These Measurements into
Communication and Control Commands. (Chair—W. Z. Rymer.
Panelists—G. Müller, J. Millán, S. Gao, D. Taylor, J. Bayliss,
M. Sun, P. Sykacek, B. Blankertz.)

Panel 3 started by outlining four key topics relevant to
its discussion of BCI methods: 1) approaches to measuring
different brain signals; 2) different signal processing methods
for decoding these signals; 3) different outputs possible from
these decoded signals; and 4) different types of performance
evaluation. These issues were considered under the rubric of
translating brain signals into communication and control by
developing methods to provide functional BCI systems useful
to consumer groups.

Developing real-time BCI control beyond its current state
of demonstration requires addressing two separate but related
needs: the need for controlled studies and the need to deliver
service. Clearly, to formulate good model systems, more re-
search is needed: more subjects, more studies, and more data. To
generalize these systems so that they can deliver service to the
rehabilitationcommunity, itwill becrucial tocarryoutcontrolled
clinical studies, studies that go beyond the performance of a few
individual subjects. In this context, it will be necessary todevelop
methods to compare and evaluate the performance of various
BCIs. The panel put forward several assumptions. Natural is
better: signals are better if they correspond to natural intent.
Simpler is better: for example, if control can be achieved with
a linear classifier, then a nonlinear classifier should not be used
[43]. Cheaper is better as long as a low price delivers an effective
product. Smaller is better because it is more portable [49]. Phys-
iological knowledge can wait if necessary: while it is important
to understand the underlying processes that produce signals from
the brain, it is more important first that the systems work.

In light of these needs and these assumptions, the BCI
Methods panel addressed three immediate areas that present
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important challenges: 1) adaptive control algorithms; 2) greater
bandwidth; and 3) intelligent controllers. The comments
made by participants and/or issues raised with regard to these
challenges are presented in the following.

1) Adaptive Control Algorithms:Adaptive control algo-
rithms are necessary in a BCI because the signals recorded
change over time due both to technical and to biological
factors. The biological signals that are being used are typically
nonstationary. In addition, they change due to subject fatigue
and attention, due to disease progression, and/or with user
training. They also change due to technical aspects of recording
including electrode impedances, amplifier noise, or environ-
mental noise. Thus, static classifiers will not suffice, and the
question becomes, what approach is best?

There are two basic approaches for nonstationary signals:
a) one can trya priori conditions and choose the best model for
the time; or b) one can use a tracking approach. The tracking
approach is usually slower because there is an adaptation versus
tracking problem that depends on how fast the signals change.
Adaptive filters can give flawed results as they track very
short-lived changes in the signal. With sufficient information,
a multiple model approach may be best. Otherwise, tracking
is probably most appropriate.

One can define behavioral models (e.g., degrees of attention,
fatigue, etc.) and track very slowly within each category.
Methods for assessing these factors would be valuable.
Day-to-day changes and abrupt changes in user strategies must
also be considered. If models are to be constructed, large data
sets are needed. In this regard, it might be useful to consider
what has been learned from work with brainstem EPs. In the
case of EPs, investigators know what constitutes tolerable
noise. It is known that brainstem EPs are correlated with body
temperature, that there are differences when subjects are newly
awakened from sleep, and that alcohol use affects brainstem
EPs. Still other variables may be involved.

Particular attention should be paid to the long-term variations
in the signals, both those that are spontaneous and those that are
related to disease. We need methods to reduce the effects of these
changes. All brain signals are likely to undergo such changes. Al-
though we may not understand all of these changes, they must
all be dealt with in some fashion. Within-subject studies can be
valuable in that each patient becomes his/her own study and the
BCI system is configured for that individual.

Additional issues arise for people using a BCI system contin-
uously for real-life applications. A control system must know
what the intended result is in order to correct itself as variables
change. On the one hand, for example, in a reasonably accu-
rate spelling system the controller eventually knows what the
intent is because the user corrects the mistakes. In contrast, in
continuous BCI-controlled arm movements, the system cannot
correct itself since it does not know the user’s intent. The latter
systems may need a built-in calibration mode in which the user
periodically makes a sequence of known movements to tune the
control algorithm. It is also worth noting that with intracortical
BCIs, changes in the recorded cell population could be made
transparent to the user by incorporating new cells into the con-
trol algorithm based on how their firing patterns are correlated
to the cells already in use.

It is also important to examine issues of reinforcement and
reward. BCI training may not adhere to normal reward struc-
ture. One investigator noted, for example, that his group was
not successful in inducing people to improve performance by
offering them a higher monetary reward. Children performed
better when candies rather than money were used as a reward.
It was also pointed out that there is a Pavlovian component in
training and that users associate a target with failure and may
not be learning what we think they are learning in training. In
general, we need to be better able to identify the actual rein-
forcements. Moreover, although feedback can enable better per-
formance, it may also interfere with performance (e.g., if it is
improperly timed). Feedback other than visual (e.g., propriocep-
tive) may be effective, particularly in users with visual deficits.
In addition, we need to consider the level of difficulty of the
task itself. It is probably best to start with a task at which the
user can succeed, and increase the difficulty level as the user’s
skills improve. For all these issues, large-scale studies are im-
portant [50]. (It was noted that Skinner used about 1000 animals
before he was able to define reinforcement schedules.)

2) Greater Bandwidth:Greater bandwidth than that cur-
rently obtainable is clearly needed. More bandwidth permits
more control possibilities. Bandwidth could be improved by
improving signal processing or by identifying better signals.
To some extent, the most promising means of improvement
will be determined by the particular application. For example,
in a simple spelling application, the limitation may be in the
signal itself (i.e., the user’s control over the signal) rather than
the signal processing that measures the signal. In this case, the
most effective strategy might be to improve user training.

One important issue iswhethercontrol is tobediscrete, contin-
uous,orhybrid [51].Again, this isoftenapplication-dependent. It
may be most worthwhile to determine the subject’s intent rather
than to control in detail the process that achieves that intent. For
example, in the case of controlling a robot, the user would need
only to communicate the desired direction. Intelligence can be in
the controller, so that the user does not need to exert continuous
low-level control. EvenEEG-based devices can obtain good con-
trol in this manner. There are two interesting and relevant exam-
plesof thiskindofcontrol.First, patientswithspinalcord injuries
learned nicely when their task was just to convey the intent to
walk.Second, implantedrats inDr.Chapin’sexperimentsneeded
to be told only where to go, not how to get there [9]. Some dis-
cussants thought that this may be the best way to think about BCI
development. It concerns how intelligence should be distributed,
that is,what theBCIshoulddoandwhat thedeviceshoulddo.De-
pending on the answer, the demands on bandwidth may be more
or less stringent. Methods to correct errors must also be consid-
ered. It was also pointed out that it might be useful to consider
combining BCI control with other, nonbrain, sources of control
such as eye movements.

In addition, it is important to consider how controllers are to
be evaluated and this will differ according to the specific appli-
cations (e.g., environmental control, spelling/keyboard control,
various types of robotic control). Certainly, control failure is
more dangerous in some applications (e.g., driving a wheelchair
or controlling a neuroprosthesis that provides walking) than in
others (e.g., word-processing). Evaluation also involves formal
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measures of information transfer, such as bit rate. In sum, we
need to maximize bandwidth and we also need to optimize how
that bandwidth is used.

3) Intelligent Controllers: Intelligent controllers are needed
so that control can be achieved with the limited bandwidth sig-
nals now available. While greater bandwidth is clearly desirable,
intelligent controllers can allow much of the high-bandwidth de-
tails of control to be delegated to the controller. In this way, the
user can focus on communicating goals rather than on the de-
tails of control. An adaptive neural net controller could allow
a person to use EMG signals to fly a plane. The controller can
even adapt to problems with the interface, such as the loss of an
electrode. For functions such as multidimensional control of a
neuroprosthesis, an intelligent controller is probably essential:
cortical single-neuron activity, for example, is not directly trans-
ferable to muscle control but must be properly interpreted and
then implemented. Just as the central nervous system itself is
organized in a distributed and hierarchical manner, much of the
work in development of BCIs, particularly for prosthesis oper-
ation, will need to focus on the distribution of functions across
levels with the provision of appropriate and timely feedback at
each level. The concept of motor primitives, now being applied
to understanding of spinal cord function, is relevant here. It re-
mains unclear to what extent such organization can effectively
increase degrees of freedom without putting undue burden on
the user or on the bandwidth of the interface.

Itwaspointedout in thediscussion,however, thatpeopledonot
necessarily want or like to relinquish too much direct control. For
example, while a word-prediction algorithm can greatly increase
communicationrate, ithasbeenfound thatpeoplewithALSoften
prefer to communicate one letter at a time because it gives them
a greater sense of control. Similarly, cars can be made to operate
without a driver, but people do not necessarily like this. Further-
more, we certainly do not want a system that makes incorrect as-
sumptions about the user’s wishes and requires constant correc-
tion.People like tohavecontroland it is importantnot toautomate
a system so much that potential users do not want to use it.

D. Panel 4: APPLICATIONS I—Identification of Those
Applications of Most Practical Value to Users, Facilitation
of User Training, and Long-Term Support of Applications.
(Chair—M. Weinrich. Panelists—P. Kennedy, N. Neumann,
C. Neuper, J. Onton, L. Pickup, T. Vaughan, D. Weston.)

A central question in BCI research focuses on the practical
benefit of applications to individuals with severe disabilities.
A discussion of these benefits must address the following at-
tributes of specific applications: efficacy; reliability; efficiency;
training protocols; and measures of consumer satisfaction (es-
pecially cosmesis and total system costs). The Applications I
panel decided to focus on the need for systematic evaluation of
these attributes as a means of providing useful applications and
improved quality of life for individual users.

Inpresent-dayBCIs, theoutputdevice isacomputerscreenand
the output consists of the selection of targets, letters, or icons pre-
sented on this screen. Selection is indicated in various ways (e.g.,
the letter flashes). To be a useful application, a product must: im-
prove some life function for the user, be reliable, be easy to use,
require little assistance from others, and be easily serviced.

Therearemanyobstaclestotrainingsubjects intheuseofBCIs.
Forsomeof the targetpopulations, theusers’ lackofconventional
communication ability makes it difficult to assess their cognition
or even their consciousness. The lack of conventional communi-
cation ability may impede the operator/user interactions needed
in initial BCI training. Moreover, the same deficits that abolish
all voluntary muscle control may also impair the users’ ability
to control the signal features used by a particular BCI.

Even in its current early stage, BCI technology may provide
crucial functions to extremely disabled people if these and other
obstacles can be overcome. For people who are totally para-
lyzed (“locked-in”) (e.g., by ALS or brainstem stroke), a BCI
system can provide the ability to: answer simple questions (i.e.,
20 b/min is one “yes/no” answer every 3 s); control the environ-
ment (e.g., lights, temperature, television, etc.); perform slow
word-processing (i.e., with a predictive program, 25 b/min can
produce 2 words/min); or even operate a neuroprosthesis (re-
viewed in [5] and [10]).

1) Moving BCIs Out of the Laboratory:Until now, most
BCIs have been tested in the laboratory only. Only a few groups
have explored BCI integration into life outside the laboratory.
These include: the Tübingen group’s Thought Translation De-
vice (TTD); Dr. Kennedy’s group’s implanted electrodes; and
the Graz group’s BCI with telemedicine linkage.

The Tübingen group’s TTD has been tested extensively in
people with late-stage ALS and has proved able to supply basic
communication capability [10]. Subjects are trained to use a
two-choice spelling program; for subjects who cannot read, a
protocol allowing selection of visual signs and symbols is avail-
able. Moreover, a stand-by mode allows users wearing collo-
dion-fixed electrodes to access the BCI 24 h/day by producing
a specific sequence of positive and negative slow cortical poten-
tials (SCPs). This sequence, thus, serves as a switch for turning
the BCI on and off and represents an encouraging and impor-
tant initial solution to the on/off problem that must be solved to
move BCIs out of the laboratory so that they can serve practical
purposes [11], [37], [52].

In initial studies by Kennedy’s group, two cone electrodes
were implanted in each of three patients who were nearly
locked-in by ALS, mitochondrial disease, or brainstem stroke.
Two of these patients learned to control single-neuron firing
rates to move a cursor to icons or to letters presented on a
computer screen. They used single-neuron activity to control
one dimension of cursor movement and used residual EMG to
control the other dimension and, thus, the final selection. In
these two patients, this system achieved communication rates
up to about 3 letters/min (i.e., about 15 b/min) [12], [13].

The Graz BCI group has developed telemedicine capabilities
that allow the BCI to function in users’ homes while the classi-
fication algorithm is updated remotely in the central laboratory
[14], [53]. With this remote control system, a 22-year-old man
who is quadriplegic due to a high cervical (C4-5) spinal cord
lesion uses right hand and foot motor imagery to control an or-
thosis that provides hand grasp [14].

2) Lack of Systematic Study of BCI Effectiveness in Im-
proving Quality of Life: Despite the impressive demonstrations
described previously, despite the large number of different
BCI methods in existence or in development, and despite
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the pressing demands of the individuals who are the initial
target populations of BCI technology, there has been to date
little systematic study of the effectiveness of these systems in
improving quality of life. Ideally, a BCI and its applications
should be optimized for each individual user or user group:
each BCI and its application(s) should match the needs of
the individual and his or her BCI communication and control
capabilities. To date, there is little empirical evidence to support
the contention that one or another method may be more or less
effective with any particular population group.

Despite the theoretical advantages of conducting controlled
studies, this undertaking is fraught with challenges when ap-
plied to BCI applications development.

a) The needs and capabilities of a particular subject in a study
may change over the course of a study (e.g., a patient with
ALS or other progressive disease). With such changing
conditions, it is difficult to conduct a strictly controlled
study.

b) Changes in physical environment or social interactions
can greatly affect an individual’s motivation to use the
BCI. These may occur over the course of the study.

c) Every patient is different. Applications have to be individ-
ualized to take into account an individual’s needs and ca-
pabilities. This may make it extremely difficult to conduct
well-controlled studies of a particular BCI in a particular
population group.

d) A BCI’s effectiveness in improving quality of life must
be assessed and continually reassessed as changes such
as those described in a) and b) occur.

3) Comparisons to Other Fields:The panel suggested that
lessons learned by professionals working with augmentative and
alternative communication (AAC) in patients with aphasia may
prove useful in BCI development. The comparison is a worthy
one. In both instances, there are pressing and large clinical needs,
seemingly unique patient deficits, a profusion of commercial
products, and very limited data. A review of the AAC literature to
date suggests a lack of balance between relevance and scientific
rigor. This, in turn, resulted in a failure to resolve treatment
issues for the most severely aphasic patients [15], [16]. Efforts
are underway to encourage investigators to address these issues
[17]. BCI development should, likewise, address the issue of
defining and studying measurable functional outcomes.

4) Conclusions:To provide reliable and useful systems
for consumers, BCI methods and applications should be
systematically evaluated in target populations. In spite of the
obstacles described above, attempts should be made to develop
and use objective measurements to determine how much and
how successfully individuals with various disabilities actually
employ a particular technology and to what extent that tech-
nology makes long-term contributions to their communication
and control capacities and to their well-being [18], [52].
Individuals with ALS, brainstem stroke, cerebral palsy, or other
severe neuromuscular disorders should be included in clinical
trials that evaluate which BCI methods might be best for each
group. These studies should compare the performances of
different BCI systems and different electrophysiological inputs
in comparable user groups. These clinical trials should address
issues of: patient selection; device specification; training

protocols; maintenance protocols; functional measurements;
patient/caregiver satisfaction; and participation measurements.
Although a double-blind design paradigm is generally not
practical in such work, training procedures and study designs
that maximize comparability should be used and controls for
placebo effects should be incorporated.

E. Panel 5: APPLICATIONS II—Identification of Those
Applications of Most Practical Value to Users, Facilitation
of User Training, and Long-Term Applications. (Chair—M.
Moore. Panelists—B. Allison, M. Gibbs, I. Goncharova,
J. Green, J. Judy, A. Karim, L. Quatrano, R. Schmidt.)

Panel 5’s task was to consider possible future uses for BCI
technologies, both for augmentative use and for mainstream use.
Any complete delineation of ideas for applications for brain-
signal control can, however, lead to misconceptions by the gen-
eral public about what BCI technology is currently capable of
delivering. It is, therefore, important that public statements by
investigators be realistic and clear, so that the general public and
the scientific community do not have unrealistic expectations.
With that caveat in mind, this panel discussed a variety of pos-
sible BCI applications for the near and far future.

Underlying the panel’s discussion were two major themes:
1) what BCIs can do that other techniques or methods cannot do;
and 2) the areas in which BCIs might go beyond augmentative
(or medical) applications and into the mainstream.

1) Medical Applications:The areas in which BCIs can
clearly help people with disabilities to improve their quality
of life include simple communication (including Internet
use), environmental control, and movement restoration (e.g.,
creating an artificial link from the brain to paralyzed limbs).
In addition, development of a variety of other therapeutic
technologies holds promise for new applications in which BCIs
might play a significant role. BCI technology might contribute
to further development of therapeutic methods such as deep
brain stimulation for people with Parkinson’s disease. Current
work in functional electrical stimulation shows that movement
can be restored in people paralyzed from spinal cord injuries.
In these contexts, a BCI might be used to create a feedback
loop to enhance the benefits of these therapeutic methods.
Similarly, BCI technology might contribute to restoration of
bladder control or control of other bodily functions. (This is
a particularly important quality of life issue for people with
spinal cord injuries, many of whom consider bladder and bowel
control of much greater concern than their inability to walk.)
Even more hypothetically, BCI technology could conceivably
contribute to tissue replacement strategies (such as those using
stem cells) by providing means for inducing and guiding the
development of useful function in newly regenerated structures.
BCI technology might also contribute to the development of
passive devices for monitoring function: it might help monitor
long-term drug effects, predict seizures, or evaluate psycho-
logical state. Brain signals may also be capable of providing
enhanced control of devices such as wheelchairs, vehicles, or
assistance robots for people with disabilities (e.g., robots might
perform routine household chores or help with personal care).

2) Beyond Medical Applications:Although much of the
current research in BCI technology centers around medical ap-



VAUGHAN et al.: BRAIN-COMPUTER INTERFACE TECHNOLOGY: A REVIEW OF THE SECOND INTERNATIONAL MEETING 103

plications and augmentative technology for people with severe
disabilities, as BCI technology improves it will probably expand
to serve people with less severe disabilities, partial disabilities,
or no medical disabilities. As discussed previously, there are
potential applications for BCI technology that are theoretically
possible, but which do not exist at this time. If these applications
do prove possible, it might not be until a time well into the future.
Thus, the ideas described in this paragraph should be considered
as hypothetical BCI applications that may or may not come to
fruition. For example, BCIs could be used to monitor attention
in long-distance drivers or aircraft pilots. BCIs might be used to
control robots that function in dangerous or inhospitable situa-
tions (e.g., underwater or in extreme heat or cold). BCIs might
be used to provide additional control in video games. (Gamers
comprise a large and rapidly growing population; they tend to
be enthusiastic about trying new technologies and are likely to
embrace brain signal control. They might even be enthusiastic
subjects for experiments developing new control channels.) In
the area of neural art and music, some work has already been
done. For example, the BioRadio and cyberPRINT applications
have been used to instrument a dancer. Physiological signals,
including EEG, have been used to create projected images in
real time. The Interactive Brainwave Visual Analyzer (IBVA)
uses EEG to create music, and the Georgia State University
BrainLab has mapped neural spike recordings to MIDI to create
neurally-controlled music. Future applications for incorporating
BCI technologies into the arts could include visual arts and
musical composition. Thus, there is a wide array of possible
future BCI applications that can be conceived of and, perhaps,
eventually developed. At the same time, it remains clear that
for the present and near future, the primary importance of BCI
technology will be in increasing the communication and control
capacities of people with severe disabilities [54].

F. Panel 6: STANDARDS—Development and Adoption of
Appropriate Standards for Designing BCI Studies and for
Assessing and Comparing their Results, both in the Laboratory
and in Actual Applications. (Chair—A. Kübler. Panelists—L.
Bianchi, J. Huggins, T. Kirby, F. L. da Silva, D. McFarland,
J. Mellinger, D. Moran, G. Schalk.)

Panel 6 considered the delineation and adoption of appropriate
standards for designing BCI research studies and for assessing
and comparing their results. Standard objective methods for
evaluating and comparing different BCI systems and approaches
are needed. General acceptance and application of objective
methods for evaluating translation algorithms, user training
protocols, and other key aspects of BCI operations are crucial.
Evaluations in terms of information transfer rate and in terms of
usefulness in specific applications are both important. Recog-
nition and attention to the issue of standards is essential if BCI
research is to continue to progress from simple demonstrations
of potentially useful systems to actual realization of efficient
and useful communication and control systems.

This panel discussed the development and adoption of ap-
propriate standards for designing BCI studies and for assessing
and comparing their results, both in the laboratory and in actual
applications. Direct comparisons among different BCI designs
would be facilitated if data acquisition and reports of results fol-

lowed defined and agreed standards. For example, in reporting
the information-transfer rate or speed of a BCI, output can be
viewed as the output of the BCI itself [commonly measured in
bits per unit time (bit rate)] and/or as the output of the applica-
tion that is controlled by the BCI. Our discussion of standards
involved such topics as: quality standards for study designs;
standards for the reporting of results; standards specific to BCI
design (i.e., standardized file formats, functional modules, and
inter-module communication); and related ethical standards.

1) Beyond Bit Rate:Bit rate information certainly provides
a starting point for evaluation and comparison among different
BCI systems. However, when comparing BCI performance, sev-
eral other important system parameters also need to be identi-
fied and accounted for. For instance, it has been proposed that
the number of independently controllable channels (i.e., degrees
of freedom) that are available to the user should be taken into
account. For each independent channel, the signal’s type (e.g.,
proportional versus binary) and its resolution (bits/sample) need
to be identified and measured. Furthermore, evaluation of per-
formance should also specify whether reasonable control can
be obtained using a single-trial analysis or whether several av-
eraged trials are needed. In addition, reports of single-trial con-
trol need to specify whether the results were achieved offline or
online (i.e., real-time control).

2) Application Output as a Standard:Translation algo-
rithms convert the bit rate of a BCI into the output of an
application, such as a menu to select letters, words, or icons on
a screen, or movement of a wheelchair or other device. This
represents the “user communication bandwidth,” which is the
final goal of the BCI. Thus, the bit rate of a specific BCI itself
can be improved by achieving greater user communication
bandwidth. One may, for example, improve the efficiency of
an application by using strategies to remove redundancies
typical of the canonical communication channels (e.g., if one
writes HAPPY BIR, it is clear what the sender intends to
say, so THDAY does not add any further information). For
instance, in the Italian language, relatively few words are used
in most communication. De Mauroet al. showed that 95% of
Italian sentences are constructed using only 300 words [19].
Selecting words instead of letters may, therefore, improve the
communication rate per unit time. Assuming a system that
generates an output of 30 b/min, this amount of information
can be used in different ways: 4.7 b are required to select one
among 26 letters, but 8.3 b can represent 315 different symbols.
Therefore, selecting a word in a limited dictionary requires
less effort than selecting two letters in the English alphabet. In
1 min, either 6.4 characters or 3.6 words might be selected.

Thus, although bit rate is an appropriate measure to compare
the signal output of different BCIs, other measures may be more
suitable when comparing how efficiently an application can be
controlled. If, for example, patients use the BCI to communicate
by means of a spelling program, the number of words per unit
time may be more appropriate than the bit rate. A time-inde-
pendent unit of measurement for the efficiency of a BCI and its
applications could be the output of the application (e.g., words
or icons or switches per unit time) divided by the bit rate of
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the BCI. Such a measurement accounts for any difference in the
output of the BCI and the application. Another index of the fea-
sibility of a BCI and its application could be to what extent it im-
proves the quality of life of the individual user. Questionnaires
specifically designed to assess quality of life in terms of com-
munication status and regained autonomy in daily life should be
developed and completed by BCI users on a regular basis.

3) Standardization of Hardware:Ideally,BCI hardware out-
puts should conform to the existing standards for computer input
devices. This would allow a BCI to be plugged into an existing
system in the same way as any off-the-shelf keyboard or mouse.
Thisavoids the necessity of “reinventing the wheel”bydesigning
specialized applications for each BCI. A wide array of assistive
technology devices and software for communication, environ-
mental control, and computer access already exists and most are
designed to accept control signals from a wide range of standard
input devices. If BCI systems conformed to existing input device
standards, then a patient who was losing the ability to move could
continue to use a familiar communication system while making
the transition from an input device that relied on physical move-
ment (such as a mechanical switch, trackball, or joystick) to a
BCI input device. Even BCI systems that require the user to in-
teract with a computer display in order to achieve BCI operation
could be designed to provide input that mimicked the input from
standard input devices to an application running on a separate
computer.

4) Standardization of Recording:Brain signal recordings
are another area in which guidelines may be beneficial. In any
successful BCI application, the optimal recording site needs
to be determined, and the actual source of control (e.g., EEG
components as opposed to non-EEG artifacts) needs to be es-
tablished. This requirement prescribes that initial experiments
include all electrode sites that are reasonable for the type of
brain signal that is sought (e.g., with P300 potentials, sites
might include the area around the center of the vertex) and that
are necessary to determine whether or not the recordings are
free from artifacts. Once the ideal location has been determined
and it has been established that control actually comes from
brain signals, the number of recording sites can be reduced to
the minimum number needed to extract the brain signal used
for control.

5) Ethical Standards:Since users who may benefit most
from a BCI are patients with severe and mostly untreatable dis-
eases, ethical issues must be addressed. While full consideration
of all these ethical concerns is beyond the purview of this panel’s
discussion, there are a number of noteworthy issues that must
be addressed because they may arise while training patients to
use a BCI. First, it is often the case that not all patients who are
interested in participation can be accommodated. In this case, a
specific BCI lab must formulate guidelines to determine which
patients are included, or not included, in training, and under what
circumstances and time frames training is terminated. Second,
the nature of the support provided by the BCI group and the
individual trainers has to be determined. Will the interaction with
the user be strictly and exclusively restricted to BCI training, or
is the group ready and able to assist in other aspects of the user’s
daily life with such tasks as writing assessments pertaining

to health insurance or psychological treatment? Furthermore,
policies may need to be developed for dealing sensitively with
the knowledge that a patient may wish to die. It may be difficult
to define standards regarding trainer-user interactions because
the coping style and situation of each user is different. In any
case, it should be made clear at the beginning of BCI training
what can be expected of a BCI, the group, and the training
personnel, and that BCI training is not a treatment against the
disease [52]. In general, it may be most prudent to stress that the
patient is providing a service to humanity by participating in the
research and thereby minimize the likelihood that the patient
will develop unrealistic expectations.

6) BCI2000: Currently, a general-purpose BCI system (the
BCI2000) is under development in Dr. Wolpaw’s group in
Albany together with Dr. Birbaumer’s group in Tübingen [20].
This program seeks to provide a standard platform that can
compare, optimize, and apply all available brain signals, signal
processing methods, and applications. BCI2000 consists of four
independent but interacting modules: a)Source(signal acquisi-
tion and storage); b)Signal Processing(feature extraction and
translation algorithms); c)User Application; and d)Operator
(process control). Each of the modules implements a different
aspect of BCI and does not depend on the specific structure of
the other modules, so that one module can be changed without
having to change another. BCI2000 can, therefore, be easily
adapted to different research or clinical requirements1 . It is
available with full documentation for research purposes at
http://www.bci2000.org.

7) Conclusions:Setting standards is becoming increasingly
important in the rapidly growing field of BCI research and de-
velopment. This process inevitably involves a tradeoff between
innovation and finding an efficient method to compare systems.
A common standard that is cast too narrowly will fail since the
technology, study design, applications, and user groups differ
widely among BCI systems. Furthermore, these factors are
changing rapidly. Since BCI technology is in an early stage of
development with many innovative advances underway, only
a carefully selected set of standards can successfully describe
and compare the wide range of different systems.

G. Debate 1: Choice of Brain Signals for BCI Use: Spikes
Versus Field Potentials [Moderator—S. Levine. Speakers—
J. Donoghue (spikes), J. Wolpaw (field potentials)]

A wide variety of brain signals could conceivably be used
for BCI communication and control. These signals fall into two
categories: spikes that reflect the action potentials of individual
neurons and field potentials that reflect the combined synaptic,
neuronal, and axonal activity of groups of neurons (see [21] for
review). Spikes are necessarily recorded near the neurons pro-
ducing them, and, thus, require implantation of small electrodes
within brain tissue. Field potentials can be recorded as EEG
from the scalp (in which case, they reflect activity in large areas
of brain), from small electrodes within the brain (in which case,
they reflect the activity in small immediately adjacent areas
of tissue), or from epidural or subdural locations in between
these two extremes. In general, the topographical resolution of

1BCI2000.org: http://www.bci2000.org.
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field potentials is highest for the most invasive electrodes, those
within brain, and lowest for noninvasive scalp electrodes. The
debate between Donoghue and Wolpaw centered on which of
these two categories of brain signals (spikes or field potentials)
is most useful for BCI systems.

It is not yet clear which signals can be most useful for BCI
systems. Only fragmentary data are available. Sets of spikes can
predict limb trajectory and initial studies suggest that they can
provide comparable control of a cursor in the absence of ac-
tual limb movement (e.g., [22] and [23]). Since they are inti-
mately involved in the control of actual movements, they might
provide BCIs that are relatively easy or natural to use. On the
other hand, when they are applied to the control of artificial de-
vices, their behavior is likely to change, so that the relevance
of their original function in normal motor control to their BCI
value becomes less clear (e.g., [23]). The usefulness of intra-
cortical field potentials, which could be comparable to that of
spikes (e.g., [24]), remains largely unexplored. A number of
EEG signals, including slow cortical potentials, sensorimotor
cortex rhythms, and P300 potentials can control simple devices
at rates up to 10–25 b/min (see [5] for review) and are capable of
multidimensional movement control [25]. The possibilities for
further improvements in the use of these noninvasively recorded
signals are just beginning to be evaluated. Epidural or subdural
recording is less invasive than intracortical recording, and its
resolution can be considerably higher than that of EEG. Initial
data relevant to the BCI usefulness of these intermediate signals
are promising [26], [27].

Intracortical signals, spikes, and/or local-field potentials,
may yield the highest information transfer rates (i.e., bit rates).
However, these signals require the most invasive methods, and
the long-term structural and functional stability of intracortical
electrodes is a major unresolved issue. All other things being
equal, the least invasive methods are preferable. It may be that
some combination of recording methods will prove valuable.
Effective exploration of these alternatives must incorporate
adequate evaluation of alternative signal processing methods,
for these can greatly affect results. In sum, it not yet clear which
electrophysiological signals will be most useful. Thorough
evaluation of all signal types is needed.

H. Debate 2: Linear Versus Nonlinear Methods for BCI Signal
Processing [Moderator—G. Birch. Speakers—K. Müller
(linear), C. Anderson (nonlinear)]

BCIs translate brain signals into device commands. Linear
and nonlinear methods can be used for this translation and both
approaches have been used to date. In this debate, Müller argued
in favor of linear methods, while Anderson argued in favor of
nonlinear methods. The points they raised are fully discussed in
their paper in this issue [43] and are briefly summarized here.

The discussants agreed that the choice of a linear or nonlinear
method depends in large part on the nature, size, and other char-
acteristics of the data set and requires a clear conception of the
theoretical model being applied to the data. They also agreed on
the guiding principle that, all other things being equal, simpler
methods are better.

Linear methods require that the data be linearly separable.
When a data set meets this criterion, linear methods are usually
preferable because linear classifiers tend to be simpler and
more robust. While it is certainly useful to validate classifiers
derived from a training set of data by testing them on a test
set, their value must still be confirmed online. In the presence
of strong noise or significant outliers, linear methods may
fail. Such conditions frequently exist in physiological data.
When regularization of such data is not possible, nonlinear
methods (e.g., support vector machines or neural networks)
are appropriate, even though they are computationally more
demanding. Moreover, when the source of the data is not
well understood, nonlinear data transformations may provide
a more meaningful description. Thus, nonlinear methods are
particularly useful when a problem is intrinsically nonlinear or
the data are not robust.

I. Debate 3: Behavioral Versus Cognitive Approaches to BCI
Research [Moderator—A. Gevins. Speakers—N. Birbaumer
(behavioral), E. Donchin (cognitive)]

In all EEG-based BCIs, the challenge is to develop a mech-
anism by which the user gains control over the variance in the
EEG. The computer’s role is to examine this EEG variance
and take specific actions depending on the direction in which
the variance is controlled. For the last 120 years, psychologists
have approached their discipline either as “behaviorists” or as
“cognitivists” (recent labels for the approaches described in
[28] and [29]). BCI research presents a new class of mind/be-
havior phenomena and is, thus, a new arena for the continuing
debate between the behavioral and cognitive viewpoints. The
two differing approaches are reflected in the ways in which
these two groups approach the control of EEG variance in
designing BCIs. Since the behaviorist’s object of study is overt
behavior rather than processes that are unobservable, behav-
iorists have focused on developing effective techniques for the
control of behavior, and for assuring (using “operant condi-
tioning” methods) that a person can acquire a specific response.
In contrast, the cognitive psychologist tends to view the mind
as an information-processing device whose output depends on
the relationship between the subject’s task, stimuli, and the
activation of various cognitive processes. In this debate, Bir-
baumer presented the case for the behaviorists and Donchin
presented the case for the cognitivists.

Birbaumer presented indirect evidence that learning to con-
trol EEG features, particularly SCPs, involves implicit/operant
learning. In users with excellent SCP control, success was cor-
related with fMRI-detected activation of (probably inhibitory)
basal ganglia structures (putamen/pallidum) and deactivation
of supplementary motor areas. These areas regulate cortical
excitation thresholds and in their anterior parts, subserve
operant learning. On the other hand, even after lengthy training,
SCP control does not appear to become automatic: users still
need to pay close attention to produce cortical changes. This is
confirmed by fMRI evidence for activation of lateral prefrontal
structures during SCP-based BCI operation. Cognitive activ-
ities such as imaging various scenes during learning or motor
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imagery do not predict success in SCP control. People who
are severely retarded, and, thus, are presumably not capable
of elaborate cognitive processes, can achieve excellent SCP
control. Data from animals provides additional support for the
importance of operant conditioning in SCP control [37].

In contrast, Donchin represented the class of BCIs that relies
on differential responses by the subject to fairly structured
stimuli. The subject does not have to learn new response
patterns but rather processes information within a well-defined
task. Brain responses to such stimuli differ as a consequence
of different information processing modules that are activated
as information is processed. The case used by Donchin as an
illustration is the P300-based speller, [30], [31], which relies on
the fact that events that force “context updating” in the so-called
“oddball paradigm” [32], [33] elicit the P300 component of the
ERP. Since this is a virtually ubiquitous response, there is no
initial need to train the subjects. The challenge is to develop
structured situations in which the relevant stimuli will, in fact,
elicit a P300 that the computer can easily detect and interpret.
The design of such a BCI requires a detailed task analysis using
cognitive process models and a heavy reliance on cognitive
psychology as a guide to task design. In the design of such
a BCI, Donchin felt that behaviorism provides little depth in
the understanding of the human as an information-processing
system. From Donchin’s perspective, operant conditioning may
be a useful tool in the engineering sense in that it facilitates
training, but it is not the means for understanding and using the
complexity of the human mind which is in itself a rather superb
information processing system.

This lively debate was instructive about the history of the
behaviorist and cognitivist approaches. It highlighted their
implications for the understanding of BCI phenomena and
for the design, evaluation, and use of BCI technology.

J. Debate 4: A Standard BCI Framework: Good or Bad?
[Moderator—B. Dobkin. Speakers—S. Mason (good), D.
McFarland (bad)]

BCI researchers use a variety of terms to refer to BCI
system components, their inputs and outputs, their functions,
and their interactions. At this early stage in BCI research and
development, BCI control has been demonstrated but not yet
adequately studied. It is not clear whether adoption of stan-
dard benchmarks and terminology would facilitate or stifle
continued progress. Since BCI research is driven primarily by
the perceived need for human applications [34], this debate
was initially formatted as an effort to answer the question:
How might standards support or stifle development of BCI
applications readily applicable to humans? In his introduction,
Dobkin emphasized that BCI researchers will find a more re-
ceptive audience for their achievements if they keep clinicians,
especially neurologists, orthopedists, neurosurgeons, physia-
trists, and rehabilitation personnel abreast of their research in
terms that can be understood and can be used to compare
devices. Demonstration of the clinical value of BCI is just
beginning. The success of clinical trials and the commercial-
ization of devices will depend, in large part, on how physicians

and patients come to understand the personal utility of BCI
over the course of a fixed or a progressive neurologic dis-
ease. It is important that a health care provider who wishes to
prescribe a BCI device understand how one black box differs
from another, and that he or she can convince insurers of its
worth and can make a patient and family comfortable with
selection of a particular device and realistic about the purposes
and capabilities of BCI technology.

Mason argued that standards are crucial. He emphasized that
the development of a common framework affects the quality
and efficiency of BCI research, that the development of such
a common framework is possible, and that the community
should invest effort in the immediate development of a formal
framework. He felt that researchers should be proactive on
this issue and encourage this framework development in the
literature. The field has started to grow rapidly, is receiving
increasing media exposure, and will in the future involve many
more people. The benefits of defining a standard framework
are significant and desirable and the costs (in effort and time)
are relatively modest. He argued that the development of an
appropriate standard framework would facilitate both continued
basic research and successful applications.

Dr. McFarland focused on the fact that BCI research is still
in its infancy, and from this reality, he argued that its continued
success depends on the exploration of many different signals,
signal processing algorithms, and user applications. This com-
prehensive approach requires flexibility and innovation. Such
flexibility and innovation require that investigators be free to
conceptualize in many different ways. He illustrated this crucial
point by showing a variety of different conceptual diagrams
of BCI systems, stressing the vast theoretical and practical
differences between these diagrams, and indicating the role
of these differences in facilitating progress. Although global
standards may be useful in the future when the BCI field moves
from mainly exploration to mainly application, the present
state of BCI research requires evaluation of many alternative
approaches and conceptual frameworks. Formalizing standards
at this early stage could stifle such comprehensive evaluation
and thereby limit the eventual practical applications of BCI
technology.

Mason and McFarland both stressed the importance of pro-
moting such comprehensive evaluations and practical applica-
tions. They differed in their views of the usefulness of formal
standards serving this purpose at this time.

III. CONCLUSION

The June 2002 meeting,Brain–Computer Interfaces for
Communication and Control: Moving Beyond Demonstrations,
was the third meeting [35], [36], and the second international
one, devoted exclusively to BCI research and development. The
participants were neuroscientists, clinical neurologists, systems
and rehabilitation engineers, computer scientists, applied
mathematicians, physiological and clinical psychologists, and
rehabilitation specialists from the U.S., Canada, Europe, and
China, involved in BCI research or in fields directly relevant to
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it (e.g., EEG, signal analysis, neurophysiology, neuroprosthesis
development, computer science, human factors). Through
research summaries from each of the 38 BCI labs represented,
through interdisciplinary topic-oriented discussions, debates,
posters, and demonstrations, and through the involvement of
many graduate students and postgraduate fellows, this meeting
sought to advance BCI research and development.

This second international meeting and the picture it gave
of the state of the field is reflected in the differences between
this summary article and the corresponding article from the
first meeting in 1999 [36]. This new summary is longer and
involves more people, both as authors and as participants
in panels and debates. Thus, it indicates the rapid growth
in the number of people and the number of laboratories in-
volved. More importantly, this new summary is less didactic
and more complex than the first. The first was similar to
a textbook chapter introducing the BCI field—defining its
terms, describing studies to date, and introducing the most
important issues, all in a very structured fashion. This new
summary is more like a documentary with a central theme.
That theme—Moving Beyond Demonstrations—focuses on the
need to progress from the “gee-whiz” state of simply showing
that BCIs are possible, to developing them into a significant
new technology with valuable applications. In reflecting and
promoting this theme, the meeting displayed the many kinds of
current BCI research and engaged the many disciplines essen-
tial to progress. The panels provided reasonably representative
and comprehensive pictures of current thinking about the basic
elements of BCI design and operation, including: the signals
used; signal acquisition, processing, and translation; practical
applications; and user training and satisfaction. Together, they
brought out the factors crucial to progress, including controlled
studies, careful comparisons of alternative signals and methods,
appropriate applications, careful matches to user groups, and
evaluations of long-term clinical benefits. The four debates
provided further treatment of crucial issues and illustrated the
interdisciplinary nature of BCI research—from neuroscience,
to signal processing, to psychological theory, to engineering
principles.

The themeMoving Beyond Demonstrationscan be inter-
preted in two ways, both important to the current state of
the field. First, it emphasizes the need for comprehensive
well-controlled studies. In fact, much of the meeting was
occupied with the many aspects of this critical requirement.
Second, it focuses on the need to make BCIs useful to people
with motor disabilities. Their pressing problems are both an
opportunity and an obligation for BCI researchers. The future
of BCI research will be determined by its response to these two
needs.

The first and second international meetings and the
differences between them reveal a young, energetic, and rapidly
growing research field. By satisfying the highest standards of
scientific research and by providing clinically useful applica-
tions, BCI researchers can ensure that the field continues to
develop, and that this radically new communication and control
technology increases the capacity for self-care, entertainment,

and productive employment of people with severe motor
disabilities.
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