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Brain�computer interface signal processing at the
Wadsworth Center: mu and sensorimotor beta

rhythms
Dennis J. McFarland�, Dean J. Krusienski and Jonathan R. Wolpaw
Laboratory of Nervous System Disorders, Wadsworth Center, New York State Department of Health and State
University of New York, Albany, NY 12201, USA

Abstract: The Wadsworth brain�computer interface (BCI), based on mu and beta sensorimotor rhythms,
uses one- and two-dimensional cursor movement tasks and relies on user training. This is a real-time closed-
loop system. Signal processing consists of channel selection, spatial filtering, and spectral analysis. Feature
translation uses a regression approach and normalization. Adaptation occurs at several points in this
process on the basis of different criteria and methods. It can use either feedforward (e.g., estimating the
signal mean for normalization) or feedback control (e.g., estimating feature weights for the prediction
equation). We view this process as the interaction between a dynamic user and a dynamic system that
coadapt over time. Understanding the dynamics of this interaction and optimizing its performance rep-
resent a major challenge for BCI research.
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Introduction

Many people with severe motor disabilities require
alternative methods for communication and con-
trol. Over the past decade, a number of studies
have evaluated the possibility that scalp-recorded
EEG activity might be the basis for a brain�
computer interface (BCI), which is a new augmen-
tative communication interface that does not de-
pend on muscle control (e.g., Farwell and Donchin
1988; Wolpaw et al., 1991; Sutter, 1992; Pfurtschel-
ler et al., 1993; Birbaumer et al., 1999; Kubler et al.,
1999; Kostov and Polak, 2000; reviewed in Kubler
et al., 2001; Wolpaw et al., 2002). EEG-based
communication systems measure specific features
of EEG activity and use the results as control sig-
nals. In some systems, these features are potentials
�Corresponding author. E-mail: mcfarland@wadsworth.org

DOI: 10.1016/S0079-6123(06)59026-0 411
evoked by stereotyped stimuli (Farwell and
Donchin, 1988; Sutter, 1992). Other systems use
EEG features that are spontaneous in the sense that
they are not dependent on specific sensory events
(Wolpaw et al., 1986; McFarland et al., 1993;
Pfurtscheller et al., 1993; Birbaumer et al., 1999).
Developing a BCI as a real-time closed-loop system

Many studies that involve investigations of neuro-
physiological or psychophysiological phenomena,
such as the basic cellular mechanisms of motor
control (e.g., Sergio et al., 2005) or scalp potentials
associated with target detection (e.g., Allison and
Pineda, 2003), could be construed as being related
to BCI development. However, BCI research is
concerned with the development of complete
systems that can provide alternative means of

mailto:mcfarland@wadsworth.org
dx.doi.org/10.1016/S0079-6123(06)59026-0.3d


412
communication and control by directly accessing
information from the brain and using it to perform
functions directed by the user (Wolpaw et al.,
2002). Human communication and movement
control occur in real time and involve feedback
to the user. This requires closing the loop, in real
time, between brain sensors, signal processing, and
the user’s perceptual apparatus as shown in Fig. 1.

The real-time requirements of a BCI system in-
troduce certain design considerations. For exam-
ple, there have been several data sets used in BCI
competitions (e.g., Blankertz et al., 2004; Schlogl
et al., 2005) that provide a convenient means of
evaluating alternative prediction algorithms. How-
ever, real-time prediction algorithms need to esti-
mate parameters in a causal manner (i.e., only the
data collected up to the present time are available,
rather than the entire session, as is the case with
offline analysis). Offline prediction algorithms may
estimate the statistics of the data from observa-
tions across an entire session and can do these
computations over a protracted period of time.
This is not possible for a system operating in real
time. In addition, users of BCI systems change
over time as a result of learning, fatigue, changes
Fig. 1. Basic BCI system. Signals are acquired from the user’s brain
in motivation, etc. As a result, an adaptive BCI
system coevolves with an adaptive user (Taylor
et al., 2002; Wolpaw et al., 2002). To further com-
plicate the issue, it is extremely difficult to evaluate
or fine tune new signal-processing algorithms
offline, using data collected from an adaptive or
closed-loop system. This is because the user in no
longer in the control loop and it is impossible to
exactly model how the user would react to the
feedback produced by a new algorithm. Thus,
sufficient online experiments as well as intelligently
designed offline simulations are necessary for
effective algorithm development in an adaptive
or closed-loop system.
Effective BCI operation

With our current sensorimotor rhythm-based com-
munication system, users learn over a series of
training sessions to use EEG to move a cursor on a
video screen (see McFarland et al., 1997a; Schalk
et al., 2004, for full system description). In the
one-dimensional mode, the user is presented with a
target along the right edge of the screen and a
; features are extracted and translated into device commands.



Fig. 2. One-dimensional trial structure. (1) The target and cursor are present on the screen for 1 s. (2) The cursor moves steadily across

the screen for 2 s with its vertical movement controlled by the user. (3) The target flashes for 1.5 s when it is hit by the cursor. If the

cursor misses the target, the screen is blank for 1.5 s. (4) The screen is blank for a 1-s interval. (5) The next trial begins.
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cursor on the left edge (Fig. 2). The cursor moves
across the screen at a steady rate, with its vertical
movement controlled by EEG amplitude in a spe-
cific frequency band at one or several scalp loca-
tions. The user’s task is to move the cursor to the
height of the target so that it hits the target when it
reaches the right edge of the screen. At present,
cursor movement is typically controlled either by
the amplitude of mu-rhythm activity — which is
8�12-Hz activity focused over sensorimotor cor-
tex — or by the amplitude of higher frequency
(e.g., 18�25Hz) beta-rhythm activity, also focused
over sensorimotor cortex.

Effective BCI operation has several require-
ments. First, the user must learn to control the
EEG feature, such as mu-rhythm amplitude, that
determines cursor movement. Second, signal
processing must extract the EEG feature from
background noise. For example, we use spatial
filtering operations that improve the signal-to-
noise ratio (McFarland et al., 1997b). Third, the
system must translate these features into appro-
priate cursor movement that the user can freely
and accurately control, with equal accessibility to
all targets. In our system, each dimension of cursor
movement is a linear function of mu-rhythm am-
plitude. This linear function has two parameters:
an intercept and a slope. We use an adaptive al-
gorithm to select values for these parameters that
make all the targets equally accessible to the user
(McFarland et al., 1997a; Ramoser et al., 1997;
Wolpaw and McFarland, 2004).

Signal processing

BCI signal processing must occur in real time. This
means that signal processing should occur with a
minimal deterministic delay. Since our system uses
cursor movement in one or several dimensions,
feedback to the user becomes an important re-
quirement for optimal performance. With two-
target applications, a ‘‘ballistic’’ response is possible.
However, with more targets in one dimension
(McFarland et al., 2003) or with two-dimensional
cursor movement (Wolpaw and McFarland,
2004), corrective movements based on feedback
are possible. As a result, feedback should be pro-
vided without undue delay. The real-time require-
ments for signal processing result from the fact
that feedback in the form of cursor movement de-
pends upon signal processing.

BCI signal processing can be divided into two
parts: feature extraction and feature translation
(Wolpaw et al., 2002). The purpose of feature ex-
traction is to obtain EEG signals that are relatively
free of noise and that can be controlled by the user.
We use spatial filtering and spectral analysis to ex-
tract features that characterize the mu or beta
rhythm. The purpose of feature translation is to
provide optimal control given the available features.
We use regression to optimize prediction weights
and a form of normalization of the resulting control
signals to make targets equally accessible. These
four processes (i.e., spatial filtering, spectral analy-
sis, regression, and normalization) are arranged as a
series of cascaded operations. Overall, this process
is linear with the exception of the step that com-
putes power in the spectral analysis. As such, it
might be possible to combine these operations into
a single step. However, this would greatly compli-
cate the process of adaptation, since the criteria for
each step differ. This is illustrated below.

Feature extraction

Our approach to mu rhythm-based cursor control
training involves updating specific channels and
spectral bins used in the computation of cursor
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movement as training progresses. Currently this
feature selection process is conducted between ses-
sions based on off-line analysis of data from prior
sessions. This process of feature selection could be
done online in real time; but we have yet to at-
tempt the implementation of such a process. There
are two concerns that make automation of this
process difficult. First of all, it is important to en-
sure that the features used reflect EEG activity and
are not the result of artifacts. Second, it is desir-
able that changes in the features that control cur-
sor movement are not so extreme over a short time
period that user performance is disrupted.

Use of spatial filtering follows from the observa-
tion that an appropriate spatial filter improves the
signal-to-noise ratio (McFarland et al., 1997b). To
date, we have used Laplacian and common average
spatial filters. Both use fixed weights and do not
involve adaptation. Alternative data-driven spatial
filters are possible, such as those produced by prin-
cipal components analysis, independent compo-
nents analysis, and common spatial patterns. Use
of data-driven spatial filters would introduce the
possibility of adaptation in this step. To date, we
have not done this in real-time experiments.

Use of spectral analysis is based upon the fact
that the mu rhythm is a rhythmic signal. Much of
our work has involved the use of spectral estimates
derived from an autoregressive model. The actual
weights for the model terms are estimated from
blocks of EEG data, but other parameters such as
the model order and data window length remain
fixed.

Figure 3 illustrates an empirical analysis of
the AR model order and data window length for
users in the early stages of training in the one-
dimensional cursor control task described previ-
ously. This figure shows that the mu rhythm is best
modeled with a fairly high model order (i.e., 30
coefficients or more). This empirical result differs
considerably from what is typically used in the lit-
erature (e.g., McFarland and Wolpaw, 2005; Sch-
logl et al., 2005). There are many other possible
ways of performing spectral analysis. For example
in our initial work, we used FFT-based spectral
analysis (Wolpaw et al., 1991). More recently, we
have explored the use of a matched-filter approach
(Krusienski et al., in press). This approach allows
for more accurate characterization of the mu
rhythm in terms of phase-coupled alpha and beta
components.
Feature translation

The translation algorithm could be based on either
a classifier or a regression function. We use a re-
gression function since the regression approach is
simpler given multiple targets and it generalizes
more readily to different target configurations
(McFarland and Wolpaw, 2005).

Figure 4 compares the classification and regres-
sion approaches. For the two-target case, both the
regression approach and the classification ap-
proach require that the parameters of a single
function be determined. For the five-target case,
the regression approach still requires only a single
function when the targets are distributed along a
single dimension (e.g., vertical position on the
screen). In contrast for the five-target case, the
classification approach requires that four func-
tions be parameterized. With even more and var-
iable targets, the advantage of the regression
approach becomes more apparent. For example,
the positioning of icons in a typical mouse-based
graphical user interface would require a bewilder-
ing array of classifying functions, while with the
regression approach, two dimensions of cursor
movement and a button selection serves all cases.
Model adaptation

There are at least three distinct orientations to-
ward BCI training. The first of these, expressed
best by the statement ‘‘let the machines learn’’
(Blankertz et al., 2003), views BCI to be mainly a
problem of machine learning. This view implicitly
sees the user as producing a predictable signal that
needs to be discovered. A second view sees BCI as
an operant-conditioning paradigm (Birbaumer et
al., 2003). This view sees the process as one in
which the experimenter, or trainer, encourages the
desired output by means of reinforcement. The
training process then consists of guiding or leading
the user. A third possibility views the user and
system as the interaction of two dynamic processes
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Fig. 3. Parametric offline evaluation of AR model order and window length in six BCI users. Larger r2 values are darker. Note that

model orders 430 and window lengths 4500 ms produce the best results in all users.
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(Wolpaw et al., 2000; Taylor et al., 2002). By this
view, the goal of the BCI system is to vest control
in those signal features that the user can best con-
trol and optimize the translation of these signals
into device control. This optimization facilitates
further learning by the user. Figure 5 illustrates
these three views of BCI.

We use adaptive estimates of the coefficients in
the regression functions. The cursor movement
problem is modeled as one of minimizing the
squared distance between the cursor and the target
for a given dimension of control. For one-dimen-
sional movement we use a single regression func-
tion and for two-dimensional movement we use
separate functions for horizontal and vertical move-
ments. These functions for vertical and horizontal
movements are as follows:

DV ¼ bV ðSV � aV Þ (1)

DH ¼ bH ðSH � aH Þ (2)

where S is the control signal (weighted sum of fea-
tures), a is the estimated mean of the control signal,
and b is the gain term that controls the size of the
cursor step. The intercept, a, can be expressed as

a ¼ cm (3)

where m is the mean of the signal and c is a
proportion. The slope, b, can be expressed as

b ¼ gs (4)



Fig. 4. Comparison of regression and classification algorithms. For the two-target case, both methods require only one function. For

the five-target case, the regression approach still requires only a single function, while the classification approach requires four

functions.

Fig. 5. Three approaches to adaptation in BCI design. The arrows through the user and/or the BCI system indicate which elements are

adapted upon with each approach.
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where s is the standard deviation of the signal and g

is a proportion. Finally, S can be expressed as

S ¼ Swif i (5)

where fi represents the ith feature and wi is an as-
sociated weight. The expansions in Eqs (3), (4), and
(5) provide means to adapt to three distinct aspects
of BCI performance. These are summarized in
Table 1 and discussed below.

Adaptation of the feature weights allows for
optimization of the use of the information in the
EEG when more than one feature predicts a given
dimension of cursor movement (McFarland and
Wolpaw, 2005). In addition, with two-dimensional
cursor movement, the adaptive process aids in
making the two signals orthogonal. This is so
when the two dimensions of the target positions
are orthogonal (i.e., the positions along the x- and
y-axes are uncorrelated). Thus with adaptation,
if the two dimensions of target positions are
orthogonal, the two dimensions that predict target
position should tend to become orthogonal,
although this is not guaranteed.

In our current system we assume that the cursor
is in the center of the screen. One alternative pos-
sibility is to take the dynamic cursor position into
account. This approach could potentially result in
more accurate prediction models, but would add
an additional element of complexity. Another pos-
sibility, used in many invasive animal experiments,
is to generate a model for EEG-based movement
from functions that predict actual movement (e.g.,
Chapin et al., 1999; Taylor et al., 2002). This ap-
proach requires that the features used by the pre-
diction algorithm correspond to those produced
when these specific movements occur. This im-
poses a restriction on the features that may be used
Table 1. Summary of adaptive processes in the Wadsworth mu-base

Parameter Dependency

Signal mean EEG data

Proportion of signal mean Pattern of targets hit

Standard deviation EEG data

Gain for standard deviation Pattern of targets hit

Weighted features Difference between target posit

cursor position
and requires that the user be able to actually move
so that the system can be calibrated.

The use of cursor movement and a regression
approach introduces certain problems. Optimal
use of cursor movement with multiple targets
requires that the targets be equally accessible, which
in turn requires that biases in cursor movement be
eliminated (McFarland and Wolpaw, 2003). This is
accomplished, in part, by proper selection of the
slope (i.e., b) and intercept (i.e., a) in Eqs (1) and
(2) above. It is always necessary to have a proper
estimate of the intercept so that the cursor will
move in either direction with equal ease. When the
distribution of signal voltages is symmetrical and
not skewed (e.g., with a Gaussian distribution), it
is sufficient to simply use the mean of the signal
over some recent period as the estimate of the in-
tercept. However if the distribution of the signal
values is skewed, then an additional adjustment is
helpful. We do this with an algorithm that cancels
any linear trend in the percentage of targets hit
across a dimension of movement. Thus, there are
two adaptive controllers for estimation of the in-
tercept: one that estimates the mean over a short
time period and one that removes the linear trend
in the proportion of targets hit over a longer time
period. The estimation of the signal mean is com-
puted from a moving average of the signal and
represents feedforward control. The value of c, the
proportion of the mean actually used as the inter-
cept, is a value that minimizes the quantity l:

lk ¼ STjPjk (6)

where Tj is the proportion of hits for the jth target
and Pjk the position of jth target in the kth di-
mension, normalized so that SPjk ¼ 0.

For one-dimensional movement with only two
targets, the rate of cursor movement does not
d BCI

Method of adaptation Algorithm

Feedforward Signal statistic

Feedback LMS

Feedforward Signal statistic

Feedback LMS

ion and Feedback LMS
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appear to be critical and there is no need to adap-
tively estimate the gain for the system (i.e., b in Eqs
(1) and (2)). However with three or more targets in
one dimension, or more than one dimension of
cursor movement, this factor becomes important
(McFarland and Wolpaw, 2003). This process also
involves two adaptive controllers for estimation of
the slope: one that estimates the standard devia-
tion of the signal over a short time period and
another that removes any quadratic trend in the
percentage of targets hit across a dimension of
movement over a longer time period. The estima-
tion of the signal standard deviation is computed
from a moving average of the signal and represents
feedforward control. The value of g, the propor-
tion of the standard deviation actually used as the
intercept, is a value that minimizes the quantity q:

qk ¼ STj absðPjkÞ � SPjk=n (7)

where n is the number of targets.
BCI2000 software

As we noted earlier, a BCI system must operate in
real time. We use BCI2000 (Schalk et al., 2004) to
accomplish the cascaded series of signal processing
steps in addition to signal acquisition and presen-
tation of feedback to the user. This allows us to do
this processing with the Windows operating sys-
tem in a timely fashion and to rapidly develop
modifications as we refine the system.
Conclusion

There are many ways to design a BCI system. We
have focused mainly on a design that uses mu and
beta rhythms. This dictates many of the choices we
have made, such as the use of spatial and spectral
filtering options. In addition, we use regression for
the prediction equation and normalization to
make targets equally accessible. These steps are
arranged in a cascaded fashion that allows each of
these components to be adjusted according to in-
dependent criteria and in different time frames.
They are summarized in Table 1.

As noted earlier, a BCI system operates in real
time as a closed-loop system. It involves the inter-
action of two dynamic systems: the user and the
BCI system. Understanding the dynamics of this
interaction and optimizing its performance repre-
sents a major challenge for BCI research.
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