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RESEARCH ARTICLE

Brain–Computer Interface Research Comes of Age: Traditional
Assumptions Meet Emerging Realities
Jonathan R. Wolpaw
Laboratory of Neural Injury and Repair, Wadsworth Center, New York State Department of Health, Albany.

ABSTRACT. Brain–computer interfaces (BCIs) could provide im-
portant new communication and control options for people with
severe motor disabilities. Most BCI research to date has been based
on 4 assumptions that: (a) intended actions are fully represented in
the cerebral cortex; (b) neuronal action potentials can provide the
best picture of an intended action; (c) the best BCI is one that records
action potentials and decodes them; and (d) ongoing mutual adap-
tation by the BCI user and the BCI system is not very important. In
reality, none of these assumptions is presently defensible. Intended
actions are the products of many areas, from the cortex to the spinal
cord, and the contributions of each area change continually as the
CNS adapts to optimize performance. BCIs must track and guide
these adaptations if they are to achieve and maintain good perfor-
mance. Furthermore, it is not yet clear which category of brain
signals will prove most effective for BCI applications. In human
studies to date, low-resolution electroencephalography-based BCIs
perform as well as high-resolution cortical neuron-based BCIs. In
sum, BCIs allow their users to develop new skills in which the users
control brain signals rather than muscles. Thus, the central task of
BCI research is to determine which brain signals users can best
control, to maximize that control, and to translate it accurately and
reliably into actions that accomplish the users’ intentions.

Keywords: brain–computer interface, brain–machine interface,
EEG, human, neuroprosthesis

B rain-computer interface (BCI) research is producing
new augmentative communication and control technol-

ogy for people with severe neuromuscular disorders, such as
amyotrophic lateral sclerosis (ALS), brainstem stroke, cere-
bral palsy, and high-level spinal cord injury (Wolpaw, 2009).
The primary goal is to give these extremely disabled users,
who may be unable to breathe or move their eyes, nonmus-
cular communication and control capabilities so that they
can express their wishes to caregivers, use word-processing
programs or other software, or even control neuroprosthe-
ses. Present-day BCIs determine the intent of the user by
analyzing electrical signals recorded from the scalp (elec-
troencephalography [EEG]), or from electrodes surgically
implanted on the cortical surface (ECoG) or within the brain
(neuronal action potentials [spikes] or local field potentials
[LFPs]). Alternatively, BCIs may determine the intent of the
user by analyzing signals that reflect brain metabolic activity
and are recorded by functional magnetic resonance imag-
ing (fMRI), functional near-infrared spectroscopy (fNIRS),
or positron emission tomography (PET). Simple EEG-based
BCI systems are just beginning to come into everyday use by
people with ALS.

Most BCI research has been based on four assumptions
that originate from the common misconception that BCIs
read minds. The first assumption is that an intended action

is fully represented in the cerebral cortex, that the cortex
contains information that completely defines all important
aspects of the action. This assumption implies that a prop-
erly designed analysis of cortical electrical activity can de-
scribe the intended action accurately and in detail. The sec-
ond assumption is that high-resolution cortical signals (i.e.,
neuronal action potentials, or spikes) are the best measures
of cortical activity and can provide the most accurate and
detailed description of an intended action. The third assump-
tion, which derives from the first two, is that the best BCI
is one that records spikes and decodes them to determine
the person’s intent. Finally, the fourth (and often unacknowl-
edged) assumption is that effective BCI performance does
not require continued learning or adaptation by either the
user’s brain or the BCI system.

In reality, none of these assumptions is consistent with
existing and emerging knowledge. In reality, the activity that
underlies an intended action is distributed from the cortex
to the spinal cord. Many different cortical areas participate,
as do subcortical, midbrain, brainstem structures, and spinal
cord circuits. The final output that emerges from spinal mo-
toneurons to activate the muscles that produce the action
reflects the contributions of numerous regions. The primary
motor cortex, which is the focus of most BCI development
efforts, is only one of the players in this production (albeit
a major one). In addition, the contributions of each individ-
ual area change continually as the CNS adapts to achieve
and maintain optimal performance. As a result, the signals
recorded from a single area provide an incomplete and in-
constant picture of the intended action. As a result, methods
for tracking both spontaneous and adaptive changes in the
signals being measured by the BCI, and for encouraging and
guiding adaptation so as to improve the correlation between
the signals and the BCI user’s intention, are essential com-
ponents of effective BCI development.

Furthermore, it is not clear which brain signals can
best reflect an action. Neuronal action potentials are
high-resolution signals that have certainly proved very
useful in basic-science studies of CNS function. However,
the question as to which of the available signals, from EEG
to spikes, are best for BCI uses is an empirical one, and can
be resolved only by investigation. Indeed, at present, and
contrary to common expectations, the level of movement
control achieved in human subjects by an EEG-based BCI
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FIGURE 1. Distributions of target-acquisition times (time
from target appearance to target hit) on a two-dimensional
center-out cursor-control task for a conventional joystick
(solid), an EEG-based brain–computer interface (BCI;
dashed), and a cortical neuron-based BCI (dotted). The EEG-
and neuron-based BCIs have similar distributions, and both
are slower and far less consistent than the joystick. For both
BCIs in some trials, the target is not hit even in the 7 s al-
lowed. Such inconsistency is typical of movement control by
present-day BCIs, regardless of which brain signals they use.
Joystick data and neuron-based BCI data from Hochberg et
al. (2006). EEG-based BCI data from Wolpaw and McFar-
land (2004).

is comparable to that achieved by a cortical neuron-based
BCI. Figure 1 illustrates this surprising finding. It shows
the distributions of target-acquisition times for two studies
of center-out two-dimensional cursor control in humans,
one using an EEG-based BCI (Wolpaw & McFarland,
2004) and the other using a cortical neuron-based BCI
(Hochberg et al., 2006). Also shown is the distribution
of times for normal muscle-based joystick control of the
cursor. The two BCI studies had comparable protocols,
and they produced almost identical distributions of target-
acquisition times. Compare also the videos at http://www
.bciresearch.org/html/2d control 8tn.html and http://www
.nature.com/nature/journal/v442/n7099/suppinfo/nature0497
0.html Both BCIs are slower and much less consistent than
the joystick, despite the substantial BCI training given in
each study. Such inconsistency is typical of BCI studies
(e.g., compare supplementary Videos 1 and 8 of Hochberg
et al.). The most remarkable feature of Figure 1 is the very
close similarity of the distributions for the two types of BCI,
one being a BCI that used single-neuron activity recorded
within the cortex and the other being a BCI that used EEG
recorded from the scalp. This similarity suggests that their
inconsistency was not due signal resolution (which was high
for the neuronal BCI and low for the EEG BCI), but rather
to one or more other factors that limit both BCI methods.

Although motor control has traditionally been thought to
be highly localized in cortex (Woolsey, 1958), recent work
has shown that movements are controlled by distributed cor-
tical networks that include many areas (Aflalo & Graziano,
2006; Dum, 2005; Dum & Strick, 2002; Ledberg, Bressler,
Ding, Coppola, & Nakamura, 2006; Meier, Afalo, Kastner,
& Graziano, 2008), which interact through synchronous os-
cillations (Bullmore & Sporns, 2009; Salinas & Sejnowski,
2001; Sejnowski & Paulsen, 2006; Zhang, Wang, Bressler,
Chen, & Ding, 2008). This new insight suggests that present
BCI movement control may be inconsistent because it uses
signals from only one cortical area. EEG-based control has
focused on signals over sensorimotor cortex (e.g., Wolpaw &
McFarland, 2004), and neuron-based control has usually fo-
cused on neurons from a few cubic mm of motor cortex (e.g.,
Hochberg et al., 2006). The inconsistent BCI performances
seen in Figure 1 may indicate the limits of the adaptation
possible for a single area, whether the activity in that area is
detected as EEG or as neuronal action potentials. The con-
sistency of the joystick data in Figure 1 may result from the
complementary contributions of many brain areas. If so, BCI
consistency may be improved by recording signals from mul-
tiple cortical areas and using appropriate adaptive algorithms
to combine them to control movement. By removing the lim-
itation imposed on BCIs that use a single area, this strategy
could permit the control capacities of the various signal types
to be more fully realized and might achieve more consistent
performance.

In sum, BCIs do not read minds but, rather, they allow
their users to develop new skills. Unlike normal motor skills,
these new BCI skills are executed by brain signals rather than
muscles. Nevertheless, similar to normal motor skills, their
acquisition and maintenance depend on the continual interac-
tions of the CNS with the outcomes produced by its signals,
and they reflect the activity-dependent adaptive plasticity that
these interactions induce in the CNS. Thus, the proper ob-
jective in BCI development is to find signals the user can
control, maximize that control, and translate it into action
accurately and reliably.

This reality implies that BCI research should explore the
full range of available brain signals to find those signals
that people can best control, and should focus on develop-
ing signal-analysis methods and user training protocols that
facilitate and increase that control. At the present time, it
is clear that the full range of electrical signals, from EEG,
through ECoG, to local field potentials and neuronal action
potentials, warrants careful evaluation for BCI use.

The unreliable performance typical of present BCI meth-
ods, regardless of whether they use high- or low-resolution
recording methods, is emerging as perhaps the single most
difficult problem. This problem raises fundamental questions
about the determinants of consistent brain function and about
the demands on that function posed by BCIs. Its solution is
particularly important for the realization and dissemination
of BCI systems of significant practical value for people with
severe motor disabilities.
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BCI research and development is coming of age. The as-
sumptions that dominated its infancy came from other fields
and served other purposes, and they are now dropping away
as the field confronts and engages its own key issues. The
results of this critical transition should greatly affect the ul-
timate scientific significance and practical success of this
exciting new field.
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