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Abstract

People can learn to control mu (8�/12 Hz) or beta (18�/25 Hz) rhythm amplitude in the EEG

recorded over sensorimotor cortex and use it to move a cursor to a target on a video screen. In

the present version of the cursor movement task, vertical cursor movement is a linear function

of mu or beta rhythm amplitude. At the same time the cursor moves horizontally from left to

right at a fixed rate. A target occupies 50% (2-target task) to 20% (5-target task) of the right

edge of the screen. The user’s task is to move the cursor vertically so that it hits the target when

it reaches the right edge. The goal of the present study was to optimize system performance.

To accomplish this, we evaluated the impact on system performance of number of targets (i.e.

2�/5) and trial duration (i.e. horizontal movement time from 1 to 4 s). Performance was

measured as accuracy (percent of targets selected correctly) and also as bit rate (bits/min)

(which incorporates, in addition to accuracy, speed and the number of possible targets).

Accuracy declined as target number increased. At the same time, for six of eight users, four

targets yielded the maximum bit rate. Accuracy increased as movement time increased. At the

same time, the movement time with the highest bit rate varied across users from 2 to 4 s. These

results indicate that task parameters such as target number and trial duration can markedly

affect system performance. They also indicate that optimal parameter values vary across users.

Selection of parameters suited both to the specific user and the requirements of the specific

application is likely to be a key factor in maximizing the success of EEG-based communication

and control.
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1. Introduction

Many people with severe motor disabilities require alternative methods for

communication and control. Over the past decade, a number of studies have

evaluated the possibility that scalp-recorded EEG activity might be the basis for a

new augmentative communication interface (e.g. Farwell and Donchin, 1988; Sutter,

1992; Wolpaw et al., 1991; Birbaumer et al., 1999; Pfurtscheller et al., 1993; Kostov

and Polak, 2000; reviewed in Wolpaw et al., 2002). EEG-based communication

systems measure specific features of EEG activity and use the results as control

signals. In some systems, these features are potentials evoked by stereotyped stimuli

(Farwell and Donchin, 1988; Sutter, 1992). Other systems, such as our own, use EEG

components that are spontaneous in the sense that they are not dependent on specific

sensory events (Birbaumer et al., 1999; McFarland et al., 1993; Pfurtscheller et al.,

1993; Wolpaw et al., 1986).

With our current EEG-based communication system, users learn over a series of

training sessions to use EEG to move a cursor on a video screen (see McFarland et

al., 1997a for full system description). During each trial, the user is presented with a

target along the right edge of the screen and a cursor on the left edge (Fig. 1). The

cursor moves across the screen at a steady rate, with its vertical movement controlled

by EEG amplitude in a specific frequency band at one or several scalp locations. The

user’s task is to move the cursor to the height of the target so that it hits the target

when it reaches the right edge. At present, cursor movement is usually controlled by

the amplitude of mu rhythm activity, which is 8�/12 Hz activity focused over

sensorimotor cortex, or by the amplitude of higher frequency (e.g. 18�/25 Hz) beta

rhythm activity, also focused over sensorimotor cortex.

Effective brain�/computer interface (BCI) operation has several requirements.

First, the user must learn to control the EEG feature, such as mu-rhythm amplitude,

Fig. 1. The 2 (A) and 4 (B) target tasks. (1) one of the targets and the cursor are present on the screen, (2)

the cursor begins to move across the screen with its vertical movement controlled by the user, (3) the target

flashes when it is hit by the cursor, (4) the screen is blank for a brief interval, (5) the next trial begins. Note

that on any given trial only one of two (A) or one of four (B) targets are present.
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that determines vertical cursor movement. Second, signal processing must extract the

EEG feature from background noise. For example, we use spatial filtering

operations that improve the signal-to-noise ratio (McFarland et al., 1997b). Third,

the system must translate this feature into cursor movement so that the user is able to

reach each of the possible targets. In our system, cursor movement is a linear

function of mu rhythm amplitude. This linear function has two parameters, an

intercept and a slope. We use an adaptive algorithm to select values for these
parameters that make all targets equally accessible to the user (McFarland et al.,

1997a,b).

Two important task parameters might also affect BCI performance. One is the

number of possible targets. A greater number of targets could increase system

performance, since more targets provide more information. Alternatively, a greater

number of targets could decrease system performance by decreasing accuracy. The

other is the rapidity of horizontal cursor movement. Faster horizontal movement

could increase performance by permitting a greater number of selections per unit
time, or by decreasing accuracy, decrease performance. This study evaluated these

two questions by varying target number and horizontal movement time system-

atically in a representative group of BCI users. We determined the effects of these

variations on BCI performance, which was measured both as accuracy (i.e. the

percent of targets hit) and as information transfer rate or bit rate (i.e. bits/min). Bit

rate is a standard measure of communication systems that takes into account

accuracy, the number of possible selections, and the time required to make each

selection. As described in Pierce (1980), the number of bits transmitted per trial, or
B, can be computed as:

B� log2 N�P log2P�(1�P)log2 [(1�P)=(N�1)] (1)

where N is the number of possible targets, and P is the probability that the target is

hit. Bit rate or bits/min, can then be computed by dividing B by the trial duration in

min.

2. Experiment 1: effect of number of targets

BCI performance might be increased by increasing the number of targets since,

according to Eq. (1), the number of bits transmitted per trial is a function of the

number of alternatives. However, Eq. (1) also indicates that accuracy is important. If

accuracy declines markedly as the number of targets increases, the result could be a
reduction in bit rate. These relationships are illustrated in Fig. 2, which shows bits/

trial as functions of accuracy for different numbers of targets. For example, Fig. 2

shows that an accuracy of 95% with 2-targets yields more bits/trial than an accuracy

of 70% with 4-targets. Accordingly, Experiment 1 asked whether increasing the

number of targets could increase bits/trial.
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2.1. Method

2.1.1. Users

The BCI users were eight adults (three women and five men, ages 20�/44). Six had

no disabilities. One had a spinal injury at the level of C6 and another had cerebral

palsy. Both of these latter two users were confined to wheelchairs. All gave informed

consent for the study, which had been reviewed and approved by the New York

State Department of Health Institutional Review Board. After an initial evaluation

defined the frequencies and scalp locations of each person’s spontaneous mu and
beta rhythm activity, he or she learned EEG-based cursor control over several

months (two to three sessions/week). Thus, these users had extensive experience with

the present task prior to this study.

2.1.2. Procedure

The user sat in a reclining chair facing a 51 cm video screen 3 m away, and was

asked to remain motionless during performance. Scalp electrodes recorded 64

channels of EEG (Sharbrough et al., 1991), each referenced to an electrode on the
right ear (amplification 20 000; bandpass 1�/60 Hz). A subset of channels were

digitized at 196 Hz and used to control cursor movement online as described below.

The spectral bin-channel combinations used as features for cursor control were

initially selected by determining features that were most reactive to movement and

imagery (McFarland et al., 2000). In addition, all 64 channels were digitized at 128

Fig. 2. Bits/trial as a function of accuracy (percent of targets hit) for different numbers of targets.
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Hz and stored for later analysis. These analyses guided subsequent adjustments to

the features used with the aim of optimizing performance. In all cases the frequencies

selected were within the mu or beta frequency range and the channels used were over

sensorimotor cortex.

The user controlled vertical cursor movement as the cursor moved horizontally

across the screen at a fixed rate. Thus, as Fig. 1 shows, the cursor moved vertically

under user control and horizontally under computer control. The user’s task was to
move the cursor vertically so as to intercept the target. The distance from the left

edge to the right edge of the screen was 308 steps. The trial ended when the cursor

touched the right edge and thereby hit or missed the target. To control vertical

cursor movement, 1�/3 EEG channels over the sensorimotor cortex of each

hemisphere were derived from the digitized data according to either a common

average reference method or a Laplacian transform (McFarland et al., 1997b). Every

100 ms, the most recent 200 ms segment from each channel was analyzed by an

autoregressive algorithm (Marple, 1987), and the amplitude (i.e. square root of
power) in a 3-Hz wide frequency band was calculated. The amplitudes of the 1�/3

channels were combined to produce an EEG control signal according to our

standard algorithm, in which cursor movement is a linear function of the EEG

control signal. That is, if DV is the cursor movement, S is the control signal (i.e. a

linear sum of the spectral band-channel combinations used as control features), b is

the gain, and a is the mean control signal for the user’s previous performance:

DV�b(S�a) (2)

was the function that determined each cursor movement. This form of the linear
equation was used so that a and b could be defined independently of each other. The

intercept a was set so that, if future performance was similar to previous

performance, net cursor movement over all trials was zero (McFarland et al.,

1997a,b). Thus, the intercept minimized directional bias, maximized the influence

that the user’s EEG control had on the direction (i.e. upward or downward) of

cursor movement, and helped make all targets equally accessible. The slope (or gain)

b determined the magnitude of the cursor movement for a given value of (S�/a ). To

ensure that all targets were equally accessible, the online algorithm adjusted the
intercept and slope in Eq. (2) to eliminate any correlation between the probability

that the target would be hit and the vertical location of the target (McFarland and

Wolpaw, in press).

Each session consisted of eight 3 min runs separated by 1 min break, and each run

consisted of 20�/30 trials. As illustrated in Fig. 1, each trial consisted of a 1 s period

between target appearance and cursor movement, a 2 s period during which cursor

movement occurred, a 1.5 s post-movement reward time (i.e. the time during which

the target flashed if hit or went blank if missed), and a 1 s inter-trial interval. After
training on the 2-target task, the 3-, 4-, and 5-target tasks were gradually introduced

over several sessions. While each target (consisting of a vertical bar as shown in Fig.

1) occupied 50% of the right edge of the screen in the 2-target task, it occupied 33%

in the 3-target task, 25% in the 4-target task, and 20% in the 5-target task. Finally, to

evaluate the effect of target number, each user completed four sessions in which each
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of the four different tasks (i.e. 2-, 3-, 4-, and 5-target versions) was used for two of

the eight runs. Thus, each user was first familiarized with each task and then tested

with a total of eight 3 min runs with each value of target number. In each session,

each value of target number was presented once within a block of four runs, and over

sessions the order of presentation was counterbalanced across run positions.

User control of the EEG was assessed by means of r2, which is the proportion of

the total variance in the dependent variable that is accounted for by the independent
variable (Winer, 1962). It is a measure of the extent to which the EEG feature in

question depends upon the target presented to the user (e.g. Wolpaw et al., 1991).

Greenhoiuse�/Geisser correction was applied to all P -values to correct for unequal

covariances in all analyses with repeated measures (Winer, 1962).

2.2. Results

We first confirmed that cursor movement was based on the user’s EEG rather

than non-EEG artifacts. Fig. 3 shows voltage spectra and topographies of r2 from
one of the participants averaged separately for 2-, 3-, 4-, and 5-target tasks. The

voltage spectra show narrow-band modulation around 11 Hz, and to a lesser extent,

around 24 Hz. Furthermore, the scalp topographies of r2 are focused over central

scalp locations indicating that control was based on modulation of the user’s EEG.

The other users in this study showed similar narrowly focused spectra and scalp

topographies.

We measured BCI performance both as accuracy (i.e. percent of targets hit) and as

information transfer rate, or bits/min (Eq. (1)). To evaluate the effect of target
number on performance, we performed analysis of variance with number of targets

as a within-users effect. Fig. 4 shows that accuracy decreased as target number

increased (df�/3/21, F�/42.51, P B/0.0001) while bits/trial was highest for the 4-

target task (df�/3/21, F�/6.97, P B/0.0003).

We also performed analysis of variance with bits/trial and user as factors and the

interaction of target number, user, and session as the error term for the interaction of

target number and user. This statistical model is conceptually similar to those

employed in generalizability theory (Crocker and Algina, 1986). The effect of user
was significant for both accuracy (df�/7/49, F�/67.45, P B/0.0001) and bits/trial

(df�/7/49, F�/70.0, P B/0.0001). The interaction of target number and user was

significant for bits/trial (df�/21/147, F�/2.09, P B/0.0096). Thus, the number of

targets that gave the highest information transfer rate varied among users. Table 1

shows the data for each user. For six users, 4 targets gave the highest bit rate, while

for one user 2 targets was optimal and for another, 5 gave the highest rate.

Finally, to assess the impact of task difficulty (i.e. target size) on the user’s control

of the EEG signal, we assessed that control by calculating as functions of number of
targets the absolute values of the control signal for the top-most and bottom-most

targets and r2 (i.e. the proportion of the variance of the EEG signal for top and

bottom targets accounted for by target position). We then performed analysis of

variance with target number as a within-user effect. As Fig. 5 shows, while the

absolute values of the control signal were not greatly affected by the number of
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Fig. 3. Left: voltage spectra of the EEG control signal for top (solid) and bottom (dashed) targets from a

single user during performance of the 2-, 3-, 4-, and 5-target tasks. The control signal for this subject was

the sum of the 11 Hz bins from C3 and C4. Control is focused in narrow bands around 11 and 24 Hz.

Right: topographies at 11 Hz of r2 from the same user. Control is focused over central areas.
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targets, the mean r2 value was highest for the 4-target task (df�/3/21, F�/5.68, P B/

0.0085).

2.3. Discussion

EMG artifacts produce broad-banded modulation involving higher frequencies

(Goncharova et al., 2000), eye movements and eye blinks produce broad-banded

modulation in lower frequencies (McFarland et al., 1997a,b), and the topographies

of EMG, eye movements, or eyeblinks are focused over the edges of the montage
(Goncharova et al., 2000). Thus, the spectra and topographies shown in Fig. 3

indicate EEG-based control appropriately focused in frequency and space, as found

in previous studies (e.g. Wolpaw et al., 1991, 2000).

The results of this experiment indicate that bits/min, i.e. the amount of

information transmitted per unit time, depends on the number of possible targets,

Fig. 4. Accuracy (dashed) and bits/min (solid) as functions of the number of targets averaged across all

users.

Table 1

Mean (S.E.M.) bits/min as a function of number of targets for each user

User Number of targets

2 3 4 5

1 8.85 (0.58) 13.02 (1.09) 17.09 (0.78) 15.93 (1.02)

2 6.47 (0.57) 6.99 (0.94) 7.78 (1.05) 8.40 (1.23)

3 8.76 (0.49) 10.27 (1.51) 11.82 (1.76) 10.37 (1.13)

4 6.35 (0.54) 8.13 (0.89) 10.98 (1.05) 9.05 (0.93)

5 0.70 (0.21) 0.81 (0.22) 1.75 (0.61) 1.62 (0.33)

6 7.20 (0.66) 6.81 (0.83) 6.89 (0.85) 5.96 (0.93)

7 4.08 (0.99) 4.03 (0.95) 7.32 (1.41) 7.24 (0.73)

8 3.38 (0.75) 4.28 (0.93) 4.30 (0.42) 3.89 (0.96)
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and that, for seven of the eight users tested in this study, the simplest version of the

task, the 2-target version, did not give the highest value. At the same time, the effect

of target number appears to vary among users. Improvement with higher target

number probably requires a certain level of user EEG control. If a user’s accuracy is

low for the 2-target task, it seems unlikely that increasing the number of targets,

which makes the task more demanding, will improve the bit rate. On the other hand,

for a user with good EEG control, bit rate may be limited by the 2-target task, which

allows a maximum rate of 1 bit/trial.

As Fig. 5 shows, user control of the EEG signal, measured as r2 for the top versus

bottom target comparison, increased as target size decreased from 50% (2-target

task) to 25% (4-target task). Thus, users appeared to respond to increasing task

difficulty by producing better control (at least up to the 4-target level). This result

suggests that the effect of increasing target number on bits/trial cannot necessarily be

predicted from performance on the 2-target task, and also suggests that user training

might benefit from exposure to greater numbers of targets.

Fig. 5. (A) Amplitudes of the control signal for top (solid) and bottom (dashed) targets as functions of the

number of targets averaged across all users. (B) Value of r2 of the control signal for top vs. bottom targets

as a function of the number of targets averaged across all users.
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The accuracies reported here for the 4-target one-dimensional task are higher than

those previously reported for a 4-target two-dimensional task (Wolpaw and

McFarland, 1994). However, the BCI system used in the present study has online

features that were not available at the time of the two-dimensional study (e.g.

Laplacian and common average spatial filters (McFarland et al., 1997a,b), continual

automatic intercept and slope adaptation (McFarland and Wolpaw, in press)). Thus,

while results to date are better for one-dimensional EEG control, two (or more)-
dimensional control (e.g. of mouse-like devices) may ultimately provide considerably

higher information transfer rates.

3. Experiment 2: effect of trial duration

BCI performance, measured as information transfer rate, might also be increased

by decreasing the duration of each trial and thereby increasing bit rate, or bits/min.

However, in many control situations, accuracy decreases as speed increases (Fitts,

1954). The goal of Experiment 2 was to define for our current BCI system and

standard task (Fig. 1) the relationship between trial duration, accuracy, and bit rate.

3.1. Method

3.1.1. Users

Users were seven adults (three women and four men, ages 20�/44) all of whom also

participated in Experiment 1. Six had no disabilities. One had a spinal cord injury at

the level of C6 and was confined to a wheelchair. All gave informed consent for the

study, which had been reviewed and approved by the New York State Department
of Health Institutional Review Board.

3.1.2. Procedure

The general experimental procedure for this task was the same as that described

above for Experiment 1. We used the 4-target task, since Experiment 1 showed that it

usually provided the best information transfer rate. In Experiment 1, the cursor

moved from left to right across the screen in 2 s. In this experiment we used 1-, 2-, 3-,

and 4-s movement times. The durations of the other components of the trial

illustrated in Fig. 1, the time between target appearance and the beginning of cursor

movement (1 s), the post-movement reward time (1.5 s), and the inter-trial time (1 s),

remained fixed. Thus, total trial duration varied from 4.5 s for the 1 s movement time
trial to 7.5 s for the 4 s movement time trial. After a warm-up session in which

variation in movement time was introduced, each user completed four sessions in

which each of the four trial durations was used for two of the eight 3 min runs. Thus,

each user had a total of eight runs with each value of trial duration. In each session,

each trial duration was used once within a block of four runs, and over sessions the

order of presentation was counterbalanced across run positions.
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3.2. Results

To evaluate the effect of trial duration on BCI performance (measured as accuracy

and as bits/min), we performed analysis of variance with movement time as a within-

users effect. As shown in Fig. 6, accuracy increased with trial duration (or movement

time) (df�/3/18, F�/101.92, P B/0.0001), while bit rate was greatest when movement

time was 3 s (df�/3/18, F�/37.42, P B/0.0001).
We also performed analysis of variance on bits/min with trial duration and user as

factors and the interaction of trial duration, user, and session as the error term for

the interaction of trial duration and user. The interaction of trial duration and user

was significant (df�/18/126, F�/1.95, P B/0.0352), indicating that the optimal trial

duration varied among users. Table 2 shows these data.

Finally, to assess the impact of trial duration on the user’s control of the EEG

signal, we computed r2 for top and bottom targets for each trial duration separately.

For each condition we computed r2 based on the average for each trial and also
based on each 200 ms analysis interval. Analysis of variance indicated that the effects

of analysis interval (df�/1/6, F�/831.13, P B/0.001) and the interaction between

analysis interval and trial duration (df�/3/18, F�/151.49, P B/0.0001) were both

significant. As shown in Fig. 7, the r2 associated with the entire trial increased with

increasing trial duration. This is to be expected, since more 200 ms intervals were

averaged as trial duration increased. In contrast, the r2 associated with individual

200 m epochs decreased as trial duration increased. This indicates that, for a given

time period, users displayed less control during longer trials.

3.3. Discussion

The data of this experiment show a clear increase in accuracy with longer trial

durations, and are consistent with those obtained with conventional motor tasks

(e.g. Mottet et al., 1994; Szeto et al., 1993). On the other hand, they contrast to those

of a previous study (McFarland and Wolpaw, in press) in which the user’s task was

Fig. 6. Accuracy (dashed) and bits/min (solid) as functions of movement time averaged across all users.
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to move the cursor into a target box and hold it there for a fixed period of time (e.g. 2

s) to select the target. In that task, trial duration was affected by the user’s control of

cursor movement, and higher gain (i.e. slope in Eq. (2)) might increase trial duration

by making it difficult for the user to stay within the target box. The task used in the

present study does not have this complicating factor. Horizontal cursor movement is

fixed and determines trial duration. Vertical cursor movement, which is under user

control, determines target selection, but does not affect trial duration.

Longer movement times mean that more segments of EEG determine whether the

cursor hits the target when it reaches the right edge of the screen. This tends to

increase the signal-to-noise ratio and thus tends to increase accuracy. However, the

signal-to-noise ratio for each individual 200 ms epoch actually decreases with longer

trial durations. In addition, longer trial durations tend to decrease bit rate since time

is the denominator of this rate measure. In sum, the trial duration that provides the

highest bit rate must be determined empirically. Furthermore, the result may vary

across users.

Table 2

Mean (S.E.M.) bits/min as a function of movement time for each user

User Movement time (s)

1 2 3 4

1 6.31 (0.96) 14.07 (0.65) 12.48 (1.09) 12.43 (0.34)

2 1.77 (0.24) 5.21 (0.87) 6.55 (1.44) 5.76 (0.77)

3 1.99 (0.41) 10.06 (1.35) 11.31 (1.34) 10.75 (0.86)

4 2.20 (0.45) 8.70 (0.79) 10.68 (0.73) 9.97 (0.79)

6 3.29 (0.70) 9.00 (1.18) 8.28 (1.47) 7.90 (0.49)

7 0.95 (0.32) 4.97 (0.81) 6.16 (0.99) 6.82 (0.88)

8 0.80 (0.30) 2.10 (0.58) 4.49 (1.28) 5.58 (1.20)

Fig. 7. Average r2 as a function of trial duration for individual 200 ms epochs and for the average of entire

trials. As trial duration increases, 200 ms epoch control decreases and whole trial control increases.
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4. General discussion

The present results demonstrate the importance of appropriate selection of task

parameters such as number of targets and trial duration. In the first experiment,

increasing target number increased information transfer rate or bits/min, but only to

a point (i.e. the 4-target task). With further increase, the decline in accuracy with

more targets more than offset the greater maximum bits/trial allowed by more
targets. In the second experiment, shortening trial duration by decreasing movement

time usually increased bit rate, but again only to a point (i.e. 3 s movement time).

With further shortening, the decline in accuracy more than offset the increase in bit

rate provided by performing more trials in a given time. Both experiments also show

that these task parameters should be individually adjusted for each user, and suggest

that they should be continually evaluated as user training proceeds. For example,

early in training when user control is relatively poor, fewer targets (e.g. 2) and longer

movement times may be appropriate, while later in training more targets and shorter
movement times may substantially improve information transfer rate. The results

provide additional insight. In the first experiment, as target number increased and

target size necessarily decreased, users responded by increasing EEG control (as

shown by the increase in r2 values shown in Fig. 4). For example, r2 was higher with

the 4-target task, in which the target occupied only 25% of the right edge of the

screen, than with the 2-target task, in which it occupied 50%. In the second

experiment, EEG control decreased with longer trial durations. These findings could

help guide development of better methods for training users to operate EEG-based
BCI systems.

The present results illustrate the necessity for actual online evaluation of the

effects of task parameter selection on BCI performance. The results could not have

been predicted from offline data analyses. Offline analyses and simulations can be

helpful in guiding development of BCI systems, but they cannot confidently predict

the effects of particular changes on actual online performance (e.g. Donchin et al.,

2000). While making inferences about online performance from offline analyses has

been a common practice in BCI research and development, inferences are simply
inferences, and may be misleading. Properly designed, statistically valid, online

comparisons of alternatives are essential.

These results are based on a small sample of subjects over a limited range of

conditions. The optimal number of targets or trial duration may vary considerably

with different degrees of cursor control or with different EEG features. We have not

yet compared on-line the potential of various EEG features (e.g. different

combinations of frequencies and locations) so the range of possible performances

is unknown. Nonetheless the observation that the task parameters need to be
optimized for individual subjects probably has considerable generality.

Finally, as the present results illustrate, current BCI systems provide relatively low

information rates. Thus, they may be useful primarily for those with the most severe

motor disabilities, those who cannot use conventional augmentative communication

and control devices because they lack even the minimal neuromuscular control

required. Wider application of BCI technology depends on further increase in
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information transfer rate. As the present study shows, appropriate user-specific

selection of task parameters can contribute to such increase. Each improvement that

increases information transfer rate should increase the population that could benefit

from this new technology.
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