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Abstract—Over the past decade, many laboratories have
begun to explore brain–computer interface (BCI) technology as
a radically new communication option for those with neuromus-
cular impairments that prevent them from using conventional
augmentative communication methods. BCI’s provide these users
with communication channels that do not depend on peripheral
nerves and muscles. This article summarizes the first international
meeting devoted to BCI research and development. Current BCI’s
use electroencephalographic (EEG) activity recorded at the scalp
or single-unit activity recorded from within cortex to control
cursor movement, select letters or icons, or operate a neuropros-
thesis. The central element in each BCI is a translation algorithm
that converts electrophysiological input from the user into output
that controls external devices. BCI operation depends on effective
interaction between two adaptive controllers, the user who encodes
his or her commands in the electrophysiological input provided to
the BCI, and the BCI which recognizes the commands contained
in the input and expresses them in device control. Current BCI’s
have maximum information transfer rates of 5–25 b/min. Achieve-
ment of greater speed and accuracy depends on improvements in
signal processing, translation algorithms, and user training. These
improvements depend on increased interdisciplinary cooperation
between neuroscientists, engineers, computer programmers,
psychologists, and rehabilitation specialists, and on adoption
and widespread application of objective methods for evaluating
alternative methods. The practical use of BCI technology depends
on the development of appropriate applications, identification of
appropriate user groups, and careful attention to the needs and
desires of individual users. BCI research and development will
also benefit from greater emphasis on peer-reviewed publications,
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and from adoption of standard venues for presentations and
discussion.

Index Terms—Brain–computer interface (BCI), electroen-
cephalography (EEG), augmentative communication.

INTRODUCTION

Brain–computer interfaces (BCI’s) give their users commu-
nication and control channels that do not depend on the brain’s
normal output channels of peripheral nerves and muscles. Cur-
rent interest in BCI development comes mainly from the hope
that this technology could be a valuable new augmentative com-
munication option for those with severe motor disabilities—dis-
abilities that prevent them from using conventional augmenta-
tive technologies, all of which require some voluntary muscle
control. Over the past five years, the volume and pace of BCI re-
search have grown rapidly. In 1995 there were no more than six
active BCI research groups, now there are more than 20. They
are focusing on brain electrical activity, recorded from the scalp
as electroencephalographic activity (EEG) or from within the
brain as single-unit activity, as the basis for this new communi-
cation and control technology.

In recognition of this recent rapid development and its poten-
tial importance for those with motor disabilities, the National
Center for Medical Rehabilitation Research of the National In-
stitute of Child Health and Human Development of the National
Institutes of Health sponsored a workshop on BCI technology.
This workshop, also supported by the Eastern Paralyzed Vet-
erans Association and the Whitaker Foundation and organized
by the Wadsworth Center of the New York State Department of
Health, took place in June of 1999 at the Rensselaerville Insti-
tute near Albany, New York. Fifty scientists and engineers par-
ticipated. They represented 22 different research groups from
the United States, Canada, Great Britain, Germany, Austria, and
Italy. Their principal goals were: 1) to review the current state
of BCI research; 2) to define the aims of basic and applied BCI
research; 3) to identify and address the key technical issues; and
4) to consider development of standard research procedures and
assessment methods.

On the first day, one person from each group gave a brief sum-
mary of his or her group’s current work and future plans. The
substance of these talks is presented in the peer-reviewed pa-
pers that follow this article. They range from descriptions of a
variety of functioning EEG-based or single-unit based BCI’s, to
analyses of the correlations between EEG or single-unit activity
and the brain’s conventional motor outputs, to investigations of
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issues important for BCI applications, to BCI software develop-
ment. Together they constitute a comprehensive review of the
present state of BCI research.

The following two days were devoted to six discussion ses-
sions, each led by a panel of five to seven people; and each ad-
dressing a set of questions focused on a single important as-
pect of BCI research and development. Evenings were occupied
with demonstrations of BCI technology and by poster presenta-
tions. The discussion sessions were designed to cover the full
range of crucial issues, from the essential features of any BCI,
to the brain activity it uses, to the algorithms that translate that
activity into control signals, to user–system interactions, to re-
search methods and standards, to practical applications in reha-
bilitation settings. The sections that follow, written by the panel
chairmen, summarize the contents and conclusions of these dis-
cussions. Taken together, these summaries touch on each key
issue at least once and often more than once and in different
ways.

SESSION1: DEFINITION AND ESSENTIAL FEATURES OF A

BRAIN–COMPUTERINTERFACE(BCI)

Since the EEG was first described by Hans Berger in 1929
[1], people have speculated that it might be used for communi-
cation and control, that it might allow the brain to act on the envi-
ronment without the normal intermediaries of peripheral nerves
and muscles. In the 1970’s, several scientists developed simple
communication systems that were driven by electrical activity
recorded from the head. Early in that decade, the Advanced Re-
search Projects Agency (ARPA, which also sponsored the ini-
tial development of the internet) of the U.S. Department of De-
fense became interested in technologies that provided a more
immersed and intimate interaction between humans and com-
puters and included so-called “bionic” applications. A program
proposed and directed by Dr. George Lawrence focused initially
on autoregulation and cognitive biofeedback. It sought to de-
velop biofeedback techniques that would improve human per-
formance, especially the performance of military personnel en-
gaged in tasks that had high mental loads. The research pro-
duced some valuable insights on biofeedback, but made min-
imal progress toward its stated goals. A new direction, under
the more general label of “biocybernetics,” was then defined and
became the main source of support for bionics research in the
ensuing years. One of the directives of the biocybernetics pro-
gram was to evaluate the possibility that biological signals, ana-
lyzed in real-time by computer, could assist in the control of ve-
hicles, weaponry, or other systems. The most successful project
in this area was that headed by Dr. Jacques Vidal, Director of the
Brain–Computer Interface Laboratory at UCLA. Using com-
puter-generated visual stimulation and sophisticated signal pro-
cessing, the research showed that single-trial (i.e., not averaged)
visual evoked potentials (VEP’s) could provide a communica-
tion channel by which a human could control the movement of
a cursor through a two-dimensional maze [2].

Vidal’s studies and other less well-controlled early work
brought out the importance of the distinction between control
systems that use actual EEG activity and those that use EMG
(electromyographic) activity from scalp or facial muscles.

Because scalp-recorded EMG activity can be much more
prominent than EEG activity at the same locations, EMG-based
communication can masquerade as EEG-based communica-
tion. To the extent that EMG-based communication is mistaken
for EEG-based communication, it can hamper the latter’s
development. Careful spectral and topographical analysis may
be needed to distinguish one from the other. The early work
also served to bring out the fundamental distinction between
EEG-based communication that depends on muscle control
(e.g., visual evoked potentials that depend on where the eyes
are directed), and EEG-based control that does not depend on
muscle control.

These distinctions shaped the definition of the term BCI put
forward in this session:“A brain–computer interface is a com-
munication system that does not depend on the brain’s normal
output pathways of peripheral nerves and muscles.”This def-
inition also reflects the principal reason for recent interest in
BCI development—the possibilities it offers for providing new
augmentative communication technology to those who are par-
alyzed or have other severe movement deficits. All other aug-
mentative communication technologies require some form of
muscle control, and thus may not be useful for those with the
most severe motor disabilities, such as late-stage amyotrophic
lateral sclerosis, brainstem stroke, or severe cerebral palsy.

As a number of the presentations at this conference demon-
strated, several different true BCI’s, that is, communication sys-
tems that do not appear to depend on nerves and muscles, have
been achieved (e.g., [3]–[9]). These systems use either EEG ac-
tivity recorded from the scalp or the activity of individual cor-
tical neurons recorded from implanted electrodes. While these
are exciting developments, with considerable theoretical sig-
nificance and practical promise, they are relatively low band-
width devices, offering maximum information transfer rates of
5–25 bits/min at best. Furthermore, improvement is likely to be
gradual, and to require continued careful and laborious investi-
gation.

BCI development requires recognition that a “wire-tapping”
analogy probably does not apply—that the goal is not simply
to listen in on brain activity (via EEG, intracortical recording,
or some other method) and thereby determine a person’s inten-
tions. A BCI is a new output channel for the brain, and, like the
brain’s normal output channels of peripheral nerves and mus-
cles, is likely to engage the brain’s adaptive capacities, which
adjust output so as to optimize performance. Thus, BCI opera-
tion depends on the interaction of two adaptive controllers, the
user’s brain, which produces the activity measured by the BCI
system, and the system itself, which translates that activity into
specific commands. Successful BCI operation is essentially a
new skill, a skill that consists not of proper muscle control but
rather proper control of EEG (or single-unit) activity.

Like any communication and control system, a BCI has an
input, an output, and a translation algorithm that converts the
former to the latter. BCI input consists of a particular feature (or
features) of brain activity and the methodology used to measure
that feature. As the BCI and pre-BCI studies presented at this
workshop illustrate, BCI’s may use frequency-domain features
(such as EEG or rhythms occurring in specific areas of
cortex) [6]–[9] and [11]–[14], or time-domain features (such as
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slow cortical potentials, P300 potentials, or the action potentials
of single cortical neurons) [3]–[5], [10], [12], [15]–[18]. The
methodology includes the scalp electrode type and locations,
the referencing method, the spatial and temporal filters, and
other signal-processing methods used to detect and measure the
features. The distinction between a feature as a reflection of a
specific aspect of nervous system physiology and anatomy and
a methodology as a technique for measuring the feature is more
clear for some features (e.g., the firing rate of a single cortical
neuron, which is presumably the same however it is measured)
than for others (e.g., autoregressive parameters, which depend
on the details of the analysis algorithm). Nevertheless, the
distinction is important because attention to features as reflec-
tions of nervous system anatomy and physiology, rather than as
merely products of particular analysis methods, helps guide im-
provements in BCI technology, and also encourages continued
attention to the problem of artifacts such as EMG activity
(which can, for example, affect autoregressive parameters).

Each BCI uses a particular algorithm to translate its input
(e.g., its chosen EEG features) into output control signals. This
algorithm might include linear or nonlinear equations, a neural
network, or other methods, and might incorporate continual
adaptation of important parameters to key aspects of the input
provided by the user. BCI outputs can be cursor movement,
letter or icon selection, or another form of device control, and
provides the feedback that the user and the BCI can use to
adapt so as to optimize communication.

In addition to its input, translation algorithm, and output,
each BCI has other distinctive characteristics. These include its
On/Off mechanism (e.g., EEG signals or conventional control);
response time, speed and accuracy and their combination into
information transfer rate; type and extent of user training
required, appropriate user population; appropriate applications;
and constraints imposed on concurrent conventional sensory
input and motor output (e.g., the need for a stereotyped visual
input, or the requirement that the user remain motionless).

Because BCI operation depends on the user encoding his or
her wishes in the EEG (or single-unit) features that the system
measures and translates into output control signals, progress
depends on development of improved training methods. Future
studies should evaluate the effects of the instructions given to
users, and analyze the relationships between user reports of
strategies employed and actual BCI performance. For example,
some BCI protocols ask that the user employ very specific
motor imagery (e.g., imagery of right or left hand movement)
or other mental tasks to produce the EEG features the system
uses as control signals (e.g., [7], [9]). Others may leave the
choice of imagery, or the decision to use any imagery at all,
up to the user (e.g., [3], [8]). Analysis of the similarities and
differences between acquisition of BCI control and acquisi-
tion of conventional motor or nonmotor skills could lead to
improvements in training methods. The impacts of subject
motivation, fatigue, frustration, and other aspects of mental
states also require exploration. Users’ reports might help in
assessing these factors. At the same time, the value of such
reports is not clear. Users’ reports of their strategies may not
accurately reflect the processes of achieving and maintaining
EEG control (e.g., [19]).

Fig. 1. Information transfer rate in bits/trial (i.e., bits/selection) and in
bits/min (for 12 trials/min) when the number of possible selections (i.e., N) is
2, 4, 8, 16, or 32. As derived from Pierce [21] (and originally from Shannon
and Weaver [20]), if a trial hasN possible selections, if each selection has
the same probability of being the one that the user desires, if the probability
(P ) that the desired selection will actually be selected is always the same,
and if each of the other (i.e., undesired) selections has the same probability
of selection (i.e.,(1 � P )=(N � 1)); then bit rate, or bits/trial(B); is:
B = log N + P log P + (1 � P ) log [(1 � P )=(N � 1)]: For eachN;
bit rate is shown only for accuracy� 100=N (i.e.,� chance).

Because BCI’s differ greatly in their inputs, translation al-
gorithms, outputs, and other characteristics, they are often dif-
ficult to compare. While it is likely that different systems will
prove most valuable for different applications, a standard per-
formance measure would be useful as a general purpose bench-
mark for following BCI development. A standard measure of
communication systems is bit rate, the amount of information
communicated per unit time. Bit rate depends on both speed
and accuracy [20], [21]. Fig. 1 illustrates the relationship be-
tween accuracy and information transfer rate for different num-
bers of choices (i.e., 2, 4, 8, 16, 32). Information transfer rate
is shown both as bits/trial (i.e., bits/selection), and as bits/min
when 12 selections are made each min [a selection rate similar
to that of several current BCI’s (e.g., [3], [7], [8])]. Thus, for ex-
ample, the information transfer rate of a BCI that can select be-
tween two possible choices with 90% accuracy is twice that of a
BCI that can select between them with 80% accuracy, and equal
to that of a BCI that can select between four possible choices
with 65% accuracy. The enormous importance of accuracy, il-
lustrated by the doubling in information transfer rate with im-
provement from 80% to 90% accuracy in a two-choice system,
has not usually received appropriate recognition in BCI-related
publications. While the effectiveness of each BCI system will
depend in considerable part on the application to which it is ap-
plied, bit rate furnishes an objective measure for comparing dif-
ferent systems and for measuring improvements within systems.

The continuation and acceleration of BCI development and
application does not depend solely on scientific and technical
advances. It depends also on attention to important practical
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issues. At present, the pace of development is limited by the
small number of people involved and the relatively modest
funding available. Increased collaboration, fostered in part by
meetings such as this BCI conference, and increased num-
bers of refereed publications in high-quality journals, should
encourage more funding from public and private agencies
worldwide. On the other hand, naive and overly enthusiastic
media attention is likely to be detrimental in the long run. Major
funding increases, particularly for development of specific ap-
plications, depend on generating interest from industry and on
securing approval for reimbursement from medical insurance
companies. Industrial interest depends in large measure on the
numbers of potential users. Expansion beyond the relatively
small numbers of people who are locked-in, for example,
to include individuals with high-level spinal cord injuries or
severe cerebral palsy, could draw much greater commercial
interest. Furthermore, as discussed again in Session 6 below,
widespread application of BCI-based communication systems
will depend also on cost, ease of training and use, and on
careful attention to user satisfaction.

SESSION2: MATCHING THE BCI AND ITS INPUT TO THEUSER

Matching the user with his or her optimal BCI input features
is essential if BCI’s are ever to be broadly applied to the com-
munication needs of users with different disabilities. Most BCI
systems use EEG or single-unit features that originate mainly
in somatosensory or motor areas of cortex. These areas may
be severely damaged in people with stroke or neurogenerative
disease. Use of features from other CNS regions may prove
necessary. For EEG-based BCI’s, comprehensive multielec-
trode recording, performed initially and then periodically, can
reveal changes in the user’s performance and/or the progression
of disease, and can thereby guide selection of optimal recording
locations and EEG features. Some brain areas may not prove to
be useful: slow potential control is poor over parietal areas [22],
and rhythms are largely limited to sensorimotor cortex. BCI
systems should be flexible enough to use a variety of different
EEG features as control signals. A system that can use slow
potentials, or rhythms, P300 potentials, or single-unit ac-
tivity alone or in combination is under development [52]. Such
flexibility could provide a considerable practical advantage.

At present, only limited clinical data are available on BCI use
by those with severe neuromuscular disabilities. The Thought
Translation Device (TTD) [3], which uses slow cortical poten-
tials (SCP’s), and the Wadsworth BCI, which usesand
rhythms [8], have been evaluated in small numbers of users
with amyotrophic lateral sclerosis (ALS), stroke, spinal cord in-
jury, cerebral palsy, or amputation. Controlled clinical trials in
various user groups will be required to determine which BCI
methods might be best for each group. These studies should
compare the performances of different BCI systems and dif-
ferent electrophysiological inputs in comparable user groups.
While a double-blind design is generally not practical in such
work, comparable training procedures should be used and con-
trols for placebo effects (e.g., [23]) should be incorporated. Be-
cause such studies are time consuming and costly, especially

when they involve users with severe disabilities, they are likely
to require the joint efforts of several centers.

The most obvious application of BCI technology in its
present state of development is to locked-in patients. Totally
locked-in patients should be differentiated from those who
retain some minimal voluntary muscle functions, such as eye or
eyelid movement or some facial muscle control. For the TTD,
early training of ALS patients, before they lose all or most
voluntary functions, has proved valuable because problems in
learning SCP control from scratch can appear as the disease
progresses. In addition, it may be necessary to change the
feedback modality used by the BCI to accommodate the
sensory capabilities of the user. Because the visual system may
be compromised in certain user groups, BCI systems should
be able to use other sensory modalities. Locked-in patients
with poor control of eye movements might achieve better
communication when tactile feedback is substituted for the
standard visual feedback.

In addition to its use in locked-in states associated with
brainstem strokes, ALS, or other degenerative diseases, BCI
technology has been proposed as a possible communication
system in autism, aphasia, and other severe communication
disorders [24]. By bypassing compromised language areas
in temperofrontal cortex, it could conceivably provide slow
but less deviant or redundant communication. In patients who
cannot master the alphabet, a pictorial system might prove an
effective alternative.

With the exception of systems that depend on muscle control
[2], [10], [25], and the possible exception of the P300 BCI
[4], current BCI’s depend on EEG or single-unit control that
is acquired through operant conditioning procedures. Thus,
thorough behavioral analysis of the learning phenomenon and
environment is important. Such analysis requires extensive
knowledge of learning theory, experience in its clinical ap-
plication, and understanding of how a specific neurological
impairment might influence learning. However, most current
BCI’s have been developed primarily by engineers and other
technically oriented groups with limited expertise in behavioral
principles and methods. High-level intellectual and cognitive
functioning is probably not essential for successful BCI usage
[26]. Nevertheless, issues such as optimal response selection,
optimal reinforcement types and schedules, and optimal stim-
ulus-response conditions, which are essential for successful
shaping of any behavior (in this case, EEG or single-unit
control) need much greater attention than they have received,
and well-controlled clinical trials are essential. BCI develop-
ment requires extensive interdisciplinary cooperation, between
neuroscientists, engineers, psychologists, programmers, and
rehabilitation specialists.

In addition to controlling the chosen electrophysiological fea-
tures, users must simultaneously select the message to be com-
municated (e.g., specific letter or cursor movement direction)
and observe the actual output from the system. This requires
some division of attention, and might compromise control of the
input features. Several studies indicate that such division is pos-
sible [27], [28]. Nevertheless, it may turn out that the capacity
for automatization of brain responses such as slow cortical po-
tentials or rhythms is limited. This problem could conceivably
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be overcome by switching to subcortical responses or by re-
ducing the size of the cortical regions that produce the input
used by the BCI system.

SESSION3: INVASIVE BCI METHODS

This session reviewed the opportunities and difficulties asso-
ciated with using invasive methods for obtaining BCI control
signals. The starting point for this discussion was the observa-
tion that invasive methods are appropriate only if they are safe
and if they provide significant improvement in function over
noninvasive methods. The discussion focused on seven impor-
tant questions.

First, what are the possible locations of implanted electrodes
and what signals will they record?The motor cortex is an
obvious choice for recording and should be considered in most
cases because of its direct relevance to motor tasks, its relative
accessibility compared to motor areas deeper in the brain, and the
relative ease of recording from its large pyramidal cells. Other
sites that might be considered include the supplementary motor
cortex, subcortical motor areas, and the thalamus. Functional
magnetic resonance imaging (fMRI), magnetoencephalography
(MEG), and other functional imaging techniques could help
identify appropriate areas for implantation. In addition, for
some electrode types, neural recording during implantation can
confirm that the sitesselected are appropriate. The information in
the recorded signals will depend on the location of the electrodes,
and may be modified by sensory inputs to the recording area.
Furthermore, the information will depend in as yet unknown
ways on the functional use that is made of the signals, and this
dependence may change with continued use. These factors all
require further research. One issue of particular interest is how
many cells need to be recorded simultaneously in order to get
a meaningful signal. Estimates range from the expectation that
one or two cortical neurons can provide useful information
from an otherwise locked-in brain [29] to the belief that 50
to100 neurons will be needed to provide an information transfer
rate that justifies an invasive procedure [18], [30]–[32]. These
differing views lead to somewhat different research approaches.

Second, what are the options for obtaining stable recording
capability over months and years?In small-brained animals
such as rats and guinea pigs, stable single-unit recording has
been maintained for long periods [30], [33]–[35]. In nonhuman
primates stable recording has been maintained over months, and
in selected instances over years [18], [36]–[38]. Recent results
indicate that the cone electrode may provide stable recording
in primates, including humans, for periods of years [36]. Other
promising microelectrodes include microwires and microma-
chined microelectrode arrays [30], [33]–[35], [39], [40]. Fur-
ther electrode development, combining the multisite capability
of micromachined electrodes with the long-term stability of the
cone electrode, is essential.

Third, which user groups might be best suited, by disability
and/or need, for implanted electrodes?Patients who are locked
in (e.g., by ALS) might benefit from invasive BCI technology
if it is both safe and effective. Selected individuals with stroke,
spinal cord injury, limb prostheses and other conditions might
also benefit. Apart from the issues of safety and efficacy, the

stigma sometimes associated with brain implants must be ad-
dressed and overcome. Individual preferences will play a signif-
icant role in decisions about implantable systems. To be justifi-
able, an implanted system must offer the individual a substantial
functional advantage over conventional augmentative technolo-
gies and over noninvasive BCI methods. For example, a prelim-
inary study is exploring noninvasive EEG-based operation of a
neuroprosthesis that provides hand grasp [11].

Fourth, to what extent will the control provided by recorded
neurons be able to be independent of the presence of normal
feedback from other CNS areas?Implanted microelectrodes
have been likened to a wiretap where the microelectrodes listen
in to a normal conversation between cells. For users who are
paralyzed or have other severe neuromuscular disabilities, it
might be more appropriate to say that the implanted array of
microelectrodes is a wiretap into a conversation in which one
party has hung up. An effective BCI must provide feedback
to the user and thereby substitute for the missing part of the
conversation. The nervous system’s ability to change so as to
respond effectively to the new feedback provided by a BCI will
have a major role in determining how well the communication
system works. Studies indicate that the firing rates of individual
neurons in motor cortex can be controlled using visual and
auditory feedback [41]. Auditory prostheses research has shown
that large populations of cells in the auditory system will modify
their tuning specificity in response to electrical stimulation [42].
While the plasticity of the brain makes it difficult to predict the
precise nature of the communication code, the expectation is
that this plasticity will enhance communication efficiency.

Fifth, what other improvements in recording technology
might help BCI development?Progress in several research
areas is needed to make invasive methods a viable approach for
a BCI. One area is signal acquisition, which includes recording
methods, electrode design, artifact elimination, telemetry, and
biomaterials. Other important research areas are the nature
of information coding in the nervous system, the changes
that occur with learning, and other aspects of integrative
and cognitive neuroscience. Interdisciplinary cooperation is
essential for this research. The research agenda includes further
experimentation in primates, feasibility studies in humans, con-
tinued improvements in microelectrode design and telemetry,
and studies of specific neuron populations and their ability to
support BCI’s with high information transfer rates.

Sixth, are other recently developed technologies such as
MEG, fMRI, and positron emission tomography (PET) of
possible use for BCI purposes?These technologies can have a
significant role in patient evaluation and in preliminary iden-
tification of sites for implantation of invasive BCI recording
electrodes. At the same time, given current understanding
and equipment, it is not clear that these technologies could
replace EEG or single-unit activity as the input for a portable
and effective BCI. Nevertheless, in the future these and other
imaging techniques, such as near-infrared photonic imaging,
might support noninvasive BCI systems.

Seventh, what are the ethical issues that must be considered
in implanting recording electrodes in human volunteers?Pa-
tients must be informed of the risks and potential benefits of any
intervention, especially an invasive procedure with uncertain
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benefit to the individual and possibly serious risks. Volunteers
with severe disabilities may tend to greatly overestimate the po-
tential benefits, so that risks and uncertainties must be clearly
and forcefully explained. On the other hand, many people may
want to volunteer for research that provides no direct benefit to
themselves beyond the knowledge that they are participating in
a research project that might help others with similar conditions
in the future. They should not be denied this opportunity. The
Belmont Report [43] enunciates three basic ethical standards for
the conduct of human research. The first, respect for persons, in-
corporates the idea that individuals are autonomous agents and
should be free to make their own choice regarding participa-
tion after being given a full understanding of the risks and ben-
efits. The second, beneficence, obligates the investigator to act
in a way that will maximize benefit to the individual volunteer
and/or the greater society while simultaneously minimizing the
risk of harm. The third standard, justice, obligates the investi-
gator to design studies so that the benefits and burdens of re-
search are shared in a just way. An ethicist should be involved in
the earliest phases of any human research developing or testing
invasive BCI methods.

SESSION4: SIGNAL ANALYSIS

The goal of signal analysis in a BCI system is to maximize the
signal-to-noise ratio (SNR) of the EEG or single-unit features
that carry the user’s messages and commands. To achieve this
goal, consideration of the major sources of noise is essential [44].
Noise has both nonneural sources (e.g., eye movements, EMG,
60-Hz line noise) and neural sources (e.g., EEG features other
than those used for communication). Noise detection and dis-
crimination problems are greatest when the characteristics of the
noisearesimilar in frequency, timeoramplitudetothoseof thede-
sired signal. For example, eye movements are of greater concern
than EMG when a slow cortical potential is the BCI input feature
becauseeyemovementsandslowpotentialshaveoverlappingfre-
quency ranges. For the same reason, EMG is of greater concern
than eye movements when arhythm is the input feature. In the
laboratory particularly, it is important to record enough informa-
tion (e.g., topographical and spectral distributions) to permit dis-
crimination between signal and noise. Non-neural noise such as
EMG is of particular concern because a user’s control over it can
readilymasqueradeasactualEEGcontrol.Non-neuralnoisepro-
duced by reflex activity may occur even in users who lack all vol-
untary muscle control. In this case, the nonneural noise will not
support communication, but candegrade BCI performanceby re-
ducing the SNR. It is also important to distinguish between dif-
ferent neural features. The visualrhythm is a source of noise
when the rhythm is the feature being used for communication.
Whileappropriatetemporalandspatial filteringmethodscanhelp
make such distinctions, signals from different sources might well
have similar frequency spectra and similar spatial distributions
(e.g., [45]). If nonneural and neural noise can be detected online,
in the course of BCI operation, its impact on operation can be
greatly reduced or eliminated. For example, in a BCI driven by
slow cortical potentials, input contaminated by eye movements
can be rejected [3]. This approach can also induce the user to re-
duce the production of such noise.

Numerous options are available for BCI signal processing.
Ultimately, they need to be compared in on-line experiments
that measure speed and accuracy. The new Graz BCI system
[46], based on Matlab and Simulink, supports rapid prototyping
of various methods. Different spatial filters and spectral analysis
methods can be implemented in Matlab and compared in regard
to their online performance.

Autoregressive (AR) model parameter estimation is a
useful method for describing EEG activity, and can prove
valuable for BCI applications (e.g., [7]–[9]). The AR model
typically assumes a Gaussian process [15]. Because very small
non-Gaussian residuals can markedly influence AR parameter
estimation, these residuals should be assessed. When additive
outlier contamination is present, a generalized robust maximum
likelihood estimate (GM) can be valuable. This method is based
on a modified Kalman filter. GM methods produce results sim-
ilar to the typical AR estimate for Gaussian data, but perform
better for non-Gaussian data. Bayesian algorithms, which can
assess the certainty that the system’s interpretation of the user’s
intention is correct, may also prove useful (e.g., [9]). They can
arrest communication when this certainty falls below a criterion
level, and thereby reduce errors in BCI performance.

Signal processing methods are important in BCI design, but
they cannot solve every problem. While they can enhance the
signal-to-noise ratio, they cannot directly address the impact
of changes in the signal itself. Factors such as motivation, in-
tention, frustration, fatigue, and learning affect the input fea-
tures that the user provides. Thus, BCI development depends on
appropriate management of the adaptive interactions between
system and user, as well as on selection of appropriate signal
processing methods.

SESSION5: BCI TRANSLATION ALGORITHMS

A translation algorithm is a series of computations that trans-
forms the BCI input features derived by the signal processing
stage into actual device control commands. Stated in a different
way, a translation algorithm takes abstract feature vectors that
reflect specific aspects of the current state of the user’s EEG or
single-unit activity (i.e., aspects that encode the message that the
user wants to communicate) and transforms those vectors into
application-dependent device commands. Different BCI’s use
different translation algorithms (e.g., [3]–[9]). Each algorithm
can be classified in terms of three key features: transfer func-
tion, adaptive capacity, and output. The transfer function can
be linear (e.g., linear discriminant analysis, linear equations) or
nonlinear (e.g., neural networks). The algorithm can be adaptive
or nonadaptive. Adaptive algorithms can use simple handcrafted
rules or more sophisticated machine-learning algorithms. The
output of the algorithm may be discrete (e.g., letter selection) or
continuous (e.g., cursor movement). The diversity in translation
algorithms among research groups is due in part to diversity in
their intended real-world applications. Nevertheless, in all cases
the goal is to maximize performance and practicability for the
chosen application.

Current consideration of alternative translation algorithms
focuses primarily on those applicable to scalp-recorded EEG
activity, because it is at present the only widely available BCI
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option for human users. As invasive technologies (e.g., the
cone electrode [5] or intracortical or subdural arrays [16], [30])
evolve, extant algorithms will require additional evaluation and
new algorithms will probably arise. EEG activity reflects the
integrated activity of large populations of cortical neurons. If
the input features extracted from this activity are to provide ef-
fective communication, they must have two or more discernible
states that reflect the user’s intentions and are accommodated
to the domain and constraints of the application. The BCI might
employ a single simple feature (e.g., amplitude in a specific
frequency band at a specific scalp location), or a combination
of multiple time and/or frequency domain features (e.g., slow
cortical potentials, rhythms) produced by multiple physio-
logical processes. The demands of the chosen application will
help guide selection of a translation algorithm that provides an
acceptable combination of speed and accuracy. Because the
human brain is a highly adaptive controller that relies upon both
predictive methods and feedback information, it is desirable
and perhaps essential that BCI translation algorithms also be
adaptive. One current algorithm adapts continually to the mean
amplitude and/or variance of its EEG input features [44].

Whatever the nature and the computational power of a trans-
lation algorithm, it will not succeed without a comprehensive
development and application strategy. Without such strategies,
BCI development programs may degrade into optimizations of
very abstract performance measures without real-world rele-
vance. Thus, for example, the accuracy and speed of BCI-con-
trolled curosr movement is meaningful only in the context of its
performance in a specific target-selection protocol. While BCI
research involves important theoretical issues and has important
implications for the understanding of brain function, the primary
impetus for it is the potential benefit to those with severe motor
disabilities, and for this reason real-world relevance and success
are crucial.

Objective methods for comparing different translation
algorithms are essential for fostering further development
and for synchronizing the multinational collaborative research
programs that have arisen over the last several years. At present,
such comparisons are often difficult, even for one specific
application or within the same BCI system. This unsatisfactory
situation could be improved by adoption of specific benchmark
applications, uniform data sets, or standard procedures that will
support comparisons between translation algorithms and be-
tween entire BCI systems, and will be accessible to all research
groups (e.g., Fig. 1). Furthermore, because of the adaptive
capacity of the brain and individual differences in this capacity,
evaluation of translation algorithms should adopt appropriate
statistical approaches (e.g., bootstrapping, cross-validation,
forward prediction) and apply them in a sufficient number of
users and in relevant applications. Particular algorithms may
prove unsuitable for particular applications, and even the most
sophisticated algorithms may fall short of expectations.

BCI development has begun to address real-world applica-
tions. Continued progress in development of these applications
will require the combined effort of different laboratories and
professions. Training protocols should be standardized within
each laboratory and perhaps across laboratories. In addition,
even the most sophisticated signal processing methods and

translation algorithms are unlikely to be successful without
involvement of neuroscientists, psychologists, physicians, and
rehabilitative specialists who work with those who will be
using BCI-based communication and control devices. Their
guidance is essential to ensure that BCI technologies are not
only theoretically effective but are also actually used by people
for significant purposes in the real world.

SESSION6: APPLICATIONS OFBCI TECHNOLOGY

As an essential prelude to addressing the potential practical
uses of BCI technology, this session began by clarifying the dis-
tinction between BCI’s and the applications to which they are ap-
plied. This is the difference between a tool, in this case a BCI, and
its applications. A tool in the present context is a device that per-
forms a specific function and can be applied to a wide variety of
applications. A tool is specified by the manner in which it per-
forms its function, and it is evaluated by the ease and effective-
ness of its performance. The screwdriver, that most prototypical
of tools, is designed to turn screws either clockwise or counter-
clockwise. This function remains the same, whatever the purpose
servedbythescrewsturned. Incontrast,anapplication isasystem
that uses the tool to achieve some practical purpose. While an ap-
plication may be described in terms of the tools it employs, its
primary description focuses on the purpose it serves, and its eval-
uation focuses on how well it serves that purpose.

The BCI’s described at this conference and in the papers in
this issue are tools that record and analyze EEG or the activity
of single cortical neurons. These tools can be used to move a
cursor, select from among two or more possible choices, control
a neuroprosthesis, etc. Discussions of the design and develop-
ment of these tools inevitably focus on these possible applica-
tions and on the efficiency, reliability, and cost of specific tools
in specific applications. Issues such as “How do we best move a
cursor” or “How fast can we choose one of 26 characters?” are of
primary concern. With satisfactory answers to these questions in
hand, attention can turn to the real-life purposes the tools might
serve.

Present BCI’s can be classified into two groups according to
the nature of the signals they use as input. Some depend on user
control of endogenous electrophysiological activity, such as am-
plitude in a specific frequency band in EEG recorded over a
specific cortical area (e.g., or rhythms recorded over sen-
sorimotor cortex [6]–[9]). Others depend on user control of ex-
ogenous electrophysiological activity, that evoked by specific
stimuli (e.g., amplitude of the P300 potential produced in re-
sponse to letter flash [4]). Endogenous BCI’s provide a better
fit to a control model because the trained user exercises direct
control over the environment. On the other hand, these BCI’s
often require extensive training. Exogenous BCI’s may not re-
quire extensive training, but do require a somewhat structured
environment (e.g., stereotyped visual input). For example, an
endogenous BCI may enable a user to move a cursor to any point
in a two-dimensional space, while an exogenous BCI may con-
strain a user to the choices presented by a display.

BCI tools have potential applications spanning at least five
different areas: verbal communication, activities of daily living,
environmental control, locomotion, and exercise. In choosing
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among these areas, the needs and priorities of the anticipated
user should be the primary concern. Developers must guard
against the tendency to approach the parameters of the tools and
their applications as an abstract design exercise. A BCI and its
applications should be optimized for each individual user or user
group. At the same time, the optimization process should be as
objective and standardized as possible. For each user, the BCI
and its application(s) should be embedded in a behavioral pro-
gram with well-defined objectives. A thorough behavioral anal-
ysis that addresses the needs, desires, and primary motivators of
the user and/or her or his caregivers is essential. BCI develop-
ment should incorporate not simply technical and electrophysi-
ological principles, but well-defined learning principles as well.

One approach to application development would begin with
a matrix that lists the tools (i.e., the different BCI’s) on one axis
and their characteristics (e.g., speed, accuracy, training needed,
demand on attention, etc.) on the other axis. A second matrix
would list applications on one axis and their requirements (e.g.,
speed and accuracy needed, attention required, etc.) on the other.
The rows and columns of these two matrices could be combined
to produce a BCI-to-application mapping matrix that would aid
developers in designing applications and providing them to indi-
vidual users. This matrix might also aid clinicians in exploring
collaborative development, or integration, of several different
BCI’s to better serve particular applications [47]. In addition,
users with a progressive disorder such as ALS might be pro-
vided with a BCI that matches the characteristics of an existing
conventional augmentative communication interface. Then, as
disability progresses and the conventional interface loses its use-
fulness, the user might make a smooth transition to the BCI.

The recent development and commercial application of the
Freehand Functional Electrical Stimulation system (FES) at
Case Western Reserve University, Cleveland, OH, illustrates the
conditions necessary for success (e.g., [48]). These conditions
include: stabilization of all aspects of design and documen-
tation, a well-defined user population, standardized training
protocols, demonstration of the feasibility of the specific
application, well-defined outcome measures that document
successful usage and performance, regulatory assessment,
multicenter assessment, and identification of manufacturing
partners and commercialization strategy. Satisfying these
conditions requires collaborative interactions with the users,
who must know how to use the technology and be persuaded
that the technology is both useful and safe. Also essential
is the cooperation of the relevant health care professionals,
who must be persuaded that the risk/benefit ratio is favorable,
that the technology is safe and useful, and that it is equal or
superior to available alternatives. Finally, whoever is paying
the bill (usually an insurance company) must be convinced that
the long-term savings will offset both the initial costs and the
operating costs of the system.

Among the factors that impede development of BCI applica-
tions are: that the essential neuroscientific and psychological
foundations of the field are not sufficiently developed, that
current EEG recording methods are somewhat cumbersome and
susceptible tonoise fromvarioussources, thatcurrentBCI’shave
limited resolution (e.g., binary selection is a weak substitute for
continuous or multilevel selection), that close interdisciplinary

collaboration (i.e., engineering, neuroscience, psychology,
computer science, rehabilitation) is still rare, and that access to
appropriate users with substantial interest in obtaining improved
function is as yet inadequate. Access to a sufficient number of
appropriate and motivated users is a particular challenge.

The panel did not recommend selection of a single prototype
application for all research projects. Although a prototype appli-
cation would allow objective comparison between BCI systems,
the choice of application would place an arbitrarily high pri-
ority on specific performance characteristics while downplaying
others that might be of equal or greater importance for other ap-
plications. A better alternative would be a standard set of bench-
mark applications that would together quantify the different per-
formance characteristics of each BCI, including accuracy, speed
of operation, etc. The results of such a standard and compre-
hensive evaluation would help in matching BCI to application
to individual user.

SUPPORT FORBCI RESEARCH ANDDEVELOPMENT

Further development of BCI technology will depend on both
basic and applied research. Basic research efforts that eluci-
date the mechanisms underlying and controlling EEG rhythms,
cortical single-unit activity, and other electrophysiological phe-
nomena, that develop processing methods that improve SNR, or
that provide other insights into the physiological, psychological
processes and engineering principles involved in BCI operation
will be an essential element in future progress. Public and pri-
vate entities that support basic biomedical and engineering re-
search are likely sources of support for this work. Of particular
interest in this context is the new initiative on bioengineering
research at the National Institutes of Health (NIH) [49] (e.g.,
[50]). This program emphasizes interdisciplinary research and
is thus particularly well-suited for BCI research efforts.

Applied research—the development and evaluation of
particular BCI’s in particular applications—is also essential.
At present, the primary impetus for this work is the need
of those with severe neuromuscular disabilities, those who
lack the voluntary muscle control needed to use conventional
augmentative communication systems. While their need is
great, their numbers are small. As a result, BCI development is
as yet of limited commercial interest and depends for support
mainly on public and private nonprofit entities. Because these
institutions traditionally focus on basic research, support for
applied BCI research has been difficult to obtain. In recent
years, the National Center for Medical Rehabilitation Research
of the NIH has recognized this problem and has begun to pro-
vide support for research programs that are primarily applied
rather than basic. The NIH Small Business Innovation Research
Grant Program [51] also provides support for applied research
that has as yet only limited commercial potential. The National
Institute of Disability and Rehabilitation Research is another
potential source of support. Other NIH grant mechanisms
and the specific interests of the different institutes at NIH are
described on NIH’s home page (www.nih.gov). In Europe,
the European Union and national agencies (e.g., the Deutsche
Forschungsgemeinschaft (DFG) in Germany) have also begun
to provide support for such applied research. In the future, if
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and when the speed and accuracy of BCI technologies increase
enough to make them useful for larger populations with less
severe disabilities, private industry is likely to display greater
interest and to provide substantial support.

CONCLUSION

A brain–computer interface is a communication and control
channel that does not depend on the brain’s normal output path-
ways of peripheral nerves and muscles. At present, the main im-
petus to BCI research and development is the expectation that
BCI technology will be valuable for those whose severe neuro-
muscular disabilities prevent them from using conventional aug-
mentative communication methods. These individuals include
many with advanced amyotrophic lateral sclerosis (ALS), brain-
stem stroke, and severe cerebral palsy.

Current BCI’s record electrophysiological signals using
noninvasive or invasive methods. Noninvasive BCI’s use
scalp-recorded EEG rhythms or evoked potentials, while
invasive BCI’s use single-unit activity recorded within cortex
or EEG recorded subdurally. They have maximum information
transfer rates of 5–25 b/min and are being used to control
cursor movement or to select letters or icons.

Like other communication and control systems, BCI’s have
inputs, outputs, and translation algorithms that convert the
former to the latter. BCI operation depends on the interaction
of two adaptive controllers, the user’s brain, which produces
the input (i.e., the electrophysiological activity measured by the
BCI system) and the system itself, which translates that activity
into output (i.e., specific commands that act on the external
world). Successful BCI operation requires that the user acquire
and maintain a new skill, a skill that consists not of muscle
control but rather of control of EEG or single-unit activity.

BCI inputs include slow cortical potentials, P300 evoked po-
tentials, and rhythms from sensorimotor cortex, and single
unit activity from motor cortex. Recording methodologies seek
to maximize signal-to-noise ratio. Noise consists of EMG, EOG,
and other activity from sources outside the brain, as well as
brain activity different from the specific rhythms or evoked po-
tentials that comprise the BCI input. A variety of temporal and
spatial filters can reduce such noise and thereby increase the
signal-to-noise ratio. BCI translation algorithms include linear
equations, neural networks, and numerous other classification
techniques. The most difficult aspect of their design and imple-
mentation is the need for continuing adaptation to the charac-
teristics of the input provided by the user.

BCI development depends on close interdisciplinary cooper-
ation between neuroscientists, engineers, psychologists, com-
puter scientists, and rehabilitation specialists. It would benefit
from general acceptance and application of objective methods
for evaluating translation algorithms, user training protocols,
and other key aspects of BCI operations. Evaluations in terms of
information transfer rate and in terms of usefulness in specific
applications are both important. Appropriate user populations
must be identified, and BCI applications must be configured
to meet their most important needs. The assessment of needs
should focus on the actual desires of individual users rather than
on preconceived notions about what these users ought to want.

Similarly, evaluation of specific applications ultimately rests on
the extent to which people actually use them in their daily lives.

Continuation and acceleration of recent progress in BCI re-
search and development requires increased focus on the produc-
tion of peer-reviewed research articles in high quality journals.
Research would also benefit from identification and widespread
utilization of appropriate venues for presentations (e.g., the So-
ciety for Neuroscience Annual Meeting), and from appropri-
ately conservative response to media attention. For the near fu-
ture, research funding will depend primarily on public agencies
and private foundations that fund research directed at the needs
of those with severe motor disabilities. With further increases
in speed, accuracy, and range of applications, BCI technology
could become applicable to larger populations and could thereby
engage the interest and resources of private industry.

ACKNOWLEDGMENT

The authors thank the National Center for Medical Rehabili-
tation Research, NICHD, NIH, which sponsored the workshop,
the Eastern Paralyzed Veterans Association and the Whitaker
Foundation which provided additional support, the Wadsworth
Center of the New York State Department of Health which or-
ganized the workshop, and the Rensselaerville Institute near Al-
bany, NY, which provided and maintained an ideal environment.

The panels that planned and led the six discussion sessions
were comprised of the following people:

Session 1:J. R. Wolpaw (Chair), E. Curran, A. Gevins,
A. M. Junker, S. G. Mason, C. J. Robinson.
Session 2:N. Birbaumer (Chair), F. Cincotti, I. Gon-
charova, S. Makeig, C. Neuper, F. Pauri, J. A. Pineda.
Session 3:W. J. Heetderks (Chair), L. Bianchi, J. K.
Chapin, G. Gaal, R. Isaacs, P. R. Kennedy, S. P. Levine.
Session 4:D. J. McFarland (Chair), J. H. Bayliss, G. E.
Birch, C. Guger, T. Hinterberger, W. D. Penny.
Session 5:P. H. Peckham (Chair), G. Schalk (Discussion
Leader), J. H. Bayliss (Recorder), C. Anderson, G. Fabiani,
A. Kostov, J. Perelmouter.
Session 6:E. Donchin (Chair), B. Z. Allison, J. E. Huggins,
A. Kuebler, R. T. Lauer, M. S. Middendorf, M. Polak.

REFERENCES

[1] H. Berger, “Uber das Electrenkephalogramm des Menchen,”Arch Psy-
chiat Nervenkr, vol. 87, pp. 527–570, 1929.

[2] J. J. Vidal, “Real-time detection of brain events in EEG,”Proc. IEEE,
vol. 65, pp. 633–664, May 1977.

[3] N. Birbaumer et al., “The thought translation device (TTD) for
completely paralyzed patients,”IEEE Trans. Rehab. Eng., vol. 8, pp.
190–193, June 2000.

[4] E. Donchinet al., “The mental prosthesis: Assessing the speed of a P300-
based brain–computer interface,”IEEE Trans. Rehab. Eng., vol. 8, pp.
174–179, June 2000.

[5] P. R. Kennedyet al., “Direct control of a computer from the human
central nervous system,”IEEE Trans. Rehab. Eng., vol. 8, pp. 198–202,
June 2000.

[6] A. Kostov and M. Polak, “Parallel man–machine training in develop-
ment of EEG-based cursor control,”IEEE Trans. Rehab. Eng., vol. 8,
pp. 203–205, June 2000.

[7] G. Pfurtschelleret al., “Current trends in Graz brain–computer interface
(BCI) research,”IEEE Trans. Rehab. Eng., vol. 8, pp. 216–219, June
2000.



WOLPAW et al.: BCI TECHNOLOGY: A REVIEW 173

[8] J. R. Wolpaw et al., “Brain–computer interface research at the
Wadsworth Center,”IEEE Trans. Rehab. Eng., vol. 8, pp. 222–226,
June 2000.

[9] W. D. Pennyet al., “EEG-based communication: A pattern recognition
approach,”IEEE Trans. Rehab. Eng., vol. 8, pp. 214–215, June 2000.

[10] M. Middendorfet al., “Brain–computer interfaces based on steady-state
visual-evoked response,”IEEE Trans. Rehab. Eng., vol. 8, pp. 211–214,
June 2000.

[11] R. T. Laueret al., “Applications of cortical signals to neuroprosthetic
control: A critical review,” IEEE Trans. Rehab. Eng., vol. 8, pp.
205–208, June 2000.

[12] J. A. Pinedaet al., “The effects of self-movement, observation, and
imagination on� rhythms and readiness potentials (RP’s): Toward a
brain–computer interface (BCI),”IEEE Trans. Rehab. Eng., vol. 8, pp.
219–222, June 2000.

[13] F. Babilioniet al., “Linear classification of low-resolution EEG patterns
produced by imagined hand movements,”IEEE Trans. Rehab. Eng., vol.
8, pp. 186–188, June 2000.

[14] S. Makeiget al., “A natural basis for efficient brain-actuated control,”
IEEE Trans. Rehab. Eng., vol. 8, pp. 208–211, June 2000.

[15] G. E. Birch and S. G. Mason, “Brain–computer interface research at the
Neil Squire Foundation,”IEEE Trans. Rehab. Eng., vol. 8, pp. 193–195,
June 2000.

[16] S. P. Levineet al., “A direct brain interface based on event-related po-
tentials,”IEEE Trans. Rehab. Eng., vol. 8, pp. 180–185, June 2000.

[17] J. D. Bayliss and D. H. Ballard, “A virtual reality testbed for brain–com-
puter interface research,”IEEE Trans. Rehab. Eng., vol. 8, pp. 188–190,
June 2000.

[18] R. E. Isaacset al., “Work toward real-time control of a cortical neural
prosthesis,”IEEE Trans. Rehab. Eng., vol. 8, pp. 196–198, June 2000.

[19] L. E. Robertset al., “Self-report during feedback regulation of slow cor-
tical potentials,”Psychophysiol, vol. 26, pp. 392–403, 1989.

[20] C. E. Shannon and W. Weaver,The Mathematical Theory of Communi-
cation. Urbana, IL: Univ. Illinois Press, 1964.

[21] J. R. Pierce,An Introduction to Information Theory. New York: Dover,
vol. 1080, pp. 145–165.

[22] B. Rochstroh et al., Slow Brain Potentials and Behavior, 2nd
ed. Baltimore, MD: Urban and Schwarzenberg, 1989.

[23] A. Harrington,The Placebo Effect. Cambridge, MA: Harvard Univ.
Press, 1997.

[24] N. Birbaumer, “Rain Man’s revelations,”Nature, vol. 399, pp. 211–212,
1999.

[25] E. E. Sutter, “The brain response interface: Communication through vi-
sually-induced electrical brain responses,”J. Microcomput. Appl., vol.
15, pp. 31–45, 1992.

[26] S. Holzapfel et al., “Behavioral psychophysiological intervention
in a mentally retarded epileptic patient with brain lesion,”Appl.
Psychophysiol. Feedback, vol. 23, no. 3, pp. 189–202, 1998.

[27] J. Perelmouteret al., “Language support program for thought-transla-
tion-devices,”Automedica, vol. 18, pp. 67–84, 1999.

[28] L. A. Miner et al., “Answering questions with an electroencephalogram-
based brain-computer interface,”Arch. Phys. Med. Rehab., vol. 79, pp.
1029–1022, 1998.

[29] P. R. Kennedy and R. A. Bakay, “Restoration of neural output from a
paralyzed patient by a direct brain connection,”Neuroreport, vol. 9, pp.
1707–1711, 1998.

[30] J. K. Chapinet al., “Real-time control of a robot arm using simultane-
ously recorded neurons in the motor cortex,”Nat. Neurosci., vol. 2, pp.
664–760, 1999.

[31] J. A. Hofferet al., “Neural signals for command control and feedback in
functional neuromuscular stimulation: A review,”J. Rehab. Res. Dev.,
vol. 33, pp. 145–157, 1996.

[32] S. Lin et al., “Self-organization of firing activities in monkey’s motor
cortex: Trajectory computation from spike signals,”Neural Comput.,
vol. 9, pp. 607–621, 1997.

[33] D. J. Woodwardet al., “Mesolimbic neuronal activity across behavioral
states,”Ann. New York Acad. Sci., vol. 877, pp. 91–112, 1999.

[34] J. C. Williamset al., “Long-term neural recording characteristics of wire
microelectrode arrays implanted in cerebral cortex,”Brain Res. Brain
Res. Protoc., vol. 4, pp. 303–313, 1999.

[35] X. Liu et al., “Stability of the interface between neural tissue and
chronically implanted intracortical microelectrodes,”IEEE Trans.
Rehab. Eng., vol. 7, pp. 315–326, 1999.

[36] P. R. Kennedy and R. A. Bakay, “Activity of single action potentials in
monkey motor cortex during long-term task learning,”Brain Res., pp.
251–254, 1997.

[37] E. M. Schmidtet al., “Long-term implants of Parylene-C coated micro-
electrodes,”Med. Biol. Eng. Comput., vol. 26, pp. 96–101, 1988.

[38] E. M. Maynardet al., “Neuronal interactions improve cortical pop-
ulation coding of movement direction,”J. Neurosci., vol. 19, pp.
8083–8093, 1999.

[39] P. J. Rousche and R. A. Normann, “Chronic recording capability of the
Utah intracortical electrode array in cat sensory cortex,”J. Neurosci.
Math., vol. 82, pp. 1–15, 1998.

[40] A. C. Hoogerwerf and K. D. Wise, “A three-dimensional micorelectrode
array for chronic neural recording,”IEEE Trans. Biomed. Eng., vol. 41,
pp. 1136–1146, 1994.

[41] E. M. Schmidt, “Single neuron recording from motor cortex as a possible
source of signals for control of external devives,”Ann. Biomed. Eng.,
vol. 8, pp. 339–349, 1980.

[42] M. Vollmer et al., “Temporal properties of chronic cochlear electrical
stimulation determine temporal resolution of neurons in cat inferior col-
liculus,” J. Neurophysiol., vol. 82, pp. 2883–2909, 1999.

[43] , Ethical principles and guidelines for the protection of human sub-
jects of research, report of the national commission for the protection
of human subjects and biomedical and behavioral research, Apr. 18,
1979, Available: http://grants.nih.gov/grants/oprr/humansubjects/guid-
ance/belmont.htm [Online].

[44] D. J. McFarlandet al., “Design and operation of an EEG-based brain-
computer interface with digital signal processing technology,”Behav.
Res. Meth. Inst. Comp., vol. 29, pp. 337–345, 1997.

[45] G. Floranet al., “Do changes in coherence always reflect changes in
functional coupling?,”Electroenceph. Clin. Neurophysiol., vol. 106, pp.
87–91, 1998.

[46] A. Guger et al., “Design of an EEG-based brain-computer interface
(BCI) from standard components running in real-time under Windows,”
Biomed. Tech., vol. 44, pp. 12–16, 1999.

[47] G. E. Jacqueset al., “Application of quality function deployment in re-
habilitation engineering,”IEEE Trans. Rehab. Eng., vol. 2, pp. 158–164,
Sept. 1994.

[48] K. L. Kilgore et al., “An implanted upper-extremity neuroprothesis:
Follow-up of five patients,”J. Bone Joint Surg., vol. 79A, pp. 533–541,
1997.

[49] , Biomedical Engineering (BECON), NIH Office of Extramural
Research, Available: (http://grants.nih.gov/grants/becon/becon/htm
[Online].

[50] , Bioengineering Research Grants, Available:
http://grants.nih.gov.grants//guide.pa-files/PAR-99-009.html [Online].

[51] Small Business Funding Opportunities, NIH Office of Extramural Re-
search.Available: http://www.nih.gov.grants/funding/sbir/htm[Online]

[52] J. R. Wolpawet al., “BCI2000: A general purpose brain-computer inter-
face (BCI),”Soc. Neurosci. Abstr., 2000, in press.

Jonathan R. Wolpawreceived the A.B. degree from
Amherst College, MA, in 1966 and the M.D. degree
from Case Western Reserve University, Cleveland,
OH, in 1970. He completed a residency in neurology
at the University of Vermont, Burlington, and fellow-
ship training in neurophysiology research at the Na-
tional Institutes of Health.

He is Chief of the Laboratory of Nervous System
Disorders and a Professor at the Wadsworth Center
of the New York State Department of Health and the
State University of New York. His primary research
interest are use of operant conditioning of spinal re-

flexes as a new model for defining the plasticity underlying a simple form of
learning in vertebrates and development of EEG-based communication tech-
nology for those with severe motor disabilities.

Theresa M. Vaughanreceived the B.A. degree from
the State University of New York at Binghamton in
1976.

She works at the Wadsworth Center of the New
York State Department of Health. She has been in-
volved in the Wadsworth Brain–Computer Interface
Project since 1990 and has been the Project Coordi-
nator since 1991.


